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Abstract Chromatin accessibility landscapes are essential for detecting regulatory elements, illus-

trating the corresponding regulatory networks, and, ultimately, understanding the molecular basis

underlying key biological processes. With the advancement of sequencing technologies, a large vol-

ume of chromatin accessibility data has been accumulated and integrated for humans and other

mammals. These data have greatly advanced the study of disease pathogenesis, cancer survival

prognosis, and tissue development. To advance the understanding of molecular mechanisms regu-

lating plant key traits and biological processes, we developed a comprehensive plant chromatin

accessibility database (PlantCADB) from 649 samples of 37 species. These samples are abiotic

stress-related (such as heat, cold, drought, and salt; 159 samples), development-related (232 sam-

ples), and/or tissue-specific (376 samples). Overall, 18,339,426 accessible chromatin regions (ACRs)

were compiled. These ACRs were annotated with genomic information, associated genes, transcrip-

tion factor footprint, motif, and single-nucleotide polymorphisms (SNPs). Additionally, PlantCADB

provides various tools to visualize ACRs and corresponding annotations. It thus forms an inte-

grated, annotated, and analyzed plant-related chromatin accessibility resource, which can aid in

better understanding genetic regulatory networks underlying development, important traits, stress

adaptations, and evolution. PlantCADB is freely available at https://bioinfor.nefu.edu.cn/Plant-

CADB/.

Introduction

Eukaryotic chromatin is an ununiformly compacted complex
of DNA and proteins. Its physical compactness is referred to
as chromatin accessibility, which is determined by nucleosome
occupancy, topological structure, posttranslational chemical
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modifications, and other chromatin binding factors. Less con-
densed chromatin forms accessible chromatin regions (ACRs)
on the genome that can be contacted by nuclear macro-

molecules. Previous studies have reported that although these
regions account for only 2%–3% of the total DNA sequence in
humans, they accommodate important cis-regulatory elements

that capture about 94% of all the encyclopedia of DNA ele-
ments (ENCODE) transcription factor binding sites (TFBSs)
[1]. Mapping chromatin open landscape on a genome-wide

scale is thus vital for detecting cis-regulatory elements and
understanding the regulation of important biological processes
[2,3]. For example, Pajoro et al. constructed the dynamic reg-
ulatory networks during Arabidopsis flower development by

monitoring the changes in chromatin accessibility and gene
expression [4]. This work helps to illustrate the mechanisms
of MCMl/AGAMOUS/DEFICIENS/SRF (MADS)-domain

TFs, the well-known master regulators, to regulate develop-
ment and organ specification [4]. Moreover, by mapping the
ACRs of control and cold-stressed samples of leaf, stem, and

root tissues from three kinds of grass, Han et al. found a sig-
nificant enrichment of cold-induced ACRs adjacent to cold-
responsive genes and the high conservation of TF-binding

motifs embedded in these regions, suggesting that common
TFs may regulate the transcriptional adaptation to cold stres-
ses across species [5]. In Arabidopsis, the phosphorylation of
defective kernel 3 (DEK3), a chromatin architectural protein,

was found to alter nucleosome occupancy and chromatin
accessibility and lead to changes in gene expression, ultimately
promoting salt stress tolerance [6]. Together, these results illus-

trate the importance of chromatin accessibility data in address-
ing key issues related to the molecular regulation of biological
processes, development, and stress adaptations.

Experimental methods to identify such chromatin accessi-
bility regions throughout the genome rely on combining enzy-
matic digestion of nuclear DNA and high-throughput

sequencing, including DNase I hypersensitivity sequencing
(DNase-seq) [7,8], microccocal nuclease sequencing (MNase-
seq) [9], assay for targeting accessible-chromatin with sequenc-
ing (ATAC-seq) [10,11], and formaldehyde-assisted isolation

of regulatory element sequencing (FAIRE-seq) [12]. The main
idea of DNase-seq and MNase-seq is to use enzymes to cut
DNA double strands, and the sequencing result is accessible

regions of chromatin. They are widely used in the analysis of
cell-specific chromatin accessibility and to investigate the rela-
tionship between chromatin accessibility and gene expression

[8,9]. ATAC-seq detects the regions bound by TFs or occupied
by nucleosomes. It is faster and more sensitive than DNase-seq
and MNase-seq [13,14]. FAIRE-seq overcomes the enzymatic
cleavage preference that may be present in the aforementioned

methods and directly detects DNA sequences occupied by
nucleosomes [12]. In general, these methods can accurately
and sensitively reflect the open landscape of chromatin.

With declining sequencing costs and the development of
easy-to-use library construction tools, research on chromatin
accessibility in humans, other mammals, and plants has

become very mature. To fully exploit the large volume of chro-
matin accessibility data, several databases have been offered to
the public. For instance, the cistrome data browser compiled

chromatin accessibility data in humans and mice with homeo-
pathic regulatory information [15]. It helped to illustrate the
regulatory relationship and survival prognosis in human can-
cer [16,17]. The online database ‘brain open chromatin atlas

(BOCA)’ provides an accessible atlas of human brain chro-
matin [18]. This database has greatly advanced research on
Alzheimer’s disease, neuropsychiatric disorders, and human

brain development [19–22]. Chen et al. further developed
OpenAnnotate to assess the chromatin accessibility of large-
scale genomic regions based on features extracted from public

chromatin accessibility data [23]. It builds a more comprehen-
sive perspective to understand regulatory mechanisms in
humans and mice [23]. These cases demonstrate the power of

compiled chromatin accessibility database to facilitate the
understanding of gene regulation in mammals and accelerate
the study of pathogenesis in diseases.

Deeper analyses of chromatin accessibility data are of para-

mount importance for plants as well. For example, Tannen-
baum et al. found that performing motif enrichment analysis
on root-specific accessible regions enabled them to discover

root-specific TFs that are related to root development [24].
By integrating TF chromatin immunoprecipitation sequencing
(ChIP-seq) and ATAC-seq data, Tu et al. found that TF co-

binding could be key for transcriptional regulation of Zea
mays, which was conducive to the rapid diversification of the
regulatory network during speciation [25]. Moreover, chro-

matin accessibility is crucial to illustrating how genetic varia-
tion, such as single-nucleotide polymorphisms (SNPs) in
non-coding regions, leads to plant functions, adaptation, and
ultimately evolution. However, public databases on plant

chromatin accessibility and its subsequent analyses are miss-
ing. To provide a comprehensive chromatin accessibility data
analysis platform for plants, we developed a plant chromatin

accessibility database (PlantCADB). It compiled a large num-
ber of available open chromatin landscape resources and anno-
tated their potential roles in regulation. In total, 18,339,426

ACRs from 649 samples of 37 species are available in the data-
base (Table 1). Among them, 159 samples are abiotic stress-
related (such as heat, cold, drought, and salt), 232 are

development-related, and 376 are tissue-specific. ACR genome
annotation, associated gene annotation, SNP annotation, TF
footprint analysis, and motif scanning analysis are offered.
Users can also perform data search, region visualization,

ACR difference analysis, and overlap analysis on the web
page. It additionally provides data quality control analysis,
statistics, and download functions. These characteristics form

integrated, annotated, and analyzed chromatin accessibility
information, which can aid in better understanding the molec-
ular mechanisms underlying key traits, biological processes,

development, and stress adaptations in plants.

Data collection and database construction

Data collection

To make full use of publicly available large-scale sequencing
data, we manually collected all ATAC-seq, DNase-seq,
MNase-seq, and FAIRE-seq data related to plants from Gene

Expression Omnibus (GEO) and Sequence Read Archive
(SRA) databases from the National Center for Biotechnology
Information (NCBI) [26]. These sequences are from 37 species
and 19 tissues (Table 1). The reference genomes and corre-

sponding genes of each species were downloaded from NCBI
genome (https://www.ncbi.nlm.nih.gov/genome/) and Ensembl
plants [27,28].
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Data preprocessing

The downloaded raw sequencing data were first converted into
FASTQ format files using fastq-dump in NCBI SRA toolkit

(version 2.9.2). FastQC [29] was used to examine sequence
quality, GC content, sequence length distribution, sequence
duplication levels, overrepresentation sequences, and contam-
ination of adapters in the raw sequencing data for

pre-alignment quality control (QC; Figure 1). Adapters and
low-quality reads were removed using Trim Galore
(version 0.6.6; Figure 1) with the following parameters

‘-q 20 --phred33 --stringency 3 --length 20 -e 0.1’. After that,
sequences were mapped to the reference genome (Table S1)
using Bowtie2 (version 2.4.2; Figure 1) [30] with default

parameters.
To improve the power of open chromatin detection and

produce fewer false positives, we performed a series of post-

alignment processing (Figure 1). First, mitochondrial
sequences were excluded because no chromatin packaging
exists [31]. We then sorted and converted files to .bam format
using SAMtools (version 1.11) [32]. The low-quality reads and

redundancies generated during the polymerase chain reaction
(PCR) library building process were removed using Picard
(version 2.25.4; https://broadinstitute.github.io/picard/). To

ensure the correctness and rationality of biological conclu-
sions, additional quality indicators were evaluated, including
mean insert size, corresponding standard deviation, transcrip-

tion start site (TSS) scanning score, and the fraction of reads in
peaks (FRiP) score. The mean insertion size and correspond-
ing standard deviation of the paired-end were calculated with

the Picard tool. TSS scanning score and FRiP were calculated
with our own codes. Based on the QC distribution of the pop-
ulation sample, we established the QC characteristic threshold
to filter a few samples with poor quality.

Table 1 Chromatin accessibility data summary

Class Species ATAC-seq DNase-seq FAIRE -seq MNase-seq Total

GEO SRA GEO SRA GEO GEO SRA

Dicotyledoneae Arabidopsis thaliana 85 27 48 12 15 3 190

Solanum lycopersicum 16 77 93

Cucumis melo 30 30

Prunus persica 21 21

Populus trichocarpa 18 18

Pyrus x bretschneideri 14 14

Citrullus lanatus 10 10

Cucumis sativus 10 10

Medicago truncatula 9 9

Solanum pennellii 8 8

Vitis vinifera 8 8

Glycine max 7 7

Malus domestica 7 7

Fragaria vesca 7 7

Solanum phureja 6 6

Carica papaya 6 6

Arachis hypogaea 4 4

Eutrema salsugineum 3 3

Phaseolus vulgaris 3 3

Gossypium arboreum 1 1

Gossypium barbadense 1 1

Gossypium hirsutum 1 1

Gossypium raimondii 1 1

Eucalyptus grandis 12 12

Monocotyledoneae Zea mays 23 13 11 2 49

Oryza sativa 58 2 60

Sorghum bicolor 3 3 6 12

Ananas comosus 12 12

Setaria italica 2 6 8

Brachypodium distachyon 3 3 6

Musa acuminata 6 6

Hordeum vulgare 3 3

Setaria viridis 3 3

Asparagus officinalis 3 3

Spirodela polyrhiza 3 3

Triticum aestivum 1 1

Hepaticae Marchantia polymorpha 2 2

Total 249 53 74 243 15 3 1 638

Note: ATAC-seq, assay for targeting accessible-chromatin with sequencing; DNase-seq, DNase I hypersensitivity sequencing; FAIRE-seq,

formaldehyde-assisted isolation of regulatory element sequencing; MNase-seq, microccocal nuclease sequencing; GEO, Gene Expression Omnibus;

SRA, Sequence Read Archive.
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Identification and classification of ACRs

ACRs were identified using MACS2 (version 2.2.7.1; Figure 1)
[33,34] based on peak calling with the parameter ‘--nomodel --
shift -100 --extsize 200 -g 1.2e8’ [35–37]. The ‘-g’ parameter is

an effective genome size and was uniquely adjusted for each
species. The example presents the ‘-g’ setting for Arabidopsis
thaliana. These steps identified 18,065,954 ACRs from 638
samples. To assess the reliability of our settings, we compared

the results with published data. Overall, we found that these
ACRs highly overlapped with the validated ACRs (overlap
rate from 0.77 to 0.99; Table S2), suggesting that the peak call-

ing for each species using the MACS2 tool is reliable. Addi-
tionally, we collected 273,472 validated ACRs from
published reports [38,39].

Because the position of ACRs relative to genes is signifi-
cantly divergent with different genome sizes in plants [40],
we, therefore, classified them into genic (gACRs, overlapping

with a gene), proximal (pACRs, within 2 kb from a gene),
and distal (dACRs, distance from a gene > 2 kb) according
to the distance between ACRs and the nearest gene.

ACR visualization

To make it easier and more intuitive for users to compare dif-
ferent experimental data, we used the CHIPseeker toolset [41]

to visualize ACRs for each sample, including the panorama
distribution histogram of genome-wide ACRs, pie chart and
combined charts of genome annotation, and heat map of

ACRs near TSS. The covplot function in CHIPseeker was used
to visualize the panorama of the ACR distribution, which
enables users to clearly observe the location of ACRs in the
whole genome. The annotatePeak function was used to ana-

lyze genome annotation, which classifies ACRs into promoter,
5’UTR, 3’UTR, 1st exon, other exons, 1st intron, other
introns, downstream, and distal intergenic. The plotAnnoPie

function was used to map genome annotation obtained by
the AnnotatePeak function into a pie chart. We set the 1 kb
upstream and downstream of TSS as the window area and

used the tagHeatmap function to draw a heat map of the
ACRs combined with the window area. Users can thus intu-
itively understand the distribution of ACRs near all gene pro-

moters. Because ACR locations may not be unique (an ACR
covers exons of one gene and, at the same time, introns of
another gene), we drew the combined graph of Venn pie and
upset plot using vennpie and UpSetR functions.

SNP annotation

To enable users to understand the relationship between chro-
matin accessibility and SNPs, we also downloaded available
SNPs from Ensembl and Phytozome databases [42]. To

achieve a high level of confidence in the variant calls from
sequencing data, we applied a set of initial-quality filters using
VCFtools (version 0.1.16) [43] to filter out low-quality SNPs.
Specifically, we only kept variants with a mean read depth �
10 to minimize spurious SNP calls due to low-coverage geno-
mic regions and with minor allele frequency (MAF) above 0.05
[44].

Analysis of genes associated with ACRs

To further understand the function and transcriptional regula-

tion of identified ACRs, PlantCADB identified and classified
genes associated with each ACR into three categories, i.e.,
overlapping genes, closest genes, and proximal genes. Overlap-

ping genes are defined as the genes overlapping with each
ACR. The closest genes are the ones closest to the center of
each ACR. Proximal genes are defined as the genes in the
upstream and downstream 1-kb area of TSS that overlap with

each ACR. The associated genes were downloaded from the
Ensembl plant and NCBI genome databases. The specific iden-
tification and classification method followed the steps in the

ROSE script (ROSE_geneMapper.py) [45,46]. On the query
interface of PlantCADB, users can search data sets and corre-
sponding regions based on the gene identity document (ID).

Analysis of TFBSs in ACRs

Analysis of TFBSs in chromatin-accessible landscapes reflects

both aggregate TF binding and the regulatory potential of a
genetic locus. PlantCADB used two methods to identify
TFBSs: motif scan analysis and footprint analysis. We used
the MEME-suite [47] of the FIMO tool [48] to scan for a single

match of the motif of each ACR in each sample [39]. Plant-
related TF lists and TF-binding motifs for each species were
obtained from PlantTFDB [49]. FIMO generates an ordered

list of motifs as output, each with an associated log-
likelihood ratio score, P value, and matching sequence. The
log-likelihood ratio scores of each motif at each sequence posi-

tion were calculated and converted into P values by dynamic
programming. Users can set different thresholds to obtain
the motif sequence.

3

Figure 1 Database construction and overview

PlantCADB assesses ACRs using ATAC-seq, DNase-seq, FAIRE-seq, and MNase-seq data. Genetic annotations were collected or

calculated, including SNPs, TFBSs, TF footprint, and associated genes. Users can query ACRs using three strategies: TF-based query,

gene-based query, and genome location-based query. PlantCADB also includes online analyzing tools and a personalized genome browser

to discover the potential biological effects of ACRs. PlantCADB, plant chromatin accessibility database; ACR, accessible chromatin

region; ATAC-seq, assay for targeting accessible-chromatin with sequencing; DNase-seq, DNase I hypersensitivity sequencing; FAIRE-

seq, formaldehyde-assisted isolation of regulatory elements sequencing; MNase-seq, micrococcal nuclease sequencing; TF, transcription

factor; TFBS, transcription factor binding site; SNP, single-nucleotide polymorphism; NCBI, National Center for Biotechnology

Information; GEO, Gene Expression Omnibus; SRA, Sequence Read Archive; ID, identity document; ref, reference; alt, alternative.
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Another way to decipher TF regulation rules is to use foot-
prints. The combination of active TF and DNA will prevent
the enzyme from cutting at the binding site, which is character-

istic of ATAC-seq and DNase-seq experiments. This leads to
the objective formation of a protected area called footprint
[50]. According to the characteristics of the two sequencing

technologies and current footprint analysis tools, we used dif-
ferent analysis software for TF footprint analysis [31]. For
ATAC-seq data, there are several obstacles in footprint analy-

sis. First, due to the 9-bp gap in the library construction pro-
cess, displacement processing is required during the data
handling process. In addition, Tn5 enzyme binding is biased,
and the transient binding signal of TF is relatively weak.

Among the existing ATAC-seq footprint analysis software,
only HINT-ATAC can correct the cleavage preference of the
chain-specific Tn5 enzyme [51]. For the DNase-seq data, we

used the HINT-BC tool to solve DNase-seq cleavage deviation
and residence time that affect the calculation of footprint [52–
54]. Both tools are based on a hidden Markov model to predict

TFBS with footprints, which outperform other tools.
After selecting appropriate methods, we downloaded the

position weight matrix (PWM) of the motif from the

PlantTFDB database and created the regulatory genomics
toolbox (RGT) data folder for each species. The folder had five
files: gene, chromosome sizes, gene regions, annotation infor-
mation, and gene alias. The gene alias file allows for transla-

tion between multiple different gene IDs. The PWM was
matched with the reference genome of the corresponding spe-
cies, which outputted protection score, tag count (TC), number

of binding sites, and footprint logo combined with TF. The
protection score measures the difference between enzyme
digestion region counts in the flanking region and in the

motif-predicted binding site. It can detect TF with a poten-
tially short residence time [53]. TC is used to represent the
number of reads near the TFBSs that are ranked by footprint

prediction. We also offer threshold conditions so that users can
filter data according to their own criteria.

Database and website implementation

The current version of PlantCADB is developed using Java 8
and HTML 5 and deployed to run on a Linux-based Apache
web server. The website page framework was designed and

constructed using Bootstrap (version 3.3.7), and the front
and back data interaction was realized by JQuery (version
3.6.0). Echarts (version 3.7.0) was used to achieve data visual-

ization. JBrowse2 browser framework was used for genomic
visualization. We recommend modern web browsers that sup-
port the HTML5 standard for the best display.

Database content and usage

Statistics of PlantCADB

In the current version of PlantCADB, we collected a total of

649 samples from 37 species (Figure 2A; Table 1), covering
four types of sequencing data from 19 tissues (Figure 2B).
The plant species include angiosperms (monocotyledons and

dicotyledons) and bryophytes with different genome sizes
(122–14,790 Mb), genome structures, and gene densities (7.5–
124 genes/Mb). Overall, 18,339,426 ACRs were identified

(7,972,702 from ATAC-seq; 9,472,599 from DNase-seq;
568,255 from FAIRE-seq; and 325,870 from MNase-seq).
The total sequence length of ACRs in each species ranges from

0.4 to 104.3 Mb and accounts for 0.003%–11.3% of the gen-
ome size across species. The numbers of ACRs, its total
sequence length, and the percentage of the genome size occu-

pied by all ACRs in each species do not significantly increase
with the increased genome size (Spearman rank correlation
qnumber = 0.19, qlength = 0.14, qpercent = �0.48, all P values

> 0.05; Figure S1). After motif scanning analysis on 624 sam-
ples of 33 species (four species without available motif data
were excluded from the analysis), we found that approximately
99.1% of ACRs have the potential to be bound by TFs. After

analyzing the distribution of SNPs in different sequencing data
types of each species from a total of eight species for which
SNP data are available, we found that the density of SNPs

are significantly higher in ACRs than in the whole genome
(the ratios between densities ranging from 1.43 to 25.82;
Figure 2C).

We found that the number of dACRs (8,013,939) is posi-
tively correlated with increasing genome sizes (Spearman rank
correlation q = 0.66, P value < 0.001; Figure 2D), whereas

the numbers of gACRs (5,488,948) and pACRs (4,157,698)
are both negatively correlated with increasing genome sizes
(Spearman rank correlation qpACRs = �0.62, qgACRs =
�0.57, both P values < 0.001; Figure 2D). In addition, the

numbers of the three ACR types are also significantly corre-
lated with gene density across species (Spearman rank correla-
tion qdACRs = �0.73, qpACRs = 0.63, qgACRs = 0.62, all P

values < 0.001; Figure S2).

The web interface of PlantCADB

The search interface for retrieving ACRs

PlantCADB offers three user-friendly search options to

retrieve chromatin accessibility data (Figure 3A). With a TF-
based query (‘search ACR by TF’), users can obtain all ACRs
that are potentially bound by the query TF by selecting species
and TF ID. With a gene-based query (‘search ACR by gene’),

users can obtain all ACRs associated with the gene of interest
after selecting species and identification strategy (overlapping,
proximal, and closest). With a genomic region-based query

(‘search ACR by genome location’), users can get all ACRs
that overlap (at least 1 kb) with the submitted region by select-
ing species and sample ID and inputting genomic location.

The browsing interface for retrieving ACRs

Users can browse all ACRs belonging to a specific data type,
experimental classification, layout (the construction method

of sequencing library), species, or tissue (Figure 3B). The result
shows samples that match the filter conditions. All samples
from four sequencing technologies were named with different

prefixes (‘sample_00’ for ATAC-seq, ‘sample_01’ for DNase-
seq, ‘sample_02’ for FAIRE-seq, and ‘sample_03’ for
MNase-seq). Users can further click the ‘sample ID’ to get
detailed information about the sample, including sample over-

view, ACR result table, TF footprint annotation, and peak
annotation visualization (Figure 3C–F). The sample overview
provides general information, values of four QC metrics, mea-

surement indicators, and pie charts of statistical information
about the ACRs of the sample (Figure 3C). Based on two
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Figure 2 Statistics of PlantCADB and ACRs

A. A phylogenetic map of the plant species that were investigated. B. A pie chart of the average number of ACRs in different tissues. C.

The density of SNPs in eight species in the whole genome and in ACRs. D. The percentage of dACRs, gACRs, and pACRs to total ACRs

in each species (species are ordered based on the reference-genome size). dACR, distal accessible chromatin region; gACR, genic accessible

chromatin region; pACR, proximal accessible chromatin region.
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statistical pie charts, users can view the distribution of ACRs
on each chromosome and the number of various types of
ACRs. The ACR result table shows all ACRs of the sample.

It describes region ID, genome location, region length, summit
site (abs_summit), summit height (pileup), fold enrichment,
and �log10 P value (Figure 3D). The peak annotation visual-

ization displays the annotation information of ACRs in differ-
ent ways, including peak distribution heat maps near TSS
regions, pie charts annotating genomic features, panoramic

maps of ACRs in the genome distribution, and a more detailed
combination chart (Figure 3E). The TF footprint annotation
shows the results of the HINT software analysis. TC, protec-
tion score, number of binding sites, and footprint logo were

identified for each sample. We also offer a ‘threshold’ option,
which allows users to screen for TFs with high activity by set-
ting thresholds (Figure 3F).

To view more detailed information on the designated ACR,
we provide SNPs, TF footprint corresponding scores, the
results of motif scanning, and associated genes (Figure 3G).

Motif scanning includes location information, sequence scores,
and matched sequences. The associated genes are further clas-
sified into overlapping genes, proximal genes within ± 1 kb,

proximal genes within ± 10 kb, proximal genes within
± 20 kb, and the closest genes.

Online analysis tools

Analyzing the dynamics of chromatin accessibility can allow us
to understand the changes in molecular regulation in response
to developmental cues and external stimuli [55]. PlantCADB

provides two online analysis tools. The first one is a
differential-overlapping analysis of ACRs. In the ‘analysis of
differential-overlapping ACRs’ panel, the user can submit
‘experimental classification’ and two ‘sample IDs’ of interest

and get the analyzed differential and overlapping ACRs
between the two samples (Figure 3H). For overlapping regions
(at least 1-bp overlap between them), we divide them into

four types. Type A indicates that the right wing of ACR in
‘sample 1’ overlaps at least 1 bp with the left wing of ACR
in ‘sample 2’. Type B is opposite to type A, indicating that

the left wing of ACR in ‘sample 1’ overlaps the right wing of
ACR in ‘sample 2’. Type C means that a certain ACR of ‘sam-
ple 1’ is completely covered by a certain ACR of ‘sample 2’.
Type D is completely opposite to type C, which means that

a certain ACR of ‘sample 1’ completely covers the ACR of
‘sample 2’. We additionally provide the genomic positions of
the two overlapping regions, overlap position, overlap length,

and ratios of overlap (ratio of overlapping areas in each ACR).
For differential regions, we define them as different regions
and output these regions of the two samples, respectively.

Users can also analyze the overlapping ACRs bound by
two TFs. In the ‘analysis of overlapping ACRs bound by
two TFs’ panel, users can submit two interested ‘TF name’

and ‘window length’ (Figure 3I). The tool can fetch all regions
that are bound by both TFs and calculate the two overlapping
areas according to the submitted window length. The results of

the analysis are briefly displayed in a table, including the geno-
mic location of TF, length of the overlap region, and overlap
rate (ratio of the overlap length to total length, where the total
length = the length of the TF bound to the genome location

+ 2 � the length of the window).

Data visualization and personalized genome browser

To help users better view the genomic information of chro-
matin accessibility, we also provide a personalized genome
browser, which is developed using the latest version of JBrow-
ser2 [56]. Users can intuitively see the positional relationship

between chromatin accessibility and nearby genes, mRNA,
tRNA, lncRNA, rRNA, and other genomic fragments (Fig-
ure 3J). In addition, we also provide annotated pie charts

and distribution maps of ACRs, and the network between
ACRs and genes is drawn online using Echarts software.

Case studies

To provide an example of how regulators can be used in Plant-
CADB to retrieve the putative corresponding regulatory net-

work, the basic helix–loop–helix (bHLH) TF family
transcription factor myelocytomatosis 2 (MYC2,
AT1G32640.1) in Arabidopsis thaliana is used as input to our

database for ‘search ACR by TF’. After clicking the ‘start
search’ button, a total of 922 ACRs with 110 nearest neighbor
genes that are potentially bound by MYC2 were retrieved. To

characterize the potential functions of these associated genes,
we performed a Gene Ontology (GO) enrichment analysis
using PANTHER [57]. Here, we obtained 19 significant bio-

logical processes (Q value < 0.05; Figure 3K), including root
development, response to light stimulus, organic substance
biosynthetic process, response to chemical, cellular response
to stimulus, and regulation of the cellular process. These

results are consistent with previous findings, which indicate
that MYC2 is an important regulator of lateral root formation

3

Figure 3 The main functions and usage of PlantCADB

A. Users can query ACRs in three ways: ‘search ACR by TF’, ‘search ACR by gene’, and ‘search ACR by genomic location’. B. Browsing

the sample details. C. Sample information including sample ID, data type, class, layout, species, description, tissue, region number, region

length, SRA ID, quality control report, and a pie chart of the ACR distribution. D. ACR result table for a sample, including Chr, start,

end, length, abs summit, pileup, �Log10 P value, fold enrichment, �Log10 Q value, and region ID. E. Peak annotation visualization of a

sample. F. TF footprint statistics of a sample. G. SNP panel: the detailed information of SNP. TF footprint analysis panel: the detailed

information on each region of TF analysis, including TF footprint and motif scanning. ACR-associated gene panel: potential ACR-

associated genes are identified by three strategies. Their relationships are displayed using a network diagram. H. Analysis of differential

and overlapping ACRs between two samples in the same species. I. Analysis of overlapping ACRs bound by two TFs in the same species.

J. Visualization of a genome browser. K. GO analysis of biological processes associated with ACRs of MYC2 TF in Arabidopsis thaliana.

Chr, chromosome; TC, tag count; GO, Gene Ontology; MYC2, myelocytomatosis 2.
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and light responses [58,59] and suggest that MYC2 may per-
form other regulatory roles in biosynthesis and/or responses
to stimulus.

Analyzing the changes in chromatin accessibility can help
to reveal the dynamics of the transcriptional regulatory land-
scape during the development or in response to external stimuli

[60]. Here is an example to show how to use overlapping-
differential analysis tools to identify dynamic changes in chro-
matin accessibility to respond to heat. In ‘analysis of

differential-overlapping ACRs’ interface, after selecting ‘Oryza
sativa’ species, ‘abiotic stress’ experimental classification,
‘sample_00_154: heat_30min_3’, and ‘sample_00_155:
heat_2h_1’, click the ‘start analysis’ button to start an analysis.

These two samples are 14 days old rice leaves (second leaf)
under heat stress (transferred from 30 ℃ to 40 ℃) for 0.5 h
and 2 h, respectively. The upper interface shows the detailed

information of the two samples as well as the pie chart of over-
lap rate (percentage of overlapping ACRs of all ACRs in this
sample) and differential rate (percentage of different ACRs of

all ACRs in this sample). The lower interface displays differen-
tial regions and overlapping regions between the two samples,
respectively. In differential regions part, ‘sample_00_155:

heat_2h_1’ has more ACRs than ‘sample_00_154:
heat_30min_3’. In the overlapping regions section, we divided
overlapping types into four types. In this example, type C
accounts for the most (� 51.5%) and type D the least

(� 15.7%). Type A and type B account for � 16.2% and
� 16.8%, respectively. These results suggest that the chromatin
accessibility landscape expands with increasing exposure to

high temperatures in Oryza sativa, which cooccurs with the
expression of about 500 more genes [61], indicating the tran-
scriptional reprogramming in response to heat stress.

To compare tissue-specific ACRs, we used ‘sample_00_237:
maize_B73Leaf_rep1’ (leaf tissue) and ‘sample_00_238:
maize_B73Ear_rep1’ (ear tissue) from Zea mays. We identified

a total of 67,532 and 34,270 ACRs in the leaf and ear, respec-
tively. Among them, 23,443 are shared ACRs, and 43,949 and
9707 are tissue-specific ACRs in the leaf and ear, respectively.
To characterize the potential functions of ACRs, we extracted

the nearest neighbor gene of each ACR for GO enrichment
analysis. For shared ACRs, the results of the GO enrichment
analysis included 87 terms, such as regulation of RNA biosyn-

thetic process, regulation of nucleic acid-templated transcrip-
tion, and regulation of DNA-templated transcription. For
tissue-specific ACRs, we obtained 19,450 and 7384 nearest

neighbor genes from leaf and ear tissue, respectively. To fur-
ther ensure that these genes function in a tissue-specific man-
ner, we integrated RNA-seq data from leaf and ear tissues.
The corresponding RNA-seq [62] data were analyzed with

the limma test to obtain differentially expressed genes. There
are 2382 and 795 nearest neighbor genes differentially
expressed in leaf and ear, respectively. Interestingly, regulation

of RNA biosynthetic process, regulation of nucleic acid-
templated transcription, and regulation of DNA-templated
transcription are the top three significant GO groups in both

tissues, which suggest that different sets of ACRs and genes
may play an important role in regulating transcription in dif-
ferent tissues. Moreover, we found that the genes related to

leaf-specific ACRs are heavily enriched in chloroplast rRNA
processing and protein localization to the chloroplast.

Discussion

Profiling chromatin accessibility on a genome-wide scale is
widely used to understand the transcriptional regulation, tis-

sue specificity, stress responses, and developmental dynamics
of plants [38]. For example, Wu et al. systematically studied
the combined effects of multiple epigenome features on gene

expression in Arabidopsis thaliana and Oryza sativa based on
histone modifications and chromatin accessibility data [63].
Wang et al. studied ATAC-seq data at different stages of
somatic embryogenesis induced by auxin and found that

auxin can rapidly reconnect the totipotent network of cells
by altering chromatin accessibility in Arabidopsis thaliana
[38]. Moreover, based on the dynamic analysis of chromatin

accessibility, they also revealed the hierarchical gene regula-
tory network in the process of somatic embryogenesis [38].
These applications benefit from the high genomic resolution

of chromatin accessibility analysis, reasonable cost, and the
ability to process many samples in a fast manner. Database,
such as ENCODE [64,65], TCGA [66], and Cistrome [15], all

focus on providing original chromatin accessibility data in
humans and are being extensively used by tools to annotate
cis-regulatory elements, such as enhancers [67] and silencers
[68]. There is currently no database that provides a collection

of complete chromatin accessibility regions and detailed
annotation information and analyses of ACRs in plants.
Here, we provide the PlantCADB, which can make it easier

for users to use ACRs and investigate the mechanisms under-
lying biological functions.

PlantCADB is a comprehensive database of ACRs and

provides a convenient interface to browse, query, analysis,
visualize, and download ACRs. The advantages of Plant-
CADB include: (1) comprehensive ACRs of plant species;
(2) inferred TF binding in ACRs using TF footprint analysis;

(3) options to query the associated ACRs with user-submitted
genome location, gene, or transcription factor; (4) useful
online analysis tools for ACRs, such as ‘analysis of

differential-overlapping ACRs’ and ‘analysis of overlapping
ACRs bound by two TFs’; (5) personalized genome browser
for intuitively viewing information of ACRs and adding other

useful tracks; (6) conveniently displaying and downloading of
ACRs and related annotation information via interactive
tables. As illustrated in three case studies, PlantCADB pro-

vides convenient tools to explore the relationship between
genes, transcription factors, and chromatin accessibility
regions to decipher the key questions in plant science.
Although till now plant chromatin accessibility is only

assessed with bulk sequencing data, with the development
of single-cell sequencing technology, users will soon be able
to construct the epigenetic landscape of single cell and cell

differentiation trajectories with tools, such as scDEC [69],
RA3 [70], and epiAnno [71]. PlantCADB will be updated in
time to add new datasets and be applied to more plant

species.

Data availability

PlantCADB is freely available to the research community
without login at https://bioinfor.nefu.edu.cn/PlantCADB/.
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