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Abstract Disordered flexible linkers (DFLs) are the functional disordered regions in proteins,

which are the sub-regions of intrinsically disordered regions (IDRs) and play important roles in

connecting domains and maintaining inter-domain interactions. Trained with the limited available

DFLs, the existing DFL predictors based on the machine learning techniques tend to predict the

ordered residues as DFLs, leading to a high false positive rate (FPR) and low prediction accuracy.

Previous studies have shown that DFLs are extremely flexible disordered regions, which are usually

predicted as disordered residues with high confidence [P(D) > 0.9] by an IDR predictor. Therefore,

transferring an IDR predictor to an accurate DFL predictor is of great significance for understand-

ing the functions of IDRs. In this study, we proposed a new predictor called TransDFL for iden-

tifying DFLs by transferring the RFPR-IDP predictor for IDR identification to the DFL

prediction. The RFPR-IDP was pre-trained with IDR sequences to learn the general features

between IDRs and DFLs, which is helpful to reduce the false positives in the ordered regions.

RFPR-IDP was fine-tuned with the DFL sequences to capture the specific features of DFLs so

as to be transferred into the TransDFL. Experimental results of two application scenarios (predic-

tion of DFLs only in IDRs or prediction of DFLs in entire proteins) showed that TransDFL con-

sistently outperformed other existing DFL predictors with higher accuracy. The corresponding web

server of TransDFL can be freely accessed at http://bliulab.net/TransDFL/.

Introduction

Intrinsically disordered regions (IDRs) are protein regions
without stable three-dimensional (3D) structures, which are

particularly common among eukaryotic organisms and viral
proteomes [1]. Although the IDRs lack well-defined 3D struc-
tures, they carry out many critical functions, such as transcrip-

tions, signal transmission, post-translational modifications,
and multi-protein aggregation [2]. The functions of IDRs
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derive either from binding to molecular partners (such as
DNA, RNA, and proteins) or directly from their native disor-
dered states, where the former is called binding functions and

the latter is called non-binding functions [3]. According to the
DisProt database [4], about 75% of the non-binding functions
are disordered flexible linkers (DFLs) [5,6]. DFLs serve as the

linkers in multidomain proteins characterized by extremely
structural flexibility, and can be located between inter- and
intra-domain, which are different from generic linkers [5,7–

10]. DFLs play essential roles for intramolecular allosteric reg-
ulation [2,11] and phase separation [12]. Identification of
DFLs is crucial for comprehensively studying IDR functions.
Experimental annotation of DFLs primarily relies on X-ray

crystallography, nuclear magnetic resonance (NMR) spec-
troscopy, and circular dichroism. In order to efficiently iden-
tify the DFLs, two computational methods have been

developed only based on the protein sequences, including
DFLpred [5] and APOD [6]. DFLpred identifies the DFLs
via combining the logistic regression (LR) and four

sequence-based features, including structure domain propensi-
ties, putative disordered regions, and two properties of spiral
and turn formation. APOD incorporates various sequence

profile features into support vector machines (SVMs) to fur-
ther improve the predictive performance, such as evolutionary
conservation and relative solvent accessible area.

These predictors successfully incorporate various sequence

profile features for DFL prediction. However, DFLs are con-
tinuous regions in proteins, sharing global sequence patterns
along the whole protein [5]. The global features of DFLs

should be incorporated into the DFL predictors. Furthermore,
DFLs are the sub-regions of IDRs, while sequences with unan-
notated disordered regions are common in nature [13–15]. As a

result, DFL predictors tend to predict the ordered residues as
DFLs, resulting in high false positive rate (FPR) and low pre-
diction accuracy.

According to the recent Critical Assessment of protein
Intrinsic Disorder prediction (CAID) experiment reports [16],
great efforts have been made by researchers for the develop-
ment of IDR predictors. Figure 1 shows DFL prediction

results on the DFL dataset TE82 [6] predicted by six state-
of-the-art IDR predictors, including AUCpreD [17], SPINE-
D [18], DISOPRED3 [19], SPOT-Disorder [20], IDP-Seq2Seq

[15], and SPOT-Disorder2 [14]. We can see that DFLs can
be predicted with high disordered probabilities [i.e., extremely
disordered state P(D) > 0.9] by different IDR predictors, pro-

viding an opportunity to predict the DFLs based on an IDR
predictor (Figure 1A).

The information of disordered regions and functions are
both encoded in their primary sequences, similar to the

source language and target language sharing the same seman-
tic [21] in the field of machine translation. For example,
French and Portuguese are both from the Romance language

family sharing similar grammatical structures, and the pre-
trained French translation model can be transferred to Por-
tuguese translation via transfer learning [22,23] (Figure 2A).

Motivated by the similarities between protein sequences and
natural languages, we treated the IDR prediction as the
French translation and the DFL prediction as the Portuguese

translation (Figure 2B) according to the discussion of predic-
tive correlations between IDRs and DFLs in Figure 1. A new
DFL predictor was proposed called TransDFL, which was
transferred from an IDR predictor by the transfer learning

technology. The IDR predictor RFPR-IDP [24] was pre-
trained with the IDR data to learn the common features
between DFLs and IDRs, and then it was transferred to

DFL prediction by fine-tuning so as to capture the specific
features of DFLs. The proposed TransDFL has the following
advantages: (1) the predicted model employs the sequence

labeling method by combining bi-directional long short-
term memory (Bi-LSTM) neural network and convolutional
neural network (CNN), which models the protein as a whole

and captures the local and long-range interaction features
among residues; (2) the disordered features learned from
the pre-trained IDR predictor by transfer learning can reduce
the incorrectly predicted DFL residues in the ordered regions,

leading to a lower FPR.
We evaluated the performance of different DFL predictors

in two scenarios: prediction of DFLs only in the IDRs

(situation-I) and prediction of DFLs in the entire proteins
(situation-II). Experimental results showed that TransDFL
consistently outperformed existing predictors. Furthermore,

the corresponding web server of TransDFL was established,
which can be accessed at http://bliulab.net/TransDFL/.

Method

Datasets

In the pre-training phase, the IDR benchmark dataset was
used to train the RFPR-IDP predictor [15]. To avoid the

redundancy between the source and target domains, proteins
sharing > 25% similarity with any protein in the DFL data-
sets (TR166, TE82, and TE64) were removed from the IDR

benchmark dataset by using the BLASTClust search tool
[25], leading to 2645 training IDR sequences and 1077 valida-
tion IDR sequences.

In fine-tuning phase, the TR166 [6] DFL benchmark data-

set collected by Peng et al. [6] was used for model fine-tuning,
and any two proteins in the dataset share sequence
similarity < 25%. We randomly divided the DFL benchmark

dataset into five subsets. Four of the subsets with 133
sequences were randomly selected as the training dataset for
fine-tuning the model parameters, and the remaining subset

with 33 sequences was employed as the validation dataset for
model selection. This way ensures that there is no redundancy
between the validation and training datasets.

In this study, TE82 and TE64 independent test sets were
used for the performance evaluation of different DFL predic-
tors. The TE82 test set has 82 sequences collected from the
DisProt database (version 8.0) by Peng et al. [6], and the

sequence similarity between the TE82 and TR166 datasets is
< 25%. We constructed a new independent test set TE64 from
the latest released DisProt database (version 9.0, September

2021) [4,26]. Following the previous annotation protocols
[5,6], IDR proteins that have DFL functionally annotated
regions in the database were collected as ‘‘DFL proteins”.

To reduce data redundancy and avoid overestimating the pre-
dictive performance, only the sequences sharing < 25% simi-
larity with any protein in TE82, TR166, and IDR benchmark
datasets were included in TE64. Finally, 64 sequences were col-

lected as the TE64 independent test set.
All benchmark datasets used in this study can be down-

loaded online at http://bliulab.net/TransDFL/benchmark/.
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The overview of TransDFL predictor

The overall flowchart of TransDFL is shown in Figure 3.

Sequence representation

In this study, the state-of-the-art IDR predictor RFPR-IDP

[24] was employed to transfer into the DFL predictor. Two
sequential features were used to represent the sequence in
RFPR-IDP, including seven commonly used physicochemical

properties [27] (steric parameter, polarizability, volume,
hydrophobicity, isoelectric point, helix probability, and sheet
probability), and position specific score matrix (PSSM) fea-

tures generated by the PSI-BLAST tool [25] searching against
the nrdb90 database (downloaded from https://ftp.ebi.ac.uk/
pub/databases/nrdb90/). In this study, we also incorporated

two additional features into RFPR-IDP so as to more compre-

hensively represent the DFL sequences, including the sec-
ondary structure (SS) features generated by the SPIDER tool
[28,29], and the solvent accessibility (SA) features generated

by the SABLE tool [30,31]. The linear combination of the
4-dimensional SS features, 1-dimensional SA feature,
7-dimensional physicochemical features (SEVEN), and

40-dimensional PSSM features, leads to a feature vector with
52 dimensions for representing a residue Ri as:

Fi ¼ ½f1; f2; � � � ; f52�T ð1Þ
The four features provide complementary information, and

their combination leads to the best prediction performance
(Table S1). Following previous studies [5,6], the local sliding

window was applied to represent the residues.

A

B

Figure 1 Applying the IDR predictors to DFLs

A. The relationships between the true DFLs and their probability scores predicted by IDR predictors. DFLs are preferred to be

confidently predicted by IDR predictors with higher disordered probabilities, i.e., extremely disordered state P(D) > 0.9. B. Histogram

showing the number of predicted IDRs and DFLs by different IDR predictors with probabilities between 0.9 and 1.0. The line shows the

corresponding FPR of each predictor, which equals the ratio of non-DFLs in predicted IDRs. DFL, disordered flexible linker; IDR,

intrinsically disordered region; FPR, false positive rate.
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Sequence labeling model (RFPR-IDP)
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Figure 3 The flowchart of the TransDFL predictor

A. In the pre-training phase, the IDR dataset was used for pre-training the sequence labeling model of the IDR predictor RFPR-IDP. B.

In the fine-tuning phase, the DFL dataset was used to fine-tune the sequence labeling model for DFL prediction through transfer learning.

Biological   sequence   is    the   book    of     life

La  séquence biologique est le   livre dela  vie
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IDR predictor Transfer DFL predictor
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Figure 2 Comparison between the transfer learning frameworks for machine translation and DFL prediction

A. Linguistic commonalities learned from the language translation pairs, i.e., the English–French parallel corpus can be adapted to the

English–Portuguese translation by transfer learning. B. In DFL prediction, the IDR predictor RFPR-IDP trained with the IDR datasets

was transferred to predict the DFLs by transfer learning. OR, ordered region; DR, disordered region; NDFL, non-DFL.
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The sequence labeling model transferred to TransDFL

The sequence labeling model is able to incorporate the correla-

tion among adjacent residues and capture the interaction fea-
tures of residues along the whole proteins. Two IDR
predictors IDP-Seq2Seq [15] and RFPR-IDP [24] based on

the sequence labeling model were used to be transferred to
TransDFL. However, due to the insufficient number of DFL
training sequences, the IDP-Seq2Seq using a more complex

network structure is not suitable. Therefore, the RFPR-ID
predictor by a combination of Bi-LSTM and CNN is more
suitable for transferring to TransDFL. The model architecture
is shown in Figure 4. The Bi-LSTM layer with a forward and a

backward LSTM network layer was adopted to capture the
global correlation features. For each residue Ri, the correlation
feature vector Hi is calculated by [24]:

Hi ¼ hi
*

;
(
hi

h i
ð2Þ

hi
*
; ci*¼ LSTMfðwinkFi; hi�1

*
; ci�1

*Þ ð3Þ

(
hi;

(ci ¼ LSTMbðwinkFi;
(
hi�1;

(ci�1Þ ð4Þ

where hi
*

and
(
hi represent the forward and backward output

feature vectors of Ri, respectively. The winkFi is the feature
representation vector of Ri, which is the combination of the

corresponding feature vectors of target residue Ri and its
k � 1 neighboring residues.

The convolutional layer was used to capture the local cor-

relation features H0
i of Ri:

H0
i ¼ convðW;HÞ þ b ð5Þ

where W is the convolutional kernel and b is the bias param-

eter matrix.
Then, a fully-connected layer was used to predict the label

of each residue, mapping the output feature vector H0
i from the

CNN layer to a probability score pi of Ri being a positive resi-

due, which is calculated by [32]:

O1
i ¼ tanhðW1

1H
0
i þ b1

1Þ ð6Þ

O2
i ¼ tanhðW2

1O
1
i þ b2

1Þ ð7Þ

pi ¼ softmaxðW2O
2
i þ b2Þ ð8Þ

where O1
i and O2

i represent the output vectors of the first and

second fully-connected layers, respectively; W1
1, W

2
1, and W2

are the trainable weight parameter vectors; b1
1, b

2
1, and b2 are

the trainable bias parameter vectors; tanh is the hyperbolic tan-
gent activation function [33]; and softmax is the soft argmax

activation function [34].

The pre-training phase

In the pre-training phase, the RFPR-IDP predictor was pre-

trained with the IDR dataset (Figure 3A). The pre-trained
model was optimized based on the binary cross entropy loss
function calculated by [35]:

loss ¼ �
XL
i¼1

ðyilogðpiÞ þ ð1� yiÞlogð1� piÞÞ ð9Þ

where L is the length of a sequence, pi is the predictive proba-

bility score of residue Ri being an IDR residue [Equation (8)],
and yi is the corresponding real label (0 or 1). All the model
parameters were optimized by minimizing the loss function

value on the IDR validation set. The model pre-trained with
the source domain IDR dataset learns the common character-
istics shared with IDRs and DFLs, which can be used for DFL

prediction by transfer learning. The hyperparameters of
RFPR-IDP in the pre-training phase are given in Table S3.

The fine-tuning phase

Because DFLs are the extremely flexible disordered regions
predicted by IDR predictors with high probabilities, this pat-
tern can be transferred to identify the DFLs via transfer learn-

ing (Figure 3B). Different from the model directly trained with
the target dataset with a limited number of samples, the model
fine-tuned based on the pre-trained parameters avoids over-
fitting, and improves the prediction performance in the target

domain [36].
The weighted binary cross entropy loss function was

employed in the fine-tuning phase:

loss ¼ �
XL
i¼1

½w� yilogðpiÞ þ ð1� wÞð1� yiÞlogð1� piÞ� ð10Þ
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…
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Figure 4 The sequence labeling model architecture transferred to TransDFL

FC, fully-connected; CNN, convolutional neural network; LSTM, long short-term memory; Bi-LSTM, bi-directional long short-term

memory.
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where the w is the weight coefficient of DFL residue, optimized

according to the best area under the receiver operating charac-
teristic curve (AUROC) on the DFL validation dataset
(Table S2). The model was implemented by the Tensorflow

framework [37]. Adam algorithm [38] with a learning rate of
0.0008 was used for parameter optimization. All the parame-
ters of the pre-trained RFPR-IDP model were fine-tuned on
the validation set of the DFL benchmark dataset according

to the minimum loss. The hyperparameters in the fine-tuning
phase are given in Table S4.

Performance evaluation strategy

In this study, the AUROC was used to evaluate the overall
performance of different methods [39–41]. Besides, following
previous studies [6,42], the Matthews correlation coefficient

(MCC) [29,43], precision (Pre), and recall (Rec) [44] were used
to evaluate the predictive quality of a predictor:

MCC ¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ

p
Pre ¼ TP

TPþFP

Rec ¼ TP
TPþFN

8>><
>>:

ð11Þ

where true positive (TP) is the number of DFL residues cor-

rectly predicted as DFLs, false positive (FP) is the number
of non-DFL residues incorrectly predicted as DFLs, true neg-
ative (TN) is the number of non-DFL residues correctly pre-

dicted as non-DFLs, false negative (FN) is the number of
DFL residues incorrectly predicted as non-DFLs. Given a
threshold thd, a residue Ri is classified as a DFL residue, if
its predictive probability score pi � thd. Otherwise, it is pre-

dicted as a non-DFL residue.

Results and discussion

Predicting the DFL residues in disordered regions

We compared the performance of TransDFL to the other two
DFL predictors (DFLpred [5] and APOD [6]) on two indepen-
dent test sets (TE82 and TE64). Following previous studies

[5,6], disordered regions without functional annotations and
ordered regions were not evaluated (situation-I). The results
of different predictors on the TE82 and TE64 datasets are

shown in Tables 1 and 2, respectively. From these results, we
can see that TransDFL outperforms DFLpred by 0.198 in
terms of AUROC on the TE82 dataset, and achieves highly

comparable performance with APOD. Particularly, the
precision-recall (PR) curves (Figure S2) showed that the pre-
diction results of TransDFL and APOD were complementary

and their differences were significant (P = 0.001; Tables 1 and
2).

Predicting the DFL residues in the entire proteins

DFLs are flexible linkers in disordered regions. The existing
two predictors (APOD and DFLpred) focus on predicting
DFLs only in the functionally annotated disordered regions.

However, the information on the disordered regions is not
always available [15,45–47]. In order to more comprehensively
and fairly evaluate the performance of different methods, they

were evaluated by identifying DFLs in the entire protein
sequences in TE82 and TE64 datasets (situation-II). Their
AUROC values are shown in Figure 5, and the PR curves

and the area under the PR curve (AUPRC) are shown in Fig-
ure S3, from which we can see the followings: (1) compared
with the results in situation-I, the performance of these three
predictors decreased, indicating that predicting DFLs in the

entire sequence is more challenging; (2) TransDFL obviously
outperforms DFLpred and APOD on both two datasets in
terms of AUROC.

Performance comparison between TransDFL and IDR predictors

In order to investigate the performance of IDR predictors for

predicting DFLs, we employed six state-of-the-art IDR predic-
tors to identify DFLs. Because the average length of DFLs is
47 amino acids (aas) in the TR166 dataset (Figure S1), a target

residue is considered as a DFL residue if its 46 neighboring
residues are disordered residues (the target is in the middle).

Table 2 Performance comparison of TransDFL and other DFL predictors on the TE64 independent test set evaluated in situation-I

Method Pre Rec MCC AUROC P value

DFLpred 0.189 0.193 0.108 0.675 5.330E�15

APOD 0.195 0.600 0.223 0.751 0.001

TransDFL 0.207 0.722 0.273 0.784 /

Note: The results of APOD and DFLpred were calculated according to the predicted results obtained by running corresponding web servers. The

thd of TransDFL was set as same as in Table 1. The P value was calculated by t-test based on the probabilities predicted by different methods.

Table 1 Performance comparison of TransDFL and other DFL predictors on the TE82 independent test set evaluated in situation-I

Method Pre Rec MCC AUROC P value

DFLpred 0.337 0.179 0.145 0.637 1.360E�147

APOD 0.512 0.512 0.418 0.816 0.001

TransDFL 0.586 0.452 0.435 0.835 /

Note: The results of APOD and DFLpred were obtained from a previous study [6] evaluated on the same TE82 dataset. The thd of TransDFL was

set as 0.16, which is equal to the ratio of DFL residues in the dataset. The P value was calculated by t-test based on the probabilities predicted by

different methods. Pre, precision; Rec, recall; MCC, Matthews correlation coefficient; AUROC, area under receiver operating characteristic curve;

DFL, disordered flexible linker.

364 Genomics Proteomics Bioinformatics 21 (2023) 359–369



The results of different methods evaluated in two situations on

the TE82 independent test set are shown in Tables S5 and S6.
From these results, we can see that the six IDR predictors are
not effective enough for identifying DFLs compared with the
specific DFL predictor TransDFL in both two evaluation

situations.

Transfer learning obviously reduces the false positives

In order to explore the contribution of transfer learning to the
performance improvement of TransDFL, we compared the
FPR in all predictions (FPRALL) and the FPR in the ordered

region (FPROR) of three different predictors. The FPROR is
calculated as the ratio of the number of falsely predicted
DFL residues in ordered regions to the number of all the pos-
itively predicted DFL residues, where the ordered residues are

annotated according to the DisProt database (version 8.2). For
fair evaluation, the FPRs of different predictors were com-
pared under the same number of positively predicted residues.

As shown in Figure 6, TransDFL achieves the lowest FPRALL

and FPROR. These results are not surprising because
TransDFL employs the transfer learning framework pre-

trained with the IDR dataset to capture the common charac-
teristics between IDRs and DFLs. Therefore, compared with
the other predictors only trained with DFLs and disordered

residues, TransDFL can obviously reduce the number of incor-
rectly predicted DFL residues in the ordered regions so as to
reduce the overall false positive predictions.

The prediction results of a protein (DisProt ID: DP01080;

PDB ID: 1OCB) from the TE82 independent test set obtained
by different predictors were visualized by the PyMOL software
(https://pymol.org/2/). As shown in Figure 7, although most of

the DFLs can be correctly predicted by TransDFL, DFLpred,
and APOD, the false positives predicted by TransDFL are
obviously fewer than those predicted by DFLpred and APOD

evaluated in situation-II. The false positives predicted by

TransDFL are in the disordered regions near the true DFLs,
while most of the false positives predicted by APOD and
DFLpred are located in the ordered regions far away from
the true DFLs. These results are fully consistent with the

observations in Figure 6.
In order to explore the contribution of the model pre-

trained with disordered proteins, we compared the predictive

performance between the TransDFL model directly trained
with DFLs (TransDFL-DT) and the fine-tuned model based
on pre-training with IDRs (TransDFL). The evaluation results

showed that TransDFL consistently outperformed TransDFL-
DT on two independent test sets in both two situations
(Table 3), indicating that transfer learning contributes to the
predictive performance improvement of TransDFL.

The sequence labeling model facilitates the stable performance

on different lengths of DFL regions

In order to investigate the performance of TransDFL for pre-
dicting DFL regions with different lengths, we divided the pro-
tein sequences in the TE82 independent test set into five groups

according to their DFL lengths. As shown in Figure 8, com-
pared with APOD and DFLpred, TransDFL is insensitive to
the lengths of DFL regions, and achieves better and more

stable performance. There are two reasons. First, TransDFL
employs the sequence labeling model based on deep learning
technology, which is able to capture the local and global inter-
actions among the residues and the sequence patterns of the

DFLs. In contrast, all the other two classifiers are
classification-based methods predicting each residue in a sepa-
rate manner. Second, benefitting from the deep neural net-

works, the sequence labeling model in TransDFL captures
the general disordered characteristics of DFLs from the large
IDR dataset, which facilitates the DFL prediction.

A B

Figure 5 Comparison of different DFL predictors in situation-II

A. AUROC values on the TE82 independent test set. B. AUROC values on the TE64 independent test set. AUROC, area under the

receiver operating characteristic curve.
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Figure 6 Comparison of FPRs of different predictors on the TE82 test set

FPRALL, false positive rate in all predictions; FPROR, false positive rate in the ordered region.
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Y115

B
T96
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T96
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Y115

D
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C44
Y115

False positives: 302 False positives: 119
True  positives: 53 True  positives: 32

False positives: 5
True  positives: 25

True TransDFL APOD DFLpred

Actual positives: 53

Figure 7 Visualization of predictive results

The predictive results of a protein (DisProt ID: DP01080; PDB ID: 1OCB) were visualized by the PyMOL software (https://pymol.org/2/).

The true and predicted DFL residues are shown in red. A. The true DFLs. B. DFLs predicted by TransDFL. C. DFLs predicted by

APOD. D. DFLs predicted by DFLpred.

Table 3 Performance of TransDFL predictors based on different models

Dataset Model Situation-I Situation-II

Pre Rec MCC AUROC Pre Rec MCC AUROC

TE82 TransDFL-DT 0.552 0.250 0.298 0.746 0.010 0.581 0.120 0.705

TransDFL 0.207 0.722 0.273 0.789 0.149 0.727 0.241 0.783

TE64 TransDFL-DT 0.254 0.481 0.166 0.697 0.080 0.680 0.113 0.642

TransDFL 0.275 0.518 0.289 0.784 0.207 0.722 0.273 0.789

Note: TransDFL-DT refers to the model directly trained with the DFL training set. TransDFL refers to the transferred model with pre-training on

the IDR dataset. IDR, intrinsically disordered region.
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Lower FPR leads to better performance in the real-world appli-

cation

According to the latest DisProt database, only 6.3% of the

4438 annotated disordered regions are DFLs [26]. There are
even many more disordered proteins without DFLs in
MobiDB [48]. As a result, the percentage of DFL residues is
much lower than 6.3% in nature. Therefore, for real-world

applications, it is important for a DFL predictor to deal with
the extremely imbalanced problem (i.e., the number of non-
DFL residues is much higher than the number of DFL resi-

dues). In this regard, seven datasets were constructed based
on TE82 and TE64 with different percentages of DFL residues.

The performance of different predictors on the seven datasets
is shown in Figure 9. We observed that TransDFL consistently

outperformed both APOD and DFLpred, especially for the
datasets with fewer DFL residues. These results indicate that
TransDFL is able to solve the imbalanced problem, and there-

fore, it is more suitable for real-world applications.

Conclusion

Inspired by the similarity between protein sequences and nat-
ural language sentences, we applied the transfer learning
derived from the machine translation to the DFL identifica-

tion, and a new predictor TransDFL was proposed.

Figure 8 Performance comparison of TransDFL, APOD, and DFLpred for predicting proteins with different lengths of DFL regions

aa, amino acid.

Figure 9 Predictive results of TransDFL, APOD, and DFLpred on real-word datasets with different percentages of DFL residues
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368 Genomics Proteomics Bioinformatics 21 (2023) 359–369
TransDFL was constructed by transferring the state-of-the-art
IDR predictor RFPR-IDP into the current DFL predictor. It
has the following advantages: (1) TransDFL employs the

sequence labeling model to capture the global sequence pat-
terns of DFLs; (2) benefitting from transfer learning,
TransDFL is the first deep learning predictor for DFL predic-

tion and achieves state-of-the-art performance with the lowest
FPR. The web server of TransDFL was established, which can
be freely accessed at http://bliulab.net/TransDFL.

Code availability

The source code of TransDFL is available at https://ngdc.

cncb.ac.cn/biocode/tools/BT007312.

Data availability

The web server of TransDFL can be freely accessed at http://
bliulab.net/TransDFL/.
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