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Abstract In recent years, neoantigens have been recognized as ideal targets for tumor immunother-

apy. With the development of neoantigen-based tumor immunotherapy, comprehensive neoantigen

databases are urgently needed to meet the growing demand for clinical studies. We have built the

tumor-specific neoantigen database (TSNAdb) previously, which has attracted much attention.

In this study, we provide TSNAdb v2.0, an updated version of the TSNAdb. TSNAdb v2.0 offers

several new features, including (1) adopting more stringent criteria for neoantigen identification, (2)

providing predicted neoantigens derived from three types of somatic mutations, and (3) collecting

experimentally validated neoantigens and dividing them according to the experimental level.

TSNAdb v2.0 is freely available at https://pgx.zju.edu.cn/tsnadb/.

Introduction

Tumor neoantigens are tumor-specific antigens derived from

somatic mutations in tumor cells, which have been recognized
as ideal targets for tumor immunotherapy in recent years [1–4].

Due to the huge workload for experimental verification, it is
preferred to utilize cancer genomics and bioinformatics for
neoantigen identification. Numerous prediction tools consider-

ing the biological process of neoantigen generation, such as
human leukocyte antigen (HLA)–peptide binding [5–7], have
been developed, which have been embedded in neoantigen pre-

diction pipelines such as pVACtools [8], tumor-specific
neoantigen detector (TSNAD) [9,10], and pTuneos [11].
Neoantigen-related databases such as TRON cell line portal
(TCLP) [12], the cancer immunome atlas (TCIA) [13], and

tumor-specific neoantigen database (TSNAdb) [14] have also
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been created for better usage of neoantigens in clinical
research. In TSNAdb v1.0, we took the complex of mutated
peptides and HLA class I molecules (peptide–HLA pairs,

pHLAs) as tumor neoantigens and predicted binding affinities
between mutated/wild-type pHLAs by NetMHCpan v2.8/v4.0.
We then obtained 3,707,562/1,146,961 potential neoantigens

derived from single nucleotide variants (SNVs) of 7748 tumor
samples from The Cancer Genome Atlas (TCGA, https://por-
tal.gdc.cancer.gov/). With the development of neoantigen-

based tumor immunotherapy, neoantigens from other types
of mutations have been identified, and more experimental data
have been generated [15,16]. Therefore, it is urgent to perform
system updates for the TSNAdb v1.0.

Here, we present an updated version of TSNAdb v1.0 that
improves on the following points. (1) More stringent criteria
were used for neoantigen identification to reduce the high

false-positive rate of neoantigen prediction in practice. Only
the pHLAs that met the thresholds of three tools were consid-
ered potential neoantigens (Figure 1). The pHLAs would not

be considered neoantigens if the mutated genes were not
expressed in the tumor cells. (2) We provided predicted
neoantigens derived not only from SNVs but also from inser-

tions/deletions (INDELs) and gene fusions (Fusions). In total,
372,273 SNV-derived neoantigens, 137,130 INDEL-derived
neoantigens, and 11,093 Fusion-derived neoantigens were
obtained. The mean number of neoantigens generated for each

SNV (0.38) was lower than each INDEL (1.22) or Fusion
(0.88). (3) We collected as many experimentally validated
neoantigens from public databases and literature as possible

(1856 neoantigens) and divided them into three tiers according

to the level of experimental verification. Corresponding genes
and mutations of the collected neoantigens were linked to
the cancer-driving site profiling database (CandrisDB) [17]

since neoantigens derived from driver genes or driver muta-
tions would be ideal targets for tumor immunotherapy [18].

We believe that the updated database will contribute to

neoantigen-based tumor immunotherapy and that the data-
base will continue updating in the aspect of predicting neoanti-
gens from more types of mutations and collecting more

experimentally validated neoantigens.

Database content and usage

Data collection and preprocessing

The SNVs, INDELs, and the expression level of corresponding
genes were collected from TCGA. Mutated nucleotide
sequences generated by SNVs and INDELs are translated into

mutated amino acid sequences and have been decomposed into
8 to 11 peptides using the pipeline TSNAD v2.0 [10]. The
Fusions were collected from Gao et al. [19], and the mutated

proteins were generated by STAR-Fusion [20]. The HLA alle-
les of corresponding samples were collected from TCIA.
Finally, 972,187 SNVs from 7748 samples, 112,404 INDELs
from 7086 samples, and 12,639 Fusions from 4234 samples

were used for neoantigen prediction.

Stricter criteria for neoantigen identification

Neoantigen-based tumor immunotherapy has shown good
application prospects in clinical practice. However, the high
false-positive rate of neoantigen prediction limits its usage.

How to select high-confidence immunogenic neoantigens
remains to be resolved. To reduce the potential false-positive
rate in our predicted results, three tools (DeepHLApan,
MHCflurry, and NetMHCpan v4.0) were used for neoantigen

prediction, and only the pHLAs that met all the criteria of the
three tools were considered potential neoantigens (Figure 1).
The reason we chose these three tools is as follows: NetMHC-

pan [7] is the most frequently used tool for neoantigen predic-
tion in clinical practice. MHCflurry [6] obtains the prediction
neoantigen efficiently and with high quality. DeepHLApan

[5] considers both HLA-peptide binding and immunogenicity
of pHLA that the other two tools have not taken into consid-
eration for high-confidence neoantigen prediction. The thresh-

old of each tool is as follows. For NetMHCpan v4.0, pHLA
with rank < 2% or affinity < 500 nM is considered binding,
and we used both thresholds to select higher quality neoanti-
gens. The output of MHCflurry is rank % and has no specific

threshold. We set rank < 2% as the threshold, which is the
same as NetMHCpan v4.0. The predicted scores of DeepHLA-
pan are posterior probabilities, so we set the threshold to 0.5.

In addition, the pHLAs whose corresponding genes were not
expressed [transcripts per million reads (TPM) < 1] were
removed.

Neoantigens derived from three types of mutation

Neoantigens are not only generated from SNVs but also gen-

erated from other mutations, such as INDELs and Fusions.

7086 samples
112,404 INDELs

4234 samples
12,639 Fusions

7748 samples
972,187 SNVs

Identification

Mutations

HLA

Neopeptides

Identified neoantigens

372,273
SNV-derived
neoantigens

137,130
INDEL-derived
neoantigens

11,093
Fusion-derived

neoantigens

Filters
DeepHLApan
Binding score > 0.5
Immunogenic score > 0.5
MHCflurry
Rank < 2%
NetMHCpan v4.0
Affinity < 500 nM
Rank < 2%

Expression
TPM > 1

Figure 1 The neoantigen prediction process of TSNAdb v2.0

SNV, single nucleotide variant; INDEL, insertion/deletion;

Fusion, gene fusion; HLA, human leukocyte antigen; TPM,

transcripts per million reads.
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Based on the analysis of different types of mutations in TCGA
tumor samples, we provided 137,130 INDEL-derived neoanti-
gens and 11,093 Fusion-derived neoantigens into TSNAdb

v2.0. The number of predicted neoantigens derived from SNVs
was greater than that derived from INDELs and Fusions due
to the greatest number of SNVs among the somatic mutations

collected. However, the average number of neoantigens
derived from each SNV (0.38) was less than that derived from
each INDEL (1.22) or each Fusion (0.88) (Table 1). We further

explored the relationship between the number of mutations

and neoantigens for the three mutation types. The results
showed that the numbers of SNV-derived neoantigens and
INDEL-derived neoantigens had positive correlations with

the numbers of SNVs and INDELs, with the Pearson correla-
tion coefficient r = 0.925 and r = 0.902, respectively (Fig-
ure 2A and B). There was no significant correlation between

the number of Fusion-derived neoantigens and the number
of Fusions (Figure 2C, r = 0.452), which might be attributed
to the fact that the number of neopeptides each Fusion gener-

ated varies greatly.

Table 1 The distribution of mutations and neoantigens across 16 tumor types

Mutation type Tissue No. of samples No. of mutations No. of neoantigens No. of neoantigens per mutation

SNV Bladder 408 74,707 21,070 0.38

Brain 151 16,197 5227

Breast 982 62,211 18,238

Cervix 286 46,607 11,906

Colorectal 531 165,293 39,116

Head and neck 495 55,968 13,728

Kidney 681 26,170 8499

Liver 358 28,024 5987

Lung 999 212,861 52,801

Ovary 305 28,478 7631

Pancreas 166 17,221 3985

Prostate 493 16,424 5363

Skin 466 206,907 43,882

Stomach 411 103,103 24,497

Thyroid 488 4425 1218

Uterus 528 415,499 109,125

INDEL Bladder 389 2890 3532 1.22

Brain 130 366 375

Breast 888 5207 6123

Cervix 257 3095 4234

Colorectal 520 21,327 29,876

Head and neck 478 3569 4913

Kidney 648 5318 6395

Liver 353 2120 2143

Lung 983 10,790 12,407

Ovary 296 4260 4441

Pancreas 141 457 806

Prostate 416 1448 2119

Skin 430 1965 2557

Stomach 393 19,912 24,838

Thyroid 248 1746 1657

Uterus 516 27,934 30,714

Fusion Bladder 269 809 819 0.88

Brain 92 244 245

Breast 787 3390 3457

Cervix 139 280 215

Colorectal 167 328 231

Head and neck 285 532 530

Kidney 171 318 420

Liver 179 513 423

Lung 716 1992 710

Ovary 316 983 609

Pancreas 72 130 161

Prostate 381 1079 1120

Skin 287 841 918

Stomach 178 559 486

Thyroid 110 140 250

Uterus 85 501 499

Note: SNV, single nucleotide variant; INDEL, insertion/deletion; Fusion, gene fusion.
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Shared neoantigens generated from frequent somatic mutations

Currently, most neoantigen-targeted immunotherapies are per-
sonalized and expensive, which led us to wonder if we could
identify shared neoantigens that can be applied to a wider

range of tumor patients. Here, we analyzed the frequency of
each neoantigen and obtained 16,913 neoantigens shared in
at least two tumor samples (Table S1). Among three SNV-
derived neoantigens shared in more than 20 samples, the

mutated peptides are generated from BRAF and KRAS, which
are well-known cancer driver genes. The most frequent shared
neoantigen derived from SNV is the complex of HLA-B57:01

and mutated peptide GLATEKSRW generated by BRAF
V600E, which is present in 41 tumor samples. The complex

of HLA-A02:01 and the neopeptides RLMAPVGSV and
SLLTQPSPA generated by the frameshift mutation XYLT2
G529Afs*78 are the most frequent neoantigens among

INDEL-derived neoantigens, which both appear in 31 samples
(Table 2). The two Fusion-derived shared neoantigens are the

complex of HLA-A02:01 and the neopeptides ALNSEALSVV

and ALNSEALSV generated by the fusion of the TMPRSS2

and ERG genes, which both appear in 14 samples (Table S1).
We believe that these shared neoantigens are expected to be
ideal drug targets for tumor immunotherapy, which might

need further experimental validation.

Experimentally validated neoantigens

On the ‘‘Validation” page of TSNAdb v1.0, we only collected
experimental data about wild-type pHLAs that were difficult
to identify as neoantigens due to the limited binding data

between mutated pHLAs. With the development of clinical
studies on neoantigen-based tumor immunotherapy, a large
number of experimental results have provided a rich source
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Figure 2 The relationship between the number of mutations and the number of neoantigens across 16 tumor types of three mutation types

A. The relationship between the number of SNVs and SNV-derived neoantigens. B. The relationship between the number of INDELs and

INDEL-derived neoantigens. C. The relationship between the number of Fusions and Fusion-derived neoantigens. The Pearson

correlation coefficient is used for evaluation.
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for the functional confirmation of neoantigens. Here, we col-

lected experimentally validated mutated pHLAs not only from
several neoantigen databases (dbPepNeo [21], NeoPeptide [22],
NEPdb [23], and Cancer Antigenic Peptide Database [24]) but

also from published literature through data mining. For the
neoantigens without gene or mutation information, BLAST
was used to determine the mutated genes and the positions
of somatic mutations at proteins. All collected data were fur-

ther checked to determine whether the neoantigens were
immunogenic or presented to the cell surface, and the collected
neoantigens were divided into three tiers according to the

experimental level. Neoantigens that have been both validated
as immunogenic and to be presented to the cell surface were
labeled tier 1, while those only validated as immunogenic were

labeled tier 2, and those only validated to be presented to the
cell surface were labeled tier 3. We collected 1856 experimental
neoantigens, among which 67 neoantigens were classified as

tier 1, 1190 neoantigens were classified as tier 2, and 599
neoantigens were classified as tier 3. Among the collected
neoantigens, most were SNV-derived (22 were Fusion-
derived, 125 were INDEL-derived, 23 were noncoding-

derived, 33 were RNA splice-derived, and the remaining were
SNV-derived) and enriched in several tumor types (430
belonged to lung cancer, 477 belonged to skin cancer, 361

belonged to B-cell lymphoma, and 123 belonged to colorectal
cancer).

The usage of TSNAdb v2.0

The web interface of TSNAdb v2.0 contains seven pages:
‘‘Home”, ‘‘Browse”, ‘‘Search”, ‘‘Collected”, ‘‘Tools”, ‘‘Down-

load”, and ‘‘Help”. The pages ‘‘Home”, ‘‘Download”, and
‘‘Help” are similar to those presented in TSNAdb v1.0. The
‘‘Tools” page is newly added to provide the links of DeepH-
LApan and TSNAD, which we developed previously for

neoantigen prediction. Major changes (such as more presenta-

tion forms, more correlation analysis, and more meaningful
links) have been made in the pages ‘‘Browse”, ‘‘Search”, and
‘‘Collected” compared to the TSNAdb v1.0.

On the ‘‘Browse” page, three subpages (‘‘Mutation type”,
‘‘Tumor type”, and ‘‘Shared neoantigens”) are provided for
customized neoantigen browsing. In ‘‘Mutation type”, four
parts, ‘‘Statistics” (Figure 3A), ‘‘Neoantigen with mutation”

(Figure 3B), ‘‘Neoantigen with clinical information” (Fig-
ure 3C), and ‘‘Detailed neoantigen” (Figure 3D), are dis-
played. In ‘‘Tumor type”, three parts, including the

‘‘Statistics” (Figure 3E), ‘‘Neoantigen with clinical informa-
tion” (Figure 3F), and ‘‘Detailed neoantigen” (Figure 3G),
are displayed. In the ‘‘Shared neoantigens”, the distribution

of shared neoantigens that occur in at least two tumor samples
is displayed. The table below the boxplot displays the shared
neoantigens that meet different thresholds. The genes and

mutations are linked to CandrisDB [17] to check whether they
are driver genes or driver mutations since shared neoantigens
derived from driver mutations would be potential ideal targets
for tumor immunotherapy (Figure 3H).

The ‘‘Search” page contains the main page and two sub-
pages ‘‘Gene” and ‘‘HLA”. On the main page of ‘‘Search”,
users could search for desired neoantigens by selecting the

mutation type, tumor type, and gene. Compared with the
‘‘Detailed neoantigen” of the ‘‘Browse” page, it could provide
more customized functions, such as sorting and searching. In

the subpages ‘‘Gene” and ‘‘HLA”, the detailed neoantigens
and their distribution of selected genes or HLAs would be dis-
played once searching. The displayed pie charts are linked with

the bellowed table that the detailed neoantigens would be
changed once clicking on the part of the pie charts.

On the ‘‘Collected” page, all collected neoantigens are val-
idated by experiments to be presented to the cell surface or

immunogenic, which are different from those in TSNAdb

Table 2 The detailed information of shared neoantigens present in more than 20 samples

Mutation type Gene Mutation HLA Peptide No. of samples

SNV BRAF V600E HLA-B57:01 GLATEKSRW 41

SNV KRAS G12D HLA-B08:01 DGVGKSAL 37

INDEL XYLT2 G529Afs*78 HLA-A02:01 RLMAPVGSV 31

INDEL XYLT2 G529Afs*78 HLA-A02:01 SLLTQPSPA 31

SNV KRAS G12V HLA-A03:01 VVGAVGVGK 30

INDEL SETD1B H8Tfs*27 HLA-C07:01 LRARGGTTI 29

INDEL PLEKHA6 V328Yfs*172 HLA-A02:01 IMMSWMPPL 25

INDEL PLEKHA6 V328Yfs*172 HLA-A02:01 VLSGCHLAV 25

INDEL XYLT2 G529Afs*78 HLA-C07:02 GRTPTTRLM 25

INDEL PLEKHA6 V328Yfs*172 HLA-A02:01 FTPLSAHPV 25

INDEL PLEKHA6 V328Yfs*172 HLA-A02:01 CLAGSLSTM 25

INDEL PLEKHA6 V328Yfs*172 HLA-A02:01 SAMPSAMGV 25

INDEL PLEKHA6 V328Yfs*172 HLA-A02:01 SIMMSWMPPL 25

INDEL XYLT2 G529Afs*78 HLA-B07:02 RPACTCISM 23

INDEL XYLT2 G529Afs*78 HLA-B07:02 HPQWAPHSA 23

INDEL XYLT2 G529Afs*78 HLA-B07:02 RPTGRTPTTRL 23

INDEL XYLT2 G529Afs*78 HLA-B07:02 SPGACRPAC 23

INDEL XYLT2 G529Afs*78 HLA-B07:02 RPTGRTPTT 23

INDEL MUC4 L1937Pfs*1069 HLA-B07:02 HPQVTPPL 23

INDEL MUC4 L1937Pfs*1069 HLA-B07:02 HPQVTPPLF 23

INDEL SETD1B H8Tfs*27 HLA-C07:02 LRARGGTTI 22

INDEL MUC4 L1937Pfs*1069 HLA-B07:02 LPQHPQVTPPL 21

Note: fs*78 indicates that 78 amino acids have been changed after the frameshift site. HLA, human leukocyte antigen; fs, frameshift.
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Figure 3 Screenshots of the ‘‘Browse” page of TSNAdb v2.0

A. The ‘‘Statistics” part of the ‘‘Mutation type” page. B. The ‘‘Neoantigen with mutation” part of the ‘‘Mutation type” page. C. The

‘‘Neoantigen with clinical information” part of the ‘‘Mutation type” page. D. The ‘‘Detailed neoantigen” part of the ‘‘Mutation type”

page. E. The ‘‘Statistics” part of the ‘‘Tumor type” page. F. The ‘‘Neoantigen with mutation” part of the ‘‘Tumor type” page. G. The

‘‘Detailed neoantigen” part of the ‘‘Tumor type” page. H. The ‘‘Shared neoantigens” page.
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v1.0. The corresponding genes and mutations of neoantigens
are linked to CandrisDB as those in the ‘‘Shared neoantigens”.

Discussion and perspectives

Neoantigens play an important role in tumor immunotherapy.

A comprehensive and high-confidence neoantigen database
would greatly meet the needs of clinical research. In TSNAdb
v2.0, we predict more mutation type-derived neoantigens with

stricter criteria, present the tissue-specific and gene-specific dis-
tribution of candidate tumor-specific neoantigens of TCGA
tumor samples, and collect 1856 neoantigens that have been
experimentally validated, which is the most systematic data-

base of tumor-specific neoantigens at present. Compared with
other databases, TSNAdb v2.0 has several advantages as fol-
lows. First, TSNAdb v2.0 provides both high-quality predicted

neoantigens and experimentally validated neoantigens, while
most of the other databases except NEPdb only provide one
of them. Compared with NEPdb, TSNAdb v2.0 provides more

sources of predicted neoantigens and has richer forms of pre-
sentation. Second, TSNAdb v2.0 provides the analysis of
shared neoantigens and links corresponding genes and muta-
tions to CandrisDB to identify high-quality neoantigens, which

other databases do not provide. Finally, TNSAdb will be
updated continuously to provide constant service for related
researchers and clinicians. We believe that it would certainly

contribute to neoantigen-based tumor immunotherapy.
However, neoantigens are derived not only from SNVs,

INDELs, and Fusions but also from splice variants [15], the

mitochondrial genome [16], and translated unannotated open
reading frames [25]. It is necessary to predict all sources of
neoantigens to construct a comprehensive neoantigen data-

base. Limited by the difficulty of collecting other mutations
and corresponding HLAs, we only chose three sources of
neoantigen in this version of the database. In the following
update of TNSAdb, we would add neoantigens from more

sources and collect more validated neoantigens to construct
a more comprehensive neoantigen database.

Data availability

TSNAdb v2.0 is freely available at https://pgx.zju.edu.cn/

tsnadb/.
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