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The study of small drug molecules interacting with nucleic acids is an area of intense

research that has particular relevance in our understanding of relative mechanism

in chemotherapeutic applications and the association between genetics (including

sequence variation) and drug response. In this contribution, we demonstrate how

the sequence-specific binding of an anticancer drug Dacarbazine (DTIC) to single
base (A-G) mismatch could be sensitively detected by combining electrochemical
detection with biosensing surface based on gold nanoparticles.
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Introduction

DNA recognition and its relative biosensor study has
continuously attracted much attention from various
research areas due to its importance to pave the way
to rapidly diagnose or monitor the gene targeted ill-
nesses like cancer, which is critical to disease pre-
vention and clinical treatments. Particularly, since
DNA sequence alterations on the relative helix are
the cause of many gene related diseases (for example,
many genetic disorders are caused by a point muta-
tion or mismatch), a rapid and reliable tool for de-
tecting mutated or mismatched base pairs would be
valuable to offer some answers as to how genetic alter-
ation or drug exposure, and the relationship between
sequence variations (such as single nucleotide poly-
morphisms) and disease risk (7). It is already known
that nanoparticles may present a versatile scaffold for
biomolecular recognition, where nanoparticles could
be fabricated to create some specific functional surface
with a wide range of versatility for possible biosensing
probes and/or diagnostic agents, which may afford a
unique and advantageous platform for biomolecular
recognition with a remarkable increase in the affinity
and selectivity of the recognition process (2-16).

In the meantime, electrochemical DNA detection
methods have received considerable attention due to
the advantage of electrochemical devices such as high
sensitivity, low cost, simplicity (easy handling), rapid-
ness, and compatibility with microfabrication technol-
ogy. A number of studies have shown that electroact-
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ive intercalators can detect selective hybridization
of DNA because the presence of mutations or mis-
matches in the helix considerably affected the electro-
chemical signal of these intercalator probes. However,
few non-intercalating binding probes were exploited
to distinguish the specific targeted locations at fully
matched base pairs and/or mismatched base pairs.
In considering of all these and combining with the
good biocompatibility of gold nanoparticles, we have
utilized a DNA non-intercalating binding probe, an
anticancer drug Dacarbazine (DTIC), as an electro-
chemical probe to detect single-base mismatches by
introducing a perfectly matched sequence to the gold
nanoparticle-tagged probe and comparing the two dif-
ferent target sequences that differ by a single base.
As we know, different base mismatches in DNA helix
have different influences to the stability of the DNA
duplex, and it was already known that G-T and A-G
mismatches may slightly destabilize a duplex, while
A-A, T-T, C-T, and C-A mismatches significantly
destabilize it (17). Many nuclear magnetic resonance
(NMR) studies have been exploited to illustrate mis-
matched base pairs’ structure properties (18-20) and
their lifetimes (21) in oligonucleotides. Some electro-
chemical studies illustrate that the DNA helix con-
taining A-G mismatches has the similar property to
the fully matched sequence (22), therefore, it is dif-
ficult and particularly challenging to detect the sin-
gle A-G mismatches in genomic DNA by the relative
diagnostic technology. On the basis of these observa-
tions, in this study, the detection of sequence-specific
binding of DTIC to single A-G mismatch has been ex-
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ploited by combining electrochemical detection with
biosensing surface based on gold nanoparticles.

In this system, we have designed three 15-mer
oligonucleotides Si, Sy and S3 as follows. The 5
end of S; was linked with a functional group of
-(CH2)6-SH so that it could be covalently attached
on 15-nm-diameter gold nanoparticle surface through
Au-S bond. Then Sy and S3 were covalently immo-
bilized through chitosan on two identical glassy car-
bon electrodes (GCEs), respectively. Furthermore,

the 15-nm-diameter gold nanoparticle functionalized
with 15-mer DNA S; was hybridized to target 15-mer
DNA S, and S3 in phosphate buffer at room tem-
perature, respectively (Figure 1). Afterwards, DTIC
was used as an electrochemical probe to detect the
single A-G mismatch in the middle of the 15-mer
oligonucleotides.

S1: SH-5-CGA TGA AAA TAT AAC-3

So: 5-GTT ATA TTT TCA TCG-3’

S3: 5-GTT ATA TGT TCA TCG-3
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Fig. 1 Schematic illustration of electrochemical detection of single A-G mismatch using biosensing surface based on

gold nanoparticles.

Results and Discussion

In the relative study, we have investigated the binding
behaviour of DTIC to DNA and DNA bases by using
electrochemical methods and atomic force microscopy
(AFM), and our results illustrated that DTIC binds
to DNA with a non-intercalating mode and the bind-
ing affinity of DTIC to purine bases is stronger than
that with pyrimidines (23). Besides, our AFM study
clearly indicated that the interaction of DNA with
DTIC will lead to the appearance of some different
sizes of particles on some specific sites of DNA chains,
suggesting that DTIC could recognize some specific
sites of DNA sequence so that the binding of DTIC to
the relative specific sequence may result in the bend-
ing or kinking of the DNA chains. In addition, our
recent work also illustrated that DTIC can distin-
guish single base change in a single-stranded oligonu-
cleotides. Furthermore, our study on the binding of
DTIC to DNA bases in the absence and presence of
gold nanoparticles indicated that the presence of gold
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nanoparticles could facilitate the specific interaction
between DTIC and DNA bases (23).

Based on the above study, DTIC has been utilized
to probe specific DNA sequence by incorporation of
DNA binding moieties on the gold nanoparticle sur-
face (Figure 1). Figure 2 shows the cyclic voltamme-
try (CV) of DTIC on glassy carbon electrode with or
without modification of the single-stranded oligonu-
The CV study indicated that the cover-
age of the oligonucleotides on GCE was 95% and the

cleotides.

peak potential positively shifted about 50 mV (from
0.77 V on bare GCE to 0.82 V with modified GCE)
after the attachment of the single stranded oligonu-
cleotides to the electrode, accompanying with the con-
siderable decrease of the peak current. Furthermore,
after hybridization with the gold-nanoparticle-tagged
oligonucleotide probe, this non-intercalating electro-
chemical probe can sensitively recognize the single
base mismatch from the two different target sequences
that differ by a single base. Figure 3 illustrates the CV
study of DTIC to detect its sequence-specific binding
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Fig. 2 Cyclic voltammetry of DTIC on bare GCE (a) and
ssDNA modified GCE (b), scan rate: 50 mV/s.

and recognize the single A-G mismatch from a per-
fectly matched sequence. It can be observed that the
specific binding of DTIC to the perfectly matched or
single base mismatched sequences at targeted loca-
tions lead to the distinguished changes of its electro-
chemical behaviour, which indicates that DTIC could
sensitively recognize the single A-G mismatch, and
the binding affinity of DTIC to this mismatched se-
quence is stronger than that of the perfectly matched
sequence. This is consistent with our previous study
that the binding affinity of DTIC to G is relatively
stronger than that with T.

Conclusion

In summary, we have utilized a DNA non-
intercalating binding probe,
DTIC, as an electrochemical probe to sensitively de-
tect its sequence-specific binding and recognize sin-
gle A-G mismatch by using biosensing surface based

an anticancer drug

on gold nanoparticles. Some other sequences have
been studied in our laboratory by using the same
method. This approach will offer a new way to detect
single base mismatch by non-intercalating probe and
to illustrate the interaction mechanism of anticancer

drugs with DNA sequence variations.

Materials and Methods

Gold nanoparticle synthesis was performed according
to the method reported by Gearheart et al (24). Then
the synthesized gold nanoparticles were characterized
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Fig. 3 Cyclic voltammetry of DTIC on ssDNA modified
GCE (a), after hybridization with fully matched sequence
(b), and single A-G mismatched sequence (c), scan rate:
50 mV/s.

by transmission electron microscopy (TEM) and UV-
Vis spectroscopy. An absorption peak at 520 nm was
detected for the colloidal Au by UV-Vis spectroscopy,
and TEM showed that the diameter of gold nanopar-
ticle was 1441 nm.

During the relative experiments, a colloidal solu-
tion containing gold nanoparticles with a diameter of
about 15 nm was synthesized in our lab following the
procedure reported by Gearheart et al (24). The se-
quence S; was functionalized on the gold nanopar-
ticles according to the method described by Cai et
al (25). After the incubation of 10 nM S; in gold
colloidal solution for 16 h at room temperature, the
solution was adjusted to the pH and ionic strength of
the 0.1 M PBS (0.1 M NaCl, 0.01 M sodium phos-
phate buffer, pH 7.0) and allowed to stand for 40
h, followed by centrifugation for at least 30 min at
14,000 rpm to remove excess oligonucleotides. The
nanoparticles were washed with PBS buffer and re-
dispersed in a fresh PBS buffer, recentrifuged, and
then suspended again. This procedure helped to af-
ford the nanoparticle oligonucleotide conjugates free
from the excess sulfurized oligonucleotides employed
in the loading process. Figure 4 shows the TEM im-
ages of gold nanoparticles before and after modifica-
tion with oligonucleotides.

Electrochemical measurements were carried out
under atmosphere of nitrogen at ambient tempera-
ture (20+£2°C) in a three-compartment electrochemi-
cal cell consisting of a glassy carbon electrode (with or
without oligonucleotides) as the working electrode, a
saturated calomel electrode as the reference electrode,
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Fig. 4 TEM images of gold nanoparticles (A) and oligonucleotide-modified gold nanoparticles (B).

and a Pt counter electrode. Cell and voltammet-
ric flasks were protected from light by means of alu-
minum foil to avoid DTIC photodecomposition. Ev-
ery experiment has been repeated for at least three
times, and the repeated experiments gave the identi-
cal results.
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