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Abstract
The commonly-used drug susceptibility testing (DST) relies on bacterial culture and faces shortcomings such as long turnaround time and 
clonal/subclonal selection biases. Here, we developed a targeted deep amplicon sequencing (DAS) method directly applied to clinical speci
mens. In this DAS panel, we examined 941 drug-resistant mutations (DRMs) associated with 20 anti-tuberculosis drugs with only 4 pg of initial 
DNA input, and reduced the clinical testing time from 20 days to 2 days. A prospective study was conducted using 115 clinical specimens, pre
dominantly positive for the Xpert® Mycobacterium tuberculosis/rifampicin (Xpert MTB/RIF) assay, to evaluate DRM detection. DAS was 
performed on culture-free specimens, while culture-dependent isolates were used for phenotypic DST, DAS, and whole-genome sequencing 
(WGS). For in silico molecular DST, our result based on DAS panel revealed the similar accuracy to three published reports based on WGS. For 
82 isolates, application of DAS using the resistance-determining mutation method showed better accuracy (93.03% vs. 92.16%), sensitivity 
(96.10% vs. 95.02%), and specificity (91.33% vs. 90.62%) than WGS using the Mykrobe software. Compared to culture-dependent WGS, 
culture-free DAS provides a full picture of sequence variation at the population level, exhibiting in detail the gain-and-loss variants caused by bac
terial culture. Our study performs a systematic verification of the advantages of DAS in clinical applications and comprehensively illustrates the 
discrepancies in Mycobacterium tuberculosis before and after culture.
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Introduction
Tuberculosis (TB) has long been a serious global public health 
concern. Approximately 10 million people worldwide develop 
TB due to Mycobacterium tuberculosis complex (MTBC) infec
tions every year [1]. The World Health Organization (WHO) 
estimated that 150,359 people with multidrug-resistant/ 
rifampicin-resistant (MDR/RR)-TB were enrolled in treatment 
in 2020, which was equivalent to approximately one in three 
people who develop drug-resistant (DR)-TB each year [1]. The 
high burden of DR-TB incidence requires powerful tools for 
rapid clinical diagnosis and early detection of heteroresistant 
MTBC populations directly from clinical specimens. 
Conventional phenotypic drug susceptibility testing (pDST) 
requires weeks of bacterial culture, while rapid commercial line 
probe assays endorsed by the WHO for TB diagnosis and mo
lecular drug susceptibility testing (mDST) only cover a limited 
number of drug-resistant mutations (DRMs) [2]. Whole- 
genome sequencing (WGS) of MTBC usually requires successful 
bacterial culture and can be used for species identification, drug 
resistance prediction, transmission cluster detection, and 

discovery of new DRMs [3]. The capture of tilling probes for 
MTBC has been used for genotyping, drug resistance prediction, 
and transmission inference to replace culture-based WGS [4–6]; 
however, this method often limits the high bacterial load and 
omits minor clones owing to inadequate capture efficiency 
[5,7]. As a country with a high MDR-TB incidence, China is 
facing escalating challenges in clinical diagnosis and epidemic 
prevention [1].

Deep amplicon sequencing (DAS) provides a culture-free 
method covering many mutations within known DR genes, 
which overcomes the limitations of the methods mentioned 
above [8]. Targeted sequencing has recently become an in
creasingly popular method for the diagnosis and DST of 
MTBC from sputa [7,9–11], culture isolates [12], acid-fast 
bacilli smears [13], and formalin-fixed paraffin-embedded tis
sues [14,15]. Although these assays achieved certain sensitiv
ity and specificity for mDST compared with pDST, some 
anti-TB drugs were often missed.

Nearly all the aforementioned methods were evaluated using 
pDST as the gold standard. To date, no study has systematically 
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compared the MTBC sequence differences in clinical specimens 
before and after culture. However, the discrepancies between 
them have been proven in several studies. For example, when 
comparing the Xpert® Mycobacterium tuberculosis/rifampicin 
(Xpert MTB/RIF) test on uncultured sputum specimens with 
the pDST after culture, rifampicin (RIF) susceptibility discrepan
cies were observed in 2.09% of patients [16]. By comparing the 
culture-free molecular bacterial load (MBL) assay with the 
growth assay on solid media under specific drug treatments, the 
MBL assay detected colonies that were unculturable in solid cul
ture [17]. Furthermore, a study comparing the DAS on 
uncultured specimens with the WGS after culture identified 
7.8% of discordant variants in 109 clinical specimens [8]. In ad
dition, MTBC clone diversity could be reduced or eliminated 
during culture, which may distort the final resistance profile 
and mislead clinical treatment [18].

DAS selects relevant gene regions prior to sequencing, re
ducing the initial DNA input and minimizing the interference 
from unrelated DNA. In addition, DAS can be used to com
pare MTBC sequence differences in clinical specimens before 
and after culture. Here, we designed a DAS panel for direct 
mDST on clinical specimens, systematically compared 
culture-free DAS (cfDAS), culture-dependent DAS (cdDAS), 
and culture-dependent WGS (cdWGS), and evaluated their 
accuracy in predicting drug resistance. Compared with exist
ing targeted next-generation sequencing technologies which 
focus on a limited number of genes (3–18 genes) and drugs 
(2–13 drugs), our DAS panel encompasses the majority of 
known DR genes (47 genes) and DRMs (941 DRMs) associ
ated with 20 anti-TB drugs base on a comprehensive manual 
review of scientific literature. To optimize amplification effi
ciency, the primers of 128 amplicons were divided into two 
pooled mixes for multiplex polymerase chain reaction (PCR). 
We aimed to provide a DAS panel covering most anti-TB 
drugs for rapid, high-throughput, and culture-free mDST di
agnosis, while addressing the MTBC sequence differences in 
clinical specimens before and after culture.

Results
Design of the DAS panel
We designed a DAS panel targeting 941 DRMs from 47 genes 
associated with 20 anti-TB drugs (Figure S1; Table 1, Table 
S1). The entire workflow of the DAS panel on clinical speci
mens takes only 48 h, which significantly shortens the turn
over time (Figure 1A). An overview of the DAS data analysis 
workflow is shown in Figure 1B.

Three rounds of DAS were carried out for the improvements 
of amplification efficiency and detection capability as well as 
amplification optimization, and our panel achieved 30× se
quencing coverage for 99.37%–100% of the target regions us
ing a DNA mixture of host and bacteria (1 μg host DNA þ
200 pg/100 pg/50 pg MTBC DNA) (Figure S2; Table S2). The 
panel’s detection limit was determined using gradient-diluted 
DNA samples extracted from one cultured isolate, and our 
panel efficiently detected 100% of the target regions with 30× 
sequencing coverage at a minimum concentration of 0.4 pg/μl 
MTBC genomic DNA (gDNA) in a 10-μl volume (Table S3). 
Comparative analysis between DAS data from the gradient-di
luted DNA samples and WGS data of the initial gDNA sample 
revealed high consistency (≥ 99.75%) between the two meth
ods, with only a few low-frequency variants [median: 12.87%; 
interquartile range (IQR): 11.25%–16.18%] identified by 

DAS as the DNA amount decreased (Figure 2; Table S4). 
When focusing solely on DRMs, one (0.07%) and two 
(0.14%) variants were identified from two sets of DAS data 
from the 4-pg DNA samples.

Evaluation of drug resistance prediction
We collected the whole-genome sequence data as well as the 
pDST data of 19,384 MTBC isolates from the Pathosystems 
Resource Integration Center (PATRIC) database. Using the 
resistance-determining mutation (RDM) method, we pre
dicted the drug resistance of these MTBC isolates to 14 drugs 
based on the genome sequences at our panel region and com
pared the in silico predictions to the pDST data. The overall 
prediction accuracy of our DAS panel was 94.47% (sensitiv
ity: 90.40%; specificity: 95.71%) for all 14 drugs (Tables S5– 
S7). Moreover, another three public datasets were recruited 
[19,20]. The overall accuracies of our DAS panel 
combined with the RDM method and the initial WGS-based 
report were 97.73% (sensitivity: 92.68%; specificity: 
98.18%) and 97.37% (sensitivity: 81.45%; specificity: 
98.80%) for MTBC_A data (1920 samples, 9 drugs) (Tables 
S8–S11), 97.07% (sensitivity: 91.14%; specificity: 98.08%) 
and 96.20% (sensitivity: 82.64%; specificity: 98.52%) for 
MTBC_B data (1609 samples, 9 drugs) (Tables S12–S15), 

Table 1 DR genes in MTBC targeted by the DAS panel

WHO 
category

Drug name Abbreviated 
drug name

Gene (No. of DRMs)

First-line Rifampicin RIF rpoB (68), rpoC (2)
Rifabutin RFB rpoB (12)
Isoniazid INH ahpC (16), fabD (1), 

fabG1 (11), furA (3), 
inhA (15), iniA (2), iniB 
(7), iniC (3), kasA (6), 
katG (89), nat (2), ndh 
(4), Rv0340 (1), 
Rv1592c (1)

Pyrazinamide PZA panD (13), pncA (172), 
rpsA (3)

Ethambutol EMB embA (8), embB (28), 
embC (1), embR (2), 
ubiA (16)

Group A Levofloxacin LFX gyrA (12), gyrB (17)
Moxifloxacin MFX gyrA (10), gyrB (2)
Bedaquiline BDQ atpE (9), Rv0678 (46)
Linezolid LZD rplC (3), rrl (7)

Group B Clofazimine CFZ pepQ (1), mmpR (73), 
Rv1979c (1)

Cycloserine CS alr (1)
Group C Delamanid DLM ddn (2)

Pretomanid PMD ddn (2), fbiC (3)
Amikacin AK gidB (5), rrs (4), 

whiB7 (6)
Streptomycin SM gidB (48), rpsL (7), rrs (8)
Ethionamide ETO ethA (28), ethR (1), 

fabG1 (3), inhA (6)
Protionamide PTO ethA (28), inhA (4)
Paraaminosalicylic 
acid

PAS dfrA (2), folC (29), ribD 
(1), thyA (37)

Others Caperomycin CM gidB (6), rrs (4), tlyA (11)
Kanamycin KM eis (10), gidB (6), rrs (4), 

whiB7 (6)

Note: DR, drug-resistant; MTBC, Mycobacterium tuberculosis complex; 
DAS, deep amplicon sequencing; WHO, World Health Organization; 
DRM, drug-resistant mutation.
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and 91.14% (sensitivity: 89.52%; specificity: 92.23%) and 
91.43% (sensitivity: 91.30%; specificity: 91.52%) for 
WGS_110 data (110 samples, 13 drugs) (Tables S16–S19). 
These results suggest that the prediction of drug resistance 
based on the DAS panel is highly consistent with that based 
on the whole genome.

Machine learning models enhance the performance of re
sistance prediction when dealing with large datasets [21]. We 
constructed classification models for 14 drugs with random 
forest (RF) to predict drug resistance in our panel region us
ing PATRIC dataset for training. This method achieved an 
accuracy of 95.10% (sensitivity: 90.04%; specificity: 
96.64%), equivalent or better for all 14 drugs compared to 
our RDM method (accuracy increased by 0%–12.96% with 
an IQR of 0.25%–1.80%) (Tables S20 and S21). This 
method also performed well with the other three datasets, 
with accuracies of 97.61% (sensitivity: 91.25%; specificity: 
98.18%) for MTBC_A data (Tables S22 and S23), 97.08% 

(sensitivity: 90.55%; specificity: 98.20%) for MTBC_B data 
(Tables S24 and S25), and 89.24% (sensitivity: 84.20%; spe
cificity: 92.92%) for WGS_110 data (12 drugs excluding clo
fazimine) (Tables S26 and S27). These results indicate that 
the RF-based classification method performed comparable to 
the RDM method for drug resistance prediction.

We also used our newly obtained data to evaluate the accu
racy of our panel for drug resistance prediction. This analysis 
included 82 cultured MTBC isolates with pDST and WGS 
data. The mDST results predicted by the panel-based RDM 
and RF methods and the WGS-based Mykorbe method were 
compared with the pDST results (see File S1 for Appendix re
sult 1) (Tables S28–S31). The overall accuracies of drug resis
tance prediction of our panel for seven drugs were 93.03% 
(sensitivity: 96.10%; specificity: 91.33%) and 91.99% (sensi
tivity: 92.54%; specificity: 91.69%) using the RDM and RF 
methods, respectively (Tables S32 and S33). In contrast, the 
overall accuracy of drug resistance prediction of the WGS 
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data was 92.16% (sensitivity: 95.02%; specificity: 90.62%) 
using the Mykrobe method (Table S34). These results suggest 
that the performance of the panel-based and the WGS-based 
prediction methods is highly consistent. The discrepancy in 
resistance prediction among the RDM, Mykrobe, and RF 
methods is caused by RDM selection for the RDM and 
Mykrobe methods or limitation of prior information used in 
the RF method (Figure S3; Table 2). Machine learning meth
ods often lack interpretability of classification and thus miss 
the relationships between mutations and classification. 
Therefore, we used the known DRMs (the RDM method) for 
mDST prediction in downstream panel-related analysis.

Comparison of cfDAS and cdWGS
A total of 83 clinical specimens were collected and subjected 
to cfDAS and cdWGS separately (see File S1 for Appendix re
sult 2). Unexpectedly, a large proportion (88.44%, 8013/ 
9060) of variants identified by cfDAS were heterozygous 
(Figure 3A). In contrast, most variants (91.15%, 1122/1231) 
detected by cdWGS were homozygous. Further analysis 
revealed that a significant proportion of the variants identi
fied by cdWGS (93.26%, 1148/1231) were also detected by 
cfDAS and 81.01% (930/1148) of them were homozygous. 
This observation suggests that the majority of variants 

identified by cdWGS are derived from clinical specimens 
prior to culture. Moreover, totally 27 of the 83 specimens 
were recognized as mixed infection specimens in cfDAS, and 
these mixed infection specimens accounted for a significant 
proportion of the cfDAS-specific variants (80.12%, 6339/ 
7912). We hypothesize that cfDAS can detect sequence varia
tion profiles at the population level, whereas cdWGS is lim
ited to a single or few clones. The discrepancy may be 
attributed to bacterial culture. Previous studies have reported 
that bacterial cultures tend to screen out some TB clones, 
thereby reducing heterogeneity [22].

We compared the single nucleotide polymorphisms (SNPs) 
detected by cfDAS and cdWGS, and identified 7336 SNPs 
with difference in allele frequency (AF) using a minimum cut
off of 5% AF change, and 98.17% (7202/7336) of them were 
different for SNP calling using a minimum cutoff of 5% AF 
across all 83 specimens (Figure 3B; Table S35). Among these 
SNPs, 333 SNPs (with 256 being different for SNP calling) 
from 49 specimens (47 specimens) were DRMs that were 
linked to 16 drugs. The AF differences for these SNPs ranged 
from 5% to 100% (Figure 3C). When 10% AF was used as a 
cutoff for SNP calling, 249 DR SNPs showed AF differences. 
Among them, 69.88% (174/249) were different for SNP call
ing in all 83 specimens, which can affect drug resistance 

Table 2 Difference among RDM, Mykrobe, and RF methods for drug resistance prediction using cdWGS data from 82 MTBC isolates

Drug Mutation RDM Mykrobe RF OR in PATRIC data (95% CI)

INH ahpC:−52C/T Yes No High probability 1 (7.26–1)
INH katG:N138H Yes No High probability 19.75 (2.74–862.03)
MFX gyrA:D94A Yes Yes Low probability 13.46 (8.09–23.17)
MFX gyrA:S91P Yes Yes Low probability 7.19 (3.90–13.86)
RIF rpoB:L430P Yes Yes Low probability 4.03 (2.60–6.31)
RIF rpoB:S431T Yes No Low probability NA
RIF rpoB:H445N Yes Yes Low probability 2.78 (1.58–4.86)
SM gidB:G37E No No High probability 1 (0.52–1)

Note: RDM, resistance-determining mutation; RF, random forest; cdWGS, culture-dependent whole-genome sequencing; OR, odds ratio; PATRIC, Pathosystems 
Resource Integration Center; CI, confidence interval; NA, not available.
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prediction. These results indicate significant differences be
tween cfDAS and cdWGS in AF and SNP calling, especially 
for DRMs, which may further lead to inconsistencies in drug 
resistance prediction. Among the 7336 SNPs, 97.21% had 
decreased AFs, while only 2.79% had increased AFs during 
culture. A similar pattern was observed for the DRMs, with 
66.37% showing AF decrease and 33.63% showing AF in
crease during culture. These results suggest that culture 
causes clonal selection, thus narrowing down the diversity of 
MTBC clones, which may lead to a bias in resistance predic
tion. Notably, 54.64% mutations with higher AFs in the cul
tured isolates were DRMs, while only 2.06% mutations with 
higher AFs in the initial specimens were related to drug resis
tance. This indicates that DR clones may be preferentially se
lected during culture (P ¼ 5.30E−265, Chi-square test). 
DRMs in culture may be associated with compensatory 
mutations to fully or partially restore fitness loss. With the 
limited compensatory mutations in our panel [23], ten cul
tured isolates had higher AFs in the compensatory mutations 
in the rpoC gene, and seven of them had at least one RIF re
sistance mutation with the tendency of elevated AF during 
culture. With RIF resistance mutations as the major allele in 
the initial specimens, three exceptions were observed in the 
cultured isolates. We conclude that the inconsistencies be
tween cfDAS and cdWGS are mainly caused by bacte
rial culture.

To clarify bias raising from the low depth of WGS, we per
formed DAS on 83 cultured isolates, and found that 90.40% 
(1120/1239) of the variants were homozygous, showing a 
similar pattern to that observed in cdWGS (see File S1 for 
Appendix result 2). Moreover, 99.85% of the variants with 
different AFs between cfDAS and cdWGS had consistent AFs 
between cdDAS and cdWGS (< 5% AF difference). Only 
14 SNPs showed a minimal 5% AF difference for the target 
region. Furthermore, the mean pairwise concordance similar
ity between cdDAS and cdWGS data was 99.9963% [confi
dence interval (CI): 99.9933%–99.9994%] at target loci 
(Figure 3D) and 99.8739% (CI: 99.8031%–99.9446%) for 
AFs. Moreover, a strong relationship was observed between 
AFs in cdDAS and cdWGS data (R ¼ 0.9996, P ¼ 0, 
Pearson’s correlation test) (Figure 3E). These results show a 
very high degree of consistency in variant identification be
tween cdDAS and cdWGS. In contrast, significant differences 
were observed in the mean pairwise concordance similarity at 
target loci (Figure 3F) and AFs, as well as in the correlation 
of AFs between cfDAS and cdWGS data (Figure 3G). 
Further, we compared the differences in AF between any two 
of the three datasets (cfDAS, cdDAS, and cdWGS). Most loci 
were consistent between culture-dependent datasets (cdDAS 
vs. cdWGS) but inconsistent between culture-free and 
culture-dependent datasets (cfDAS vs. cdDAS/cdWGS) 
(Figure 3H). These results further illustrate that the inconsis
tencies between cfDAS and cdWGS are caused by bacterial 
culture independent of the sequencing method.

Comparison of mDST with pDST
Based on DRMs identified by cdWGS and cfDAS, we per
formed mDST for 82 specimens using the RDM method 
(Tables S29 and S36) and compared the results with the cor
responding pDST data of ten drugs. The overall accuracy of 
drug resistance prediction using cfDAS was 86.83% (sensitiv
ity: 82.84%; specificity: 88.77%) (Table 3; Table S37), 
which was slightly lower than that of cdWGS and cdDAS, 

with an overall accuracy of 92.07% (sensitivity: 94.40%; 
specificity: 90.94%) for cdWGS (Table 4; Table S32) and an 
overall accuracy of 91.83% (sensitivity: 94.40%; specificity: 
90.58%) for cdDAS (Tables S38 and S39). Besides, we com
pared the mDST results from cfDAS with that from cdWGS, 
revealing an overall accuracy of 92.80% (sensitivity: 
87.13%; specificity: 96.13%) (Table 3). We further found 
that the difference between cfDAS and cdWGS was mainly 
caused by the inconsistency in AF. Of the 284 DRMs 
detected in these 82 specimens, 76 (26.76%) mutations 
caused genotype differences and led to a 6.10% discrepancy 
of mDST (Figure 4), while 66 (23.24%) mutations had the 
same genotype but different AFs. For example, specimen 
S001 was classified as pan-susceptible based on mDST using 
cfDAS data, whereas it was identified as pre-extensive drug- 
resistant based on mDST using cdWGS data (Figure 5A). 
Another example was specimen S074, which contained muta
tions with different AFs and genotypes in the abovemen
tioned datasets (Figure 5B) (see File S1 for Appendix 
result 3).

Comparison between cfDAS-based mDST and 
Xpert MTB/RIF assay
We compared cfDAS-based mDST for RIF with the Xpert 
MTB/RIF assay in 113 specimens. The results showed that 
111 specimens (98.23%) had consistent assay results, while 
two specimens (S001 and S494) were positive in Xpert MTB/ 
RIF assay but negative in cfDAS-based mDST (Table S40). 
S001 showed a low-frequency mutation (S450L, 1.15% AF) 
in the rpoB gene in the cfDAS data and thus failed to pass the 
cutoff of 10% AF for mDST prediction. In S494, no muta
tions were detected in the 81-bp RIF resistance-determining 
region by cfDAS. We further compared the consistent results 
of cfDAS-based mDST and Xpert MTB/RIF with the pDST 
data, and found that 18 out of the 111 specimens showed in
consistent results. This result further indicates that culture in
deed leads to bias in drug resistance identification.

Discussion
Recent studies have provided evidence of diversity in drug re
sistance in colony-based MTBC populations from clinical 
specimens [24–26]. In addition, patients with MDR MTBC 
are more prone to acquiring resistance mutations [27]. The 
diversity spectrum of the bacterial population in vivo is influ
enced by intrinsic properties, adoption to the microenviron
ment of the host’s local niche, and the course of therapy [28]. 
However, the heterogeneity of mutations in current TB mo
lecular diagnosis is rarely addressed due to the lack of effi
cient tools for high-coverage assay directly from clinical 
specimens (see File S1 for Appendix discussion 1) [29]. The 
conventional qualitative amplification of known resistance 
genes cannot be easily applied to the resistance diagnosis of 
TB; however, genotyping of the TB population in clinical 
specimens remains essential.

Hybridization-based enrichment was adopted to directly 
detect mutations in sputum sequencing with 5 ng of initial 
sputum DNA [7]. This increases the operational cost, such as 
more DNA or higher count of bacteria. Targeted sequencing 
using Illumina [8] and Oxford Nanopore Technologies [9] 
has become an alternative method for mDST. Here, we 
designed a DRM panel for 20 anti-TB drugs based on a litera
ture repository that showed significant differences in the 
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MTBC population between culture-free and culture- 
dependent stages using the within-sample amplicon sequenc
ing, Xpert MTB/RIF, and WGS of isolates (see File S1 for 
Appendix discussion 2) (Figure S4; Tables S41–S43). The de
tection capability of our panel was evaluated systematically, 
showing a limit of detection comparable to that reported in a 
previous study (100–1000 genomes) based on amplicon se
quencing [8].

Data pairs of cdDAS and cdWGS showed high consistency 
in AFs and target loci, while comparisons between cfDAS 
and cdWGS showed significant discrepancies in them (see 
File S1 for Appendix discussion 3; Figure S5). The cfDAS 
data showed a higher heterogeneity score compared to 
cdWGS and cdDAS data (14.67 vs. 0.07 in average for cfDAS 
vs. cdWGS, P ¼ 1.4E−07, t-test; 14.67 vs. 0.09 in average 
for cfDAS vs. cdDAS, P ¼ 1.5E−07, t-test) (Figure S6). To 
further investigate the discrepancies between cfDAS and 
cdWGS, the DRMs were compared and divided into three 
categories: (1) all DRMs with increased AFs (12 of 37 sam
ples), (2) all DRMs with decreased AFs (1 of 37 samples), 
and (3) DRMs with increased or decreased AFs (24 of 37 
samples) in cultured isolates. The AF change of DRMs during 
culture may be related to fitness cost (e.g., rpoB:S450L 

emerged together with the compensatory mutation rpoC:I491V 
in S001), medication use [e.g., gyrA:D94G emerged with the 
fluoroquinolone (FQ) treatment in S295], and culture (e.g., 
rpoB:S450L increased but rpoB:D435G decreased in S074, 
and embB:Q497K and gyrA:D94G decreased in S077) 
(Figure 5). In addition, the higher proportion of pre-MDR 
and MDR MTBC in the patients was more likely to carry mi
nor resistance mutations during the course of infection. 
Heteroresistance is common in the development of DR 
MTBC isolates [30], and was higher in cfDAS data than in 
cdWGS and cdDAS data (5.61 vs. 0.24 in average for cfDAS 
vs. cdWGS, P ¼ 1.4E−08, t-test; 5.61 vs. 0.25 in average for 
cfDAS vs. cdDAS, P ¼ 1.5E−08, t-test) (Figure S7). In addi
tion, heterogeneity and heteroresistance were higher in bron
choalveolar lavage fluid (BALF) than in sputum in cfDAS 
data (Figure S8). These results indicate that the resistance 
profile of culture-free specimens is more complicated than 
that of culture-based isolates while BALF is more compli
cated than sputum in culture-free specimens.

Compared with the cdWGS data, 50 of 820 (6.10%) in
consistent mDST results due to 76 of 284 (26.76%) DRMs 
were found in the cfDAS data. For RIF, mDST results 
were consistent in culture-free samples (cfDAS and Xpert 
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MTB/RIF) if two samples with low-frequency mutations or 
no mutations were excluded from the cfDAS data. Compared 
with the culture-dependent pDST data for RIF, 18 of 111 
specimens (16.22%) showed inconsistencies in the cfDAS 
data, possibly due to low-level resistant mutations/disputed 
mutations (7 specimens) [31], AF differences (2 specimens), 
mutation changes (1 specimen), and time delay to positive 
pDST [32]. Compared with the cdDAS data, two specimens 
exhibited inconsistent RIF resistance predictions in the cfDAS 
data, possibly due to differences between culture-free and 
culture-dependent stages. Moreover, 33.33% (30/90) of the 
specimens with consistent RIF susceptibility between cfDAS 
and cdDAS data had different AFs (14 specimens, 15.56%) 
or different mutations (16 specimens, 17.78%).

Our study has several limitations. First, as a prospective single- 
center study focusing on culture-free detection of DRMs, the num
ber of enrolled MTBC clinical specimens was limited to 115, and 
the sample size used in comparisons among different platforms 
was further reduced due to the failure of bacterial culture. 
Nevertheless, 87.83% of the specimens were RR, and our study 
highlighted the advantages of the cfDAS assay in the current clini
cal laboratory system, making further large-scale studies possible. 
Second, the pDST in this study covered only 12 drugs, and several 
important drugs (e.g., pyrazinamide, prothionamide, and clofazi
min) were not included. Nonetheless, comparisons between 
cdDAS- or cdWGS-based mDST and the corresponding pDST 
revealed good consistency. In addition, the in silico mDST predic
tions within the amplicon regions for several datasets were highly 
consistent with the cdWGS-based mDST results for 13 drugs. 
Third, the panel did not contain markers for distinguishing be
tween MTBC and non-tuberculosis mycobacterium (NTM) spe
cies. Our panel was initially designed as a secondary clinical assay 
tool for high-potential MDR or extensively drug-resistant (XDR) 
patients. Numerous point-of-care testing methods, represented by 
Xpert, still have incomparable advantages in terms of speed and 
ease of use for primary screening of TB. Nevertheless, our study 
provides a sequencing-based resistance detection method that per
forms comparably to current clinical practices. It can be used to 
guide clinical medication and drug resistance monitoring. More 
importantly, this method can be used to study the discrepancies 
between clinical specimens and cultured isolates on a large scale, 
which has been ignored in previous studies owing to the lack of 
appropriate methods. Long-term accumulation of paired cfDAS 
and cdWGS data can enrich the TB resistance knowledge base, 
which will sustainably adjust and upgrade the target ampli
con panel.

Materials and methods
Sample collection and processing
From November 2020 to April 2021, 115 clinical specimens 
were collected from TB patients with MTBC infection at the 
Third People’s Hospital of Shenzhen, Shenzhen, Guangdong 
Province, China. Several types of specimens were included in 
this study, including BALF, sputum, and others (i.e., pleural 
fluid, pus, urine, and tissue). Each specimen was processed as 
follows: (1) the clinical specimen was initially tested with 
Xpert MTB/RIF assay (Cepheid, Sunnyvale, CA), and DNA 
extracted from the clinical specimen using the cetyltrimethy
lammonium bromide (CTAB) method was used for DAS 
[33]; (2) the cultured isolates of the clinical specimen were 
used for pDST using TREK Sensititre MYCOTB plates 
(TREK Diagnostic Systems, Oakwood, OH) for 12 anti-TB 

drugs; and (3) DNA extracted from the cultured isolates was 
used for DAS and WGS on the Illumina HiSeq2000 platform 
(Illumina, San Diego, CA).

Sequencing data analysis
Paired-end reads of 150 bp were generated for each sample with 
average coverages of 17,919×, 43,651×, and 273× for cfDAS, 
cdDAS, and cdWGS data, respectively (Table S44). Adapter 
sequences and low-quality reads of raw sequencing data 
were filtered out using Trimmomatic (v0.39) with the parame
ters “ILLUMINACLIP:TruSeq3-PE.fa:2:30:15 LEADING:20 
TRAILING:20 SLIDINGWINDOW:4:20 MINLEN:40”. 
Bases with quality scores below 20 were removed, and reads 
less than 40 bp were discarded. The filtered reads were aligned 
to the M. tuberculosis H37Rv genome (NC_000962.3) using 
BWA-MEM (v0.75a-r405). SNPs were identified using an in- 
house Perl script, bam2vcf, and the Genome Analysis Toolkit 
(GATK, v4.1.4.1). The Perl script bam2vcf detects variants us
ing BAM files with strict filtering criteria to minimize the 
effects of contamination and coinfection. Specifically, mapping 
reads were filtered out if they met any of the following criteria: 
mapping loci outside of the targeted amplicon regions, mis
match rate ≥ 5%, mapping identity < 90%, or mapping 
quality (MAPQ) < 30. Variants were filtered out if allelic 
depth < 3× or minor AF < 1%. Comparing with WGS, DAS 
has unique data processing steps, including filtering sequencing 
data based on primer sequences and disabling fragment length 
filter. For consistency, SNPs with allelic depth < 3× were re
moved in the GATK calling.

Panel design
Amplicon regions were collected and manually curated from 
a comprehensive literature review (Table S1). A multiplex 
PCR-based sequencing panel was designed to detect the 
aforementioned loci with a total length of 28,395 bp across 
128 amplicons, which were divided into two pooled mixes 
for Illumina sequencing (see File S1 for Appendix method 1) 
(Table S45). Amplification efficiency, sequencing depth, limit 
of detection, and variant identification were optimized for 
both cultured isolates and clinical specimens (see File S1 for 
Appendix method 2).

Xpert MTB/RIF-based mDST, acid-fast bacilli 
detection, MTBC culture, and pDST
The Xpert MTB/RIF assay was performed to detect RR-TB 
according to the manufacturer’s instructions for the 
GeneXpert machine (Cepheid, Sunnyvale, CA) (see File S1 
for Appendix method 3). Direct smears for acid-fast bacilli 
were analyzed using traditional optical microscopy. Smear- 
positive specimens were cultured in Mycobacterial Growth 
Indicator Tubes (Becton Dickinson, Franklin, NJ) (see File S1 
for Appendix method 4). Positive cultures were confirmed for 
mycobacteria by Ziehl–Neelsen staining. Species identifica
tion was performed using a commercial MPB64 monoclonal 
antibody assay (Genesis, Hangzhou, China). Indirect pDST 
was performed using MYCOTB plates (Thermo Fisher 
Scientific, Waltham, MA) for 12 anti-TB drugs (see File S1 
for Appendix method 5). The minimum inhibitory concentra
tion (MIC) was independently determined by two trained 
technicians using a Vizion Digital MIC Viewing System 
(Thermo Fisher Scientific) in accordance with the guidelines 
of the Clinical and Laboratory Standards Institute [34]. All 
pDSTs were performed twice for each isolate.
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Sequencing-based mDST
Variants with minimum AF ≥ 10% and minimum alternative 
allelic depth ≥ 3× were used for genotype-based mDST. 
Here, two methods were developed for mDST. The first 
method was based on known RDMs (referred to as the RDM 
method) (see File S1 for Appendix method 6). The second 
method was based on RF model built by the randomForest 
package in R [35] using the PATRIC data [36] as training 
data. This model was validated with three datasets: MTBC_A 
[19], MTBC_B [19], and WGS_110 data [20] (see File S1 for 
Appendix method 7). In addition, Mykrobe software (v0.9.0) 
was used for WGS-based mDST [19].

Analyses of AF similarity, heterogeneity, and 
heteroresistance
AF similarity (AFS) refers to the consistency of AF at the same 
locus between two samples (AF1 and AF2) and was calculated 
using the formula: AFS ¼ 1 − jAF1−AF2j. Heterogeneity is the 
coexistence of two alleles at a single locus, and the heterogeneity 
score (H) was calculated using the formula: H ¼ 0.5 − jAF − 
0.5j. Heteroresistance is defined as the presence of two or more 
mycobacterial populations with different drug susceptibilities. 
Here, we assigned a DRM as a heteroresistant mutation when 
its AF was ≥ 0.05 and < 0.95.

Statistical analysis
The performance of mDST was evaluated using overall accu
racy, sensitivity, and specificity. The 95% CI was calculated 
by the Rmisc package (v1.5.1). The Pearson’s correlation 
test, Pearson’s Chi-square test, and Student’s t-test were per
formed using R v3.6.3.
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