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Abstract Recent advances of single-cell transcriptomics technologies and allied computational

methodologies have revolutionized molecular cell biology. Meanwhile, pioneering explorations in

spatial transcriptomics have opened up avenues to address fundamental biological questions in

health and diseases. Here, we review the technical attributes of single-cell RNA sequencing and spa-

tial transcriptomics, and the core concepts of computational data analysis. We further highlight the

challenges in the application of data integration methodologies and the interpretation of the biolog-

ical context of the findings.
Introduction

High-throughput sequencing techniques, in particular single-
cell omics analyses, have revolutionized molecular cell biology
research. Single-cell RNA sequencing (scRNA-seq) is one of

the most widely used single-cell analytical approaches. Since
the first scRNA-seq profiling of only eight cells [1], the analysis
has now been expanded to profile the transcriptome of around

2 million single cells [2]. The huge amounts of scRNA-seq data
are of great potential to provide comprehensive cell atlas and
cell connectivity for each biological system.

In order to make the most of these rich datasets, an effec-

tive computational analysis of single-cell data, including data
quality control, read mapping, normalization, dimensionality
reduction, clustering, heterogeneous cell population identifica-

tion, differential gene expression, and trajectory inference, is
an essential requisite to achieve a biologically meaning out-
come of the study. To this end, a multitude of analytical tools

are available, such as principal component analysis (PCA) [3],
t-distributed stochastic neighbor embedding (t-SNE) [4],
ciences /
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uniform manifold approximation and projection (UMAP) [5],
and pseudotime inference [6]. Additionally, there are applica-
tions that integrate the analytical workflow for single-cell data,

e.g., Scran [7] and Seurat [8]. As each method has unique ker-
nel algorithm and functionality, it is imperative to have a good
understanding of computational attribute and biological impli-

cation of the methodology.
Further than identifying the signature features of major cell

types in a cell population and characterizing the differentiation

process, there is the aspiration to characterize the heterogene-
ity of cell types and the cell membership in a population [6].
The conventional single-cell assays necessitate the dissociation
of tissue samples and does not register the tissue source and

whereabouts of the single cells [9]. Since biological processes
and cellular functions may be influenced by the immediate
environment of cells, missing the spatial information during

the isolation of cells is a major drawback of many single-cell
studies [10]. Here entered the spatial transcriptome analysis
that enables the elucidation of the cell type composition of a

population in a defined tissue domain, organ, or body part
of an organism. From these findings, inferences can made on
cell states and lineage fate, and together with the additional

temporal information, the activation of specific gene regula-
tory networks (GRNs) along a developmental trajectory in
time and space of specific cell types, and emergence of cellular
complexity in an organisms [8]. To accomplish this, analytical

methods to achieve spatial resolution are developed, such as
sequential fluorescence in situ hybridization (seqFISH) [11],
multiplexed error-robust fluorescence in situ hybridization

(MERFISH) [12], and slide sequencing (Slide-seq) [13]. Har-
nessing the power of high-resolution gene expression profiles
and spatial reference systems by integrating the spatial coordi-

nates gleaned from these studies with single-cell omics data
would potentially empower the study of single-cell biology
[14,15].

This review focuses on bioinformatics methodology and
spatial transcriptomics, which encompass most single-cell stud-
ies published to date. We outline the advances of single-cell
analytical techniques, compare the technical attributes of var-

ious spatial omics technologies, and highlight the challenges
and future trend of single-cell biology research.

State-of-the-art analysis techniques

Recent advances in scRNA-seq technology provide unprece-

dented opportunities to investigate cell-to-cell heterogeneities,
to identify new cell subtypes, and to model differentiation pro-
cesses [16]. The analytical methodologies for scRNA-seq data
differ dramatically from those for bulk RNA sequencing

(RNA-seq). We summarize the core concepts of computational
methodologies of scRNA-seq data analysis.

Dimensionality reduction analysis for scRNA-seq data

In contrast to bulk RNA-seq, scRNA-seq generates complex
datasets of high cell numbers and high-dimensional expression

data [17], which require stringent quality control tests [18,19]
(Figure 1A, i). Dimensionality reduction is the primary step
for scRNA-seq data analysis (Figure 1A, ii). PCA is one widely
used dimensionality reduction method to extract variations

and bring out significant patterns in a dataset [3]. PCA reduces
the data dimension by geometrically projecting them onto
fewer principal components (PCs), which act as summarizing
the keynote features of data structure. Regarding the linear

combination of the data’s primary variables, the top PCs, gen-
erally the top 1–3, reflect the foremost biological differences
among cell clusters, since these PCs explain the major vari-

ances. Top PC loading genes, which can be interpreted as
the signature genes of biological significance, account for the
major variances for delineation of cell clustering, and can be

used for further iterative clustering analysis [9,20].
With the rapid advances of experimental techniques that

could be applied to analyze an exponentially increasing num-
ber of cells per study, conventional methods may not be ideal

for analyzing the complex multivariate data [21]. Among the
computational tools and methodologies, the non-linear dimen-
sionality reduction method [22], t-SNE, enables creating a sin-

gle map that displays fine structure at many different levels
(Figure 1A, ii). This is especially useful for high-dimensional
data that comprise several distinct, but related, low-

dimensional manifolds, such as graphics of objects from differ-
ent classes seen from different viewpoints. For visualizing the
structure of extremely large datasets, t-SNE uses random walk

algorithm on neighborhood graphs to allow the potential and
implicit structure of all of the data to be deduced from a con-
cise sub-dataset.

Similar to t-SNE, UMAP is a latest non-linear dimension-

ality reduction method with great visualization capabilities [5].
UMAP is one of the fastest manifold learning implementa-
tions, and has a significant improvement over t-SNE in run-

time and workload, especially for extremely large datasets
[23–25], such as those in cell atlas studies (Figure 1A, ii). Of
note, t-SNE and UMAP present similar arrangements of cell

clusters, but display dissimilar morphological variations in
visualization [25]. UMAP provides more specific and concrete
visualization as well as preserving the global structures of the

data. Additionally, UMAP’s branching clusters are able to
highlight biological significances. In our own experience of
single-cell data analysis, UMAP generates better results com-
pared to t-SNE when the number of cells in scRNA-seq

exceeds 30,000 (Figure 1B). To cope with high cellular
throughput in recent single-cell studies, UMAP has taken the
prior place of t-SNE to reduce dimensionality and to visualize

the data structure [26,27].
Cell–cell clustering and cell type identification

Among the analytical methodologies of scRNA-seq data, clus-
tering is equally important as dimensionality reduction. Within
the lower dimensional space, most informative genes, e.g.,
highly variable genes, were selected for further analysis [28].

Subsequently, clustering is the key step in categorizing cells
and defining cell types (Figure 1A, iii), and this step requires
thorough considerations of both biological and computational

aspects. Many clustering methods are generic that can be
applied to any dataset that possesses the measurement of
distance/similarity between data nodes [29]. There are three

major measurements for cell–cell distance: Euclidean distance,
Pearson correlation coefficient (PCC), and Spearman’s rank
correlation coefficient (SRCC) [30]. Euclidean distance repre-

sents the geometric similarities and amplifies the influence of
highly variable genes, while the two latter measurements



Figure 1 State-of-the-art analysis techniques

A. Overview of the workflow for the computational analysis of scRNA-seq data. (i) Quality control; (ii) dimensionality reduction; (iii) cell–

cell clustering; (iv) trajectory inference. B. Characterization of the state-of-the-art analysis techniques. PCA, principal component analysis;

t-SNE, t-distributed stochastic neighbor embedding; UMAP, uniform manifold approximation and projection; WGCNA, weighted gene

co-expression network analysis; RaceID, rare cell type identification; NNM, neural network model; LTE, locally linear embedding; LDA,

linear discriminant analysis; scEpath, single-cell energy path.
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consider the scale invariance, in other words, they reflect the

relative differences in values. For example, along with
scRNA-seq technology, a popular clustering algorithm is
weighted gene co-expression network analysis (WGCNA)
[31], which generates weighted networks based on the PCC val-

ues and combines similar cells into larger clusters or divides
heterogeneous clusters into smaller groups. Although designed
for bulk RNA-seq analysis, this approach can be used for find-

ing modules (clusters) of highly correlated genes in single cells
or pseudocells generated by aggregating single-cell clusters,
characterizing such modules using the module eigengene or

GRNs, and identifying candidate biomarkers or therapeutic
targets [32]. Grün et al. [33] sequenced the transcriptome of

thousands of single cells isolated from mouse intestinal orga-
noids, and by applying t-SNE analysis, they characterized
major groups of cells. The unique element is that they incorpo-
rated an iterative algorithm to increase the detection sensitivity

for rare cell populations. The optimized algorithm for rare cell
type identification (RaceID) measures the Euclidean distance
between single cells and enhances the sensitivity for detecting

signature genes. In recent studies, RaceID has shown high
accuracy in discovering rare and novel cell subtypes.

Single-cell analytical methodology is a fast-developing

research field. Currently, a variety of integrative software
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packages for single-cell data analysis have been developed,
with the most representative ones, including Scran [7], Seurat
[8], and Scanpy [34]. These packages involve a step-by-step

workflow for analyzing scRNA-seq data, aiming to identify
cell–cell heterogeneities from transcriptomic measurements.
Besides the computational approaches we summarized above,

new approaches are emerging with unique kernel algorithms
for data analyzing [16,35–37] (Figure 1B). For example,
single-cell regulatory network inference and clustering (SCE-

NIC) [38] identifies co-expression modules, referring to as reg-
ulons, to construct the gene regulatory network [39,40]. Census
is a regression-based method to normalize scRNA-seq expres-
sion levels and detect gene regulatory changes [41]. Deep learn-

ing approaches have also been introduced into single-cell
study, and neural network model (NNM) is a powerful math-
ematical algorithm that is able to capture and represent com-

plex variable relationships [42,43].
Although methodologies for single-cell analysis progress

significantly, it is evident that the major challenge in analyzing

scRNA-seq data is to understand the biological implication
rather than computational outcome. The inference of cell
states and functions, and the annotation of cell clusters require

an in-depth understanding of the biological significance of
each cluster [44]. In previous studies, researchers annotated cell
types through unsupervised clustering with marker genes or
projecting cells to existing cell atlases [24,45,46]. However,

manual annotation is laborious, time-consuming, and error-
prone due to lack of standard ontologies, especially for large
datasets. To meet these challenges, supervised and semi-

supervised clustering algorithms were developed [47]. In order
to efficiently characterize cell types at the user end, SuperCT
[48] and scPred [49] employ supervised training models to pre-

dict cell types. In comparison with unsupervised clustering
methods, the supervised models showed notable performance
in the prediction of cell subtypes. Representative semi-

supervised clustering algorithms, Garnett [50] and CellAssign
[51], are based on a paradigm of machine learning. Unlike
unsupervised clustering, Garnett and CellAssign operate in
an intuitive manner by incorporating prior knowledge of mar-

ker genes for interpretation and annotation of cell clusters. An
additional advantage is that the analysis also expands the mar-
ker gene database for future application. With the increasing

number of cell types being profiled, it would be useful to per-
form supervised and unsupervised clustering analyses simulta-
neously when analyzing new data to identify rare cell

populations as well as transitional cell types during lineage
differentiation.
Developmental trajectory and pseudotime

In many biological systems, cells display a changing spectrum
of states, which may mirror the differentiation process espe-
cially in development [52]. To infer the lineage history of single

cells, it necessitates interrogating the continuity of cell states in
scRNA-seq data. A unique advantage of scRNA-seq is that
researchers can recapitulate developmental stages in a single

experiment, given enough single cells and cell statuses sampled.
Analytical algorithms underpinned by the concept of pseudo-
time have been applied to infer the developmental trajectory

signposted by the transition of cell states during differentiation
(Figure 1A, iv).
Pioneering trajectory inference methods such as Monocle
[53] and Wanderlust [54] have been instrumental in the devis-
ing of pseudotime methodology to mimic the developmental

process. Utilizing diffusion-like random walks to evaluate
transitions across cell states, diffusion pseudotime (DPT)
shows favorable performance in identification of branching

points in developmental trajectories [55,56]. RNA velocity
employs a transcriptional dynamic model [57] that counts the
unspliced and spliced mRNAs in scRNA-seq datasets [58] to

enhance the fidelity of mapping the biological trajectory.
Single-cell energy path (scEpath) calculates the entropy of
dynamical process through statistical physics modeling, to pre-
dict the transition cell states and infer the lineage trajectories

[59]. In essence, pseudotime displays an ordering of cell states
by extracting the developmental information in the dataset,
thereby allowing the identification of the cell types at early,

intermediate, and end states of the pseudotime trajectory.
From the cell orders, the gene regulatory networks that accom-
pany the trajectory can be inferred [45]. While there are vari-

ous methodologies to infer the lineage trajectory, no single
method works best for all types of scRNA-seq data [6]. Differ-
ent approaches have advantages and disadvantages in attri-

butes, such as scalability, runtime, and resolution [60]
(Figure 1B). Thus, the pseudotime methods for inferring cell
trajectories should be employed iteratively with consideration
of the alignment of biological context and computational out-

put. Biological questions vary from one biological system to
the others, and the choice of mathematical models is driven
by the underlying assumptions for reconstructing lineage

trajectories.

Spatial transcriptomics

Cell type heterogeneity and cell fate acquisition are influenced
by the environmental conditions and the interactive signals
perceived by the cells at a specific location in the biological

entity. However, current scRNA-seq technologies require tis-
sue dissociation, resulting inevitably in the loss of spatial infor-
mation on tissue architecture and organization. The

methodology for collating the spatially resolved transcriptome
involves bringing together the imaging technology and the pro-
filing of gene expression, starting from classic low-plex RNA

or protein expression assays to multimodalities.

In situ spatial transcriptome analysis

In situ hybridization is a road-tested technique that is used for
localization and detection of specific DNA or RNA sequences
in cells in segmented tissue domains, or in defined positions in
the whole tissue [61,62]. Leveraging the in situ patterns of spa-

tially restricted genes as ‘‘landmarks”, individual cells with cell
type-specific expression profiles identified by scRNA-seq anal-
ysis can be mapped to the inferred locations in the tissues [63]

(Figure 2A, i), e.g., the mapping of single cells in the brain of
the marine annelid Platynereis dumerilii [64] (the spatial map-
ping will be discussed in more detail later).

The in situ-based reconstruction method is most effective
where the tissue structure is stably stereotypic for the biologi-
cal entity to assure universal consistency of position mapping
among samples. These methods are, however, constrained by

the scope of prior knowledge of cell markers, and only a



Figure 2 The advances of spatial transcriptomics

A. Single-cell resolved spatial transcriptome technologies. In addition to the classic in situ hybridization (i), pioneering work includes

seqFISH (ii), Slide-seq/Visium (iii), DBiT-seq/sci-Space (iv), and Geo-seq (v) greatly improve the spatial sensitivity and data depth.

Whole-mount in situ hybridization images in (i) were obtained from the eMouseAtlas Project (www.emouseatlas.org). B. Combining

scRNA-seq with spatial transcriptomics. (i) Inferring cellular localization based on spatial landmarks; (ii) zipcode mapping algorithm; (iii)

spatial-smoothing algorithm; (iv) ligand–receptor interaction encoding cellular spatial organization. seqFISH, sequential fluorescence

in situ hybridization; Slide-seq, slide sequencing; DBiT-seq, deterministic barcoding in tissue for spatial omics sequencing; Geo-seq,

geographical positional sequencing; LCM, laser capture microdissection; A, anterior epiblast; P, posterior epiblast; L, left lateral epiblast;

R, right lateral epiblast; M, mesoderm; EA, anterior endoderm; EP, posterior endoderm.
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customized set of markers can be assayed concurrently to
establish high-confidence landmarks [9], which therefore

greatly reduce the robustness of position mapping. To improve
the detection throughput, recently developed methods of seq-
FISH [11] and MERFISH [12] use sequencing-by-

hybridization techniques for transcriptomic quantification.
For these techniques, cells fixed in space are subject to repeated
hybridizations of fluorescently labeled DNA probes and

rounds of imaging for registering the position of the in situ
hybridization signals of up to hundreds of genes (Figure 2A,
ii). While achieving an enhanced throughput compared to con-
ventional in situ hybridization, the sensitivity of marker detec-

tion remains less than scRNA-seq.
Recently, the seqFISH technique is further enhanced by

introducing pseudocolor and spectral overlapping [65], and

this study reported the quantification of over 10,000 tran-
scripts in individual cells. Multiplexed fluorescence in situ
hybridization could image hundreds to thousands of genes

simultaneously; however, this technology is constrained by
the coverage of the marker gene sets, the availability of sensi-
tive probes, and the requirement of high-resolution micro-

scopy. Additionally, with increasing level of multiplexing,
molecular markers starting to overlap and tight associations
between cells may result in signal crowding, both leading to
false-positive signals [66].
Array-based spatial transcriptome analysis

To obtain a high-throughput, genome-wide profile of gene

expression with spatial locations at cellular resolution, the lat-

est spatial transcriptomic technology combines traditional his-

tology technologies with massive throughput RNA-seq. For

example, Slide-seq is a methodology which involves transfer-

ring mRNA from a tissue section onto a surface covered with

DNA barcoded beads anchored at pre-defined positions,

where the barcode registers the location of the captured

mRNA [13] (Figure 2A, iii). Applying Slide-seq, cell types with

characteristic gene expression profiles were identified at specific

positions in the mouse cerebellum and hippocampus, thereby

revealing the spatial pattern of gene expression of cells in the

Purkinje layer and the temporal progression of cell type-

specific responses to traumatic brain injury. Compared to the

imaging-based methodologies, the density of sampling for

Slide-seq analysis significantly improves the spatial resolution.

However, the on-slide reaction is not uniformly efficient due to

variations of cellular structures. Slide-seq detects 100–300

unique molecular identifiers (UMIs) per cell, which are equiv-

alent to � 100 genes [67]. The impact of sparsity of data signals

over noise is yet unsolved, and the number of genes that can be

simultaneously assayed is still limited. Slide-seq V2 has

https://www.emouseatlas.org/
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improved library generation and bead synthesis to increase
RNA capture efficiency [68]. While the gene detection ability
has been enhanced (5–10-fold of Slide-seq), the low-

throughput has confounded the efficiency of cell type
clustering.

Originated from a similar platform as Slide-seq, 10X Geno-

mics Visium Spatial Gene Expression Solution (Visium) cap-
tures the transcriptome from cells at their positions in an
intact tissue section to generate a spatial display of the gene

activity (Figure 2A, iii). Using the Visium technology, the spa-
tial topography of gene expression of the human dorsolateral
prefrontal cortex (DLPFC) has identified laminae-enriched
expression signatures of the six-layered DLPFC, and refined

the molecular connectivity to previous laminar markers [69].
Compared with Slide-seq, Visium has an improved throughput
and enables gene expression analysis at the transcriptome level

on intact sections of tissues. Nevertheless, this technology is
still discommoded by unsatisfactory gene detection ability
(500–2000 genes per spatial spot) and incompatibility to all tis-

sue types, meanwhile, the limited spatial resolution also makes
it insufficient to elucidate cell-to-cell heterogeneity [70].

In recent spatial transcriptomics studies, a number of out-

standing methodologies and improvements have been devel-
oped that enable high-throughput in situ profiling of gene
expression. Additional array-based platforms, such as high-
definition spatial transcriptomics (HDST) [71] and spatial

enhanced resolution omics-sequencing (Stereo-seq) [72] offer
high-resolution and high-density coverage, by refining the spa-
tial resolution to 2 lm subcellular range, though the limited

gene detection ability related to the sequencing depth remains
unresolved.

Direct spatial barcoding captures tissue coordinates

Pioneering attempts toward spatial transcriptome analysis
were based on either multiplexed fluorescence in situ hybridiza-

tion or barcoded bead array [73,74]. These methodologies are
still technically demanding, requiring complicated processing
steps and hard pressed by the low mRNA capture efficiency.
A nascent technology takes the approach of deterministic bar-

coding in tissue for spatial omics sequencing (DBiT-seq) [75],
instead of transferring mRNAs onto a solid-phase substrate.
DBiT-seq places microfluidic chips with perpendicular chan-

nels against a fixed tissue section to directly barcode the bio-
molecules (Figure 2A, iv). In this regard, DBiT-seq obviates
the need for sophisticated processes of sequential hybridization

or bead decoding by directly capturing the approximate coor-
dinates of the cells upon sequencing. Conceptually similar to
DBiT-seq, sci-Space method [76] employs the spatially arrayed
unique combination of oligonucleotides (oligos) that are trans-

ferred to nuclei of cells by diffusion. The nuclei are then
extracted from the tissue section and prepared for scRNA-
seq (Figure 2A, iv). The spatial coordinates of large-scale

regions can be retrieved by sci-Space, which meets a need of
extended coverage that cannot be fulfilled by other methodolo-
gies [13].

Both DBiT-seq and sci-Space have strengths and limita-
tions. DBiT-seq greatly improves spatial resolution close to
single-cell level, but does not resolve single cells directly.

High-resolution immunofluorescence on the same tissue sec-
tion simultaneously can facilitate cell segmentation. sci-Space
focuses on high-throughput screens and can cover large tissue
domains, but the spatial resolution (� 200 lm) is limiting.
Decreasing spot size and increasing spot density may refine res-

olution, but the gene detection ability would be compromised.
The capturing rates (1000–2000 genes per spot) of both tech-
nologies would benefit from further optimization.

Laser capture microdissection records geographical location

Spatial locations of cells in tissues strongly influence cellular

functions. A key prerequisite for single cell research is the effi-
cient harvesting of single cells of interest from a tissue or cell
group. Laser capture microdissection (LCM) enables capture

of target cells with structural and spatial information retained
[77,78], but the resolution remains relatively low. The limita-
tion lies in the number of cells captured (ranging from hun-
dreds to thousands for library preparation) and the coverage

of profiling limiting to a smaller gene set, making it difficult
to discern the heterogeneity and cell-to-cell interactions within
a sampled population.

Geographical positional sequencing (Geo-seq), a technique
combining scRNA-seq and LCM, was developed [14]. This
technique features optimized preservation tissue morphology

and enhanced RNA integrity to enable low input RNA-seq
analysis, making it possible to analyze the transcriptome of
limited materials of as few as ten cells sampled from defined
locations in the tissue. Using Smart-seq2 for full-length

scRNA-seq [79], the gene detection efficiency has significantly
increased to detect up to 8000–12,000 genes in each LCM sam-
ple. The depth of sequencing data enables the elucidation of

gene structure based on splicing information. Incorporating
the spatial information enables the construction of the 3D spa-
tial and quantitative transcriptome atlas [15] (Figure 2A, v).

Through bioinformatics analysis, Geo-seq data can be mined
to infer the gene regulatory networks that underpin the molec-
ular architectures of embryonic development from preimplan-

tation to gastrulation in mice [39].
Geo-seq is potentially applicable to investigate a variety of

biological questions, such as cell fate determination, cell type
heterogeneity, and gene regulatory network. By applying

Geo-seq, a spatial transcriptome map of early post-
implantation mouse embryos utilizing data collated from sec-
tions along their proximal–distal axis has revealed that

podocalyxin exocytosis is associated with the polarization of
extra-embryonic tissue and the formation of pro-amniotic cav-
ity [80]. Geo-seq analysis of the caudal hematopoietic tissue

(CHT) of zebrafish has unveiled the spatio-temporal dynamics
of the expansion of hematopoietic stem cell and progenitor cell
in CHT and the accompanying gene regulatory networks,
which points to a strong association between hematopoietic

stem cell differentiation and cell cycle status [81].

Combining scRNA-seq with spatial transcriptomics

Other than the ‘‘direct” in situ single-cell analytical techniques
(seqFISH, MERFISH, DBiT-seq, etc.), leveraging the attri-
butes of scRNA-seq and spatial transcriptomics to retrieve

from the integrated datasets the spatial positions of single cells
offers another avenue for single-cell spatial transcriptomics
study [9]. For example, a core feature of Seurat package is

inferring cell location by integrating scRNA-seq data with
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the spatial pattern of in situ RNA expression [63]. Seurat first
divides the embryo or tissue structure into high-resolution bins
followed by binarization of the expression of in situ hybridiza-

tion signals of specific landmark genes. As a result, the land-
marks are normalized as ‘‘on” or ‘‘off” within each spatial
bin and the reference positioning system is thereby con-

structed. By aligning the expression of landmark genes of sin-
gle cells to the reference gene set, the locations of single cells
can be determined (Figure 2B, i). However, the limited number

of spatial landmark genes and the different platforms for gen-
erating the references and the single-cell data may impact the
precision of spatial mapping. In the latest version of Seurat,
through identification of pairwise correspondences between

single cells, termed ‘‘anchors”, across diverse datasets, a shared
space that improves the precision of inferring single-cell loca-
tions, can be constructed [8]. Similarly, the distributed map-

ping (DistMap) scores [82], by binning the entire Drosophila
embryo into refined expression regions and computing the
Matthews correlation coefficients (MCCs) between the expres-

sion values of spatial landmarks for every cell–region combina-
tion, can predict multiple likely positions for each cell, instead
of assigning to a single location. The higher the resolution of

the reference positioning system, the higher is the precision
of inferred localization. Employing high content seqFISH data
as a reference system increases the number of spatial-specific
markers compared to conventional in situ hybridization. For

instance, by integrating scRNA-seq data of ‘‘Gastrulation
Atlas” [24] and quantified seqFISH data, a spatially resolved
map of gene expression at quasi single-cell resolution can be

constructed for the mouse embryo [83].
One drawback of the landmark-based algorithms is the lim-

ited availability of known landmarks. To mitigate this short-

coming, Geo-seq incorporates a spatial signature gene
(zipcode) mapping protocol that computationally allocate sin-
gle cells to spatial positions (Figure 2B, ii). The unbiased iden-

tification of ‘‘zipcodes” embedded in Geo-seq data enhances
the imputation of the positions of single cells. Over 90% of
the single cells isolated from known positions can be mapped
correctly with high degrees of precision to the original position

in the embryo [15]. By applying zipcode mapping protocol,
stem cells in culture or cells from germ layers of a gastrulating
embryo can be mapped to their best-fit positions in the embryo

[84,85]. By incorporating a spatial-smoothing algorithm, the
mapping efficiency and spatial confidence intervals can be fur-
ther enhanced. Gaussian distribution-based spatial simulation

that mirrors the spatial dispersity of single-cell mapping
(Figure 2B, iii) showed that the simulation of diffused domain
has a significantly improved fidelity compared with other spa-
tial mapping algorithms (Wang and Jing, unpublished). The

methodologies for combining scRNA-seq data and spatial
transcriptomics are still in its infancy. Efficient extraction of
both spatial coordinates and spatial signature/zipcode genes

continues to be a challenging task for computational biology
[86]. Mathematical modeling may also be introduced to gain
a deeper level of understanding of the spatial information.

Mathematical models for spatial organization

Besides experimentally recording the spatial information of

individual cells, computational biologists have attempted to
reconstruct spatial map of single cells mathematically. The
core idea is to use a reference atlas of signature genes as an
‘‘anchor” to assign spatial coordinates to each cell [63,64,82].
However, such methodologies rely heavily on the coverage of

spatial marker genes, even with a specific combination of ref-
erence genes which may not be adequate to tag every spatial
position. To resolve the cell positions, a de novo spatial recon-

struction (novoSpaRc) algorithm was applied to de novo con-
struct the cartography of single-cell gene expression, without
any reliance on prior knowledge [87]. The assumption for

novoSpaRc is that neighboring cells display more similar tran-
scriptional identities than cells farther apart and the physical
distance between cells increases with their biological distance
in gene expression space. Applying novoSpaRc on published

single-cell datasets, cells of mammalian intestinal epithelia
[88] and liver lobules [89] can be re-positioned. Consistent with
the notion of structural correspondence, classified cell types

showed distinct pairwise distances.
Similar to the spatial–distance approach of novoSpaRc, the

cellular spatial organization mapper (CSOmap) algorithm

assumes that ligand–receptor interaction information encodes
the cellular spatial organization [90], for inferring de novo cel-
lular interactions from scRNA-seq data. CSOmap is built on

the hypothesis that ligand–receptor interactions mediate
cellular self-assembly rather than the transcriptome profiles
(Figure 2B, iv). CSOmap suggests that transcriptome-similar
cells often, but not always, have similar spatial locations

[91,92]. Decoding intercellular communication networks in
the perspective of ligand–receptor interactions have important
biological implication [93]. Recently, a growing number of

methodologies that model how gene expression of a cell is
influenced by interacting cells are developed. Based on cellular
communication models, methods such as CellPhoneDB,

NicheNet, SingleCellSignalR, and iTALK [94–97] can predict
ligand–receptor links between interacting cells by integrating
their expression profiles with prior knowledge on gene regula-

tory networks and signaling activities. Although these method-
ologies did not implement the analysis of the space-resolved
reorganization of single cells, they open new opportunities to
dissect the complexity, heterogeneity, and molecular dynamics

of cell–cell communication. Further development of the spatial
algorithms of cellular communication models is anticipated in
future studies.

Mathematical modeling provides important insights into
spatial transcriptomics, but the pseudo-space may not depict
the complexity of biological contexts. For example, different

cell types may require higher-order regulatory networks or
exhibit distinct principles of spatial organization. Incorporat-
ing biological insights into mathematical models, and in com-
bination with algorithms of machine learning [98], will be a

priority of methodology development.

Outlook and challenges

Single-cell analytical techniques that enable high-throughput
profiling of multi-omics have revolutionized molecular cell

biology. There is a compelling need to efficiently analyze the
large-scale single-cell omics data for thousands to millions of
cells. On one hand, the ability to unravel biological complexity
is empowered by the accessibility to big data. On the other

hand, higher computing power is needed to raise the ability
to cluster cell populations comprehensively and identify rare
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cell types [29]. Visualizing and deciphering the results contin-
ues to be testing. Classic linear methods, such as hierarchical
clustering and PCA, are insufficient to capture relationships

between cells in large datasets accurately due to the high levels
of data variation. Deep learning and non-linear techniques are
more flexible (t-SNE, UMAP, etc.), as they can identify all

variations, extract significant features, and visualize the struc-
ture of very large datasets aesthetically.

With the advances of single-cell analytical methodologies,

another challenge is the choosing of suitable analytic method-
ology for the single-cell data. The most commonly used meth-
ods, such as Scran [7], Seurat [8], and Scanpy [34], each with
the unique kernel algorithm may have an impact on the out-

come. As these analytical methods offer many parameters that
can be customized to define the criteria of normalization and
resolution of clustering, the selection of parameters could have

an unintended effect on the outcome [99]. Thus, it is important
to inform computational analysis and data interpretation with
biological guidance, particularly in the clustering and defini-

tion of cell types.
Time-series scRNA-seq experiments provide voluminous

information on the gene sets that are dynamically activated,

and their role in cellular interaction and development. Given
the complexity of dynamic biological processes, a discrete clus-
tering or classification of cells may not fully mirror the full
spectrum of cell states. Pseudotime study of time-series data

will be critical in future studies. Current pseudotime methods,
such as Monocle [53] and DPT [55], simulate a biological pro-
cess such as cell differentiation by ordering cells along a model

of developmental trajectory [100]. This allows the identifica-
tion of intermediate cell states and the branching points of
the trajectory, besides inferring the beginning and end points.

Innovation in pseudotime methodology, for revealing time-
series activity of transcription factors (TFs) [58] and the gene
regulatory networks anchored by these TFs, as well as the

modulation of signaling activity, is crucial for understanding
the dynamics of the molecular function [101].

A pressing question in biological research is ‘‘what defines a
cell type and cellular functionality?” [102]. Previous single-cell

analyses often try to define a cell type using marker genes or
transcriptome identity [103,104]. However, cell fate decision
and cellular heterogeneity can be influenced by the environ-

mental factors and the signals in the neighborhood of the cell
[39]. Most of the single-cell studies lack the spatial information
of cells. To answer the question ‘‘what is a cell type?”, knowl-

edge of the environmental input to guide cell differentiation
and lineage development is a vital prerequisite in single-cell
research [105]. How to computationally retrieve the original
spatial coordinates of individual cells requires an integrated

approach of spatial transcriptome and precise gene detection
at single-cell resolution [39]. Once generated, the spatially
resolved single-cell maps will facilitate the computational infer-

ence of gene regulation networks and signaling networks. To
address the question of ‘‘cellular functionality”, single-cell
multi-omics data beyond the transcriptome have to be collated

and be integrated with the spatio-temporal information into a
biomolecular cell atlas that would inform the functional out-
put of the cells in development and homeostasis. Additionally,

when the mathematical models can be complemented by exper-
imental validation, single-cell technologies would elevate the
dimensionality of our fundamental understanding of cell and
developmental biology [10].
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