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Classical sorting by reversals uses the unit-cost model, that is, each reversal con-
sumes an equal cost. This model limits the biological meaning of sorting by reversal.
Bender and his colleagues extended it by assigning a cost function f(l) = lα for all
α ≥ 0, where l is the length of the reversed subsequence. In this paper, we extend
their results by considering a model in which long reversals are prohibited. Using
the same cost function above for permitted reversals, we present tight or nearly
tight bounds for the worst-case cost of sorting by reversals. Then we develop al-
gorithms to approximate the optimal cost to sort a given 0/1 sequence as well
as a given permutation. Our proposed problems are more biologically meaningful
and more algorithmically general and challenging than the problem considered by
Bender et al. Furthermore, our bounds are tight and nearly tight, whereas our al-
gorithms provide good approximation ratios compared to the optimal cost to sort
0/1 sequences or permutations by reversals.
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Introduction

Biological motivation

Given the gene order of a chromosome, a reversal
takes a segment and reverses the order of the se-
quences in it. This is one of the most important mu-
tations at the chromosome level. Indeed, reversal is
believed to be the most common in these mutations
(1 ). For instance, this fact has been reported on bac-
teria (2 ), plants (3 ), and fruit fly (4 ).

The minimum-cost reversal distance thus becomes
a useful measure for reconstructing the evolutionary
history of organisms, because the most parsimonious
series of reversals transforming one sequence to an-
other is likely to be the evolutionary path between two
organisms. However, most of the algorithmic works to
date on the problem of sorting by reversals have used
the unit-cost model, that is, each reversal consumes a
unit cost. This model implicitly assumes simple evo-
lutionary paths in which reversal mutations of differ-
ent lengths are considered equally likely to happen.
It is therefore not very biologically meaningful. In-
stead, the mechanics of genome reversals suggest that
the probabilities of reversals depend on the fragment
lengths (5 ). Furthermore, not all reversals can occur
in the evolutionary path. The reversals whose lengths
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are greater than some limits should be forbidden be-
cause they affect the organisms seriously and destroy
all the specific characteristics of their genomes.

Motivated by this characteristic of reversals, many
works assigned length-sensitive costs to reversal op-
erations and indicated that length indeed plays an
important role in biasing certain rearrangement pat-
terns. In this work, we generalize previous results on
the problems of sorting by length-weighted reversals
and investigate more general variants by imposing the
condition that the reversals acting on the fragments
longer than a certain length are prohibited.

Problem definition

Since we can always relabel genes so that the resulting
permutation is the identity permutation, the problem
of finding reversal distance is equivalent to that of
finding the most economic series to transform a per-
mutation into the identity one, and it is often regarded
as “sorting by reversals”. Our problem, sorting by
restricted-length-weighted reversals, consists of three
kinds of input: a 0/1 sequence or permutation S, a
cost function f on the length of the reversals, and a
positive integer k. The aim is to find a minimum-cost
series of reversals whose lengths do not exceed k to
sort S.

In this paper, we consider a wide class of cost func-
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tions, namely f(l) = lα for all α ≥ 0, where l is the
length of the reversed segment. Denoting the mini-
mum cost to sort S by SBRLR (S, k, α), we address
the following two problems:

1. Determining the diameter of sorting by
restricted-length-weighted reversals, that is, finding
the maximum cost Cl such that there is one per-
mutation S whose cost to sort by restricted-length-
weighted reversals is at least Cl, and the minimum
cost Cu such that any permutation can be sorted with
cost at most Cu.

2. Approximating SBRLR (S, k, α).

Related work

There is a huge number of literature on sorting by
reversals. The most exciting results were due to Ke-
cecioglu and Sankoff (6 ), Hannenhalli and Pevzner
(7 ), and Caprara (8 ).

Kececioglu and Sankoff (6 ) gave a 2-
approximation algorithm, which is the first perfor-
mance guaranteed approach for sorting by reversals.
Bafna and Pevzner (9 ) then developed the notion of
breakpoint graph of permutation and gave a better
approximation algorithm.

Based on this notion, Hannenhalli and Pevzner (7 )
stated a novel dual theorem and gave the first poly-
nomial time algorithm to sort a signed permutation,
known as the HP’s algorithm. This algorithm took
O(n2) time to calculate the reversal distance between
the genomes and O(n4) time to find the optimal series
of reversals to sort a permutation.

On the other hand, Caprara (8 ) proved that sort-
ing by reversals is NP-Hard for the general (unsigned)
case. This result changed the focus of the study of
sorting by reversals to the signed case. Since then,

many simplifications and improvements of the HP’s
algorithm have been developed.

Berman and Hannenhalli (10 ) gave an algorithm
that sorted a permutation in O

(
n2α(n)

)
time where

α is the inverse Ackerman function. Kaplan et al (11 )
then simplified the concept of hurdles and gave a sim-
ple O(n2) algorithm. Bader et al (12 ) gave an opti-
mal O(n) algorithm to calculate the reversal distance
between genomes. Recently, Kaplan and Verbin (13 )
gave an interesting randomized algorithm, which Tan-
nier and Sagot (14 ) derandomized to get a determin-
istic one, to sort by reversals in O(n

√
n log n) time.

The lengths of reversals were first taken into ac-
count by Chen and Skiena (15 ), in which only re-
versals whose lengths are some constant k are al-
lowed. They gave an algorithm to sort all circu-
lar n-permutations using O(n2/k + kn) k-reversals
while proving that there exists permutations requir-
ing Ω(n2/k2 + n) k-reversals to sort. Continuing on
this track, Pinter and Skiena (16 ) studied the linear
cost model, which has an upper bound of O(n log2 n)
on the cost of sorting any n-element permutation and
a guaranteed approximation ratio of O(log2 n) times
the optimal cost.

Recently, Bender et al (17 ) presented tight and
nearly tight lower and upper bounds for a wide class
of cost models f(l) = lα where α ≥ 0. They also gave
good approximation algorithms for sorting linear per-
mutations. Swidan et al (18 ) extended the results for
the cases of signed and circular permutations. Table 1
summarizes the results obtained in Bender et al. Note
that the lower and upper bounds shown in the table
are true not only for linear permutations, but also for
circular permutations. However, the approximation
ratios are only for linear permutations.

Table 1 The Results Obtained in Bender et al (17)

α value Lower bounds Upper bounds Approximation ratio

Permutation 0/1 sequence Permutation 0/1 sequence

0 ≤ α < 1 Ω(n) O(n log n) Θ(n) O(1)

α = 1 Ω(n log n) O(n log2 n) Θ(n log n) O(log n) 1

1 < α < 2 Ω(nα) Θ(nα) Θ(nα) O(log n) O(1)

α ≥ 2 Ω(n2) Θ(n2) Θ(n2) 2 for α < 3 1

1 for α ≥ 3

Results and Discussion

In this paper, we considered sorting 0/1 sequences and
permutations using restricted-length-weighted rever-

sals. First, we proved tight and nearly tight (upper
and lower) bounds for all α ≥ 0. Our results on these
bounds are for linear permutations as well as circular
permutations. When k = O(n/ log n) (k is the max-
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imum length of each reversal and n is the length of
the permutation), our upper bounds are tight for both
classes of permutations and 0/1 sequences. Second,
we gave approximation algorithms yielding nontrivial
approximation ratios for all 1 ≤ α < 2.

Table 2 summarizes our results. Note that the

lower and upper bounds in the upper table are true
for both linear and circular permutations. Also, when
α ≥ 2, short reversals are always preferred to long
ones; thus the results for our problem are identical
with those for the problem considered in Bender et al.

Table 2 The Results Obtained in Our Work

α value Lower bounds Upper bounds

Permutation 0/1 sequence

0 ≤ α < 1 Ω(n + n2kα−2) O(n log n + n2kα−2) Θ(n + n2kα−2)

α = 1 Ω(n log n + n2/k) O(n log n log k + n2/k) Θ(n log k + n2/k)

1 < α < 2 Ω(n2kα−2) Θ(n2kα−2) Θ(n2/kα−2)

α ≥ 2 Ω(n2) Θ(n2) Θ(n2)

k value Approximation ratio

Permutation 0/1 sequence

k = Ω(n) O(log n) O(1)

other k’s 2(log2 n)2 + log2 n 2 log2 n + 1

Lower bounds

We establish the lower bounds for sorting both lin-
ear and circular permutations of n elements based on
the lower bounds of 0/1 sequences, and analyze the
case when α ≤ 2 for the other case is trivial. Our
lower bounds are asymptotically tight because there
exists algorithms to sort any 0/1 sequence with the
cost asymptotically equal to these bounds.

Linear permutations

The lower bound in this case is established based
on the notion of inversion. Given a sequence S =
s1s2 . . . sl, an inversion is a pair of positions i < j

such that si > sj . The number of inversions in a
0/1 sequence of x 0’s and y 1’s is at most xy, which
is smaller than (x + y)2/4. Therefore, a reversal of
length l can remove at most l2/4 inversions from a
0/1 sequence.

The sorted sequence has no inversion. Noticing
that the sequence S = 11 . . . 100 . . . 0, where there are
equal numbers of 0’s and 1’s, contains n2/4 inversions,
we establish our lower bounds for linear permutations
based on S.

Theorem 1: When α < 2, the cost required to
sort S is at least n2kα−2.

Proof : Let l1, l2, . . . , lp be the length of reversals
in the optimal reversal series to sort S, such that li ≤
k for all 1 ≤ i ≤ p. Let ni be the number of inversions
removed by performing reversal li, we have ni ≤ l2i /4.

The optimal cost is
∑p

i=1 lαi = lα1 + lα2 + · · ·+ lαp . We
have:

lα1 + lα2 + · · ·+ lαp

= n1
lα1
n1

+ n2
lα2
n2

+ · · ·+ np
lαp
np

≥ 4n1
lα1
l21

+ 4n2
lα2
l22

+ · · ·+ 4np
lαp
l2p

≥ 4n1k
α−2 + 4n2k

α−2 + · · ·+ 4npk
α−2

= 4kα−2(n1 + n2 + · · ·+ np)
= n2kα−2

Hence, the theorem holds.
The cost of the optimal reversal series to sort a se-

quence when restricted to reversals whose lengths do
not exceed k must be greater than or equal to the min-
imum cost to sort the same sequence when using any
reversals. Thus, we combine Theorem 1 and the lower
bounds established in Bender et al to get the follow-
ing lower bounds on the cost of the optimal reversal
series in which no reversal has the length greater than
k for different α:

Ω(n + n2kα−2) for 0 ≤ α < 1,
Ω(n log n + n2/k) for α = 1,
Ω(n2kα−2) for 1 < α < 2.

Circular permutations

Consider the circular sequence S = 0101 . . . 01. We
choose an arbitrary 0 from S, and count the other
0’s and 1’s in that sequence. Let di denote the dis-
tance between the ith 0 and the ith 1 and dS =
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∑n/2
i=1 di = n/2. After performing an optimal reversal

series l1, l2, . . . , lp, we obtain the sorted sequence S′

with dS′ = Θ(n2).
The optimal cost to sort S is

∑p
i=1 lαi = lα1 + lα2 +

· · ·+lαp . Consider a reversal of length l, it can increase
the distance between the ith 0 and the ith 1 of S by at
most l, and it can increase at most l such distances.
Thus a reversal of length l can increase dS by at most
l2. Let xi be the amount that dS increases by per-
forming the reversal li in the series, we have xi ≤ l2.
Then

lα1 + lα2 + · · ·+ lαp

= x1
lα1
x1

+ x2
lα2
x2

+ · · ·+ xp
lαp
xp

≥ x1
lα1
l21

+ x2
lα2
l22

+ · · ·+ xp
lαp
l2p

≥ x1k
α−2 + x2k

α−2 + · · ·+ xpk
α−2

= kα−2(x1 + x2 + · · ·+ xp)
= Ω(n2kα−2)

Thus, we have the following theorem:
Theorem 2: When α < 2, the minimum cost

required to sort S must be at least Ω(n2kα−2).
Again, combining Theorem 2 and the lower

bounds established in Swidan et al (18 ) gives us the
lower bounds of sorting circular permutations, which
are identical with those of sorting linear permutations.

Upper bounds

Here we present the algorithms for sorting any n-
element permutation and analyze their worst-case
cost. The worst-case costs used by these algorithms
are the upper bounds on the diameter of sorting by
restricted-length-weighted reversals. We again note
that bubble sort gives a tight upper bound for the
case α ≥ 2. Furthermore, by “cutting” a circular per-
mutation at any point and treat it as a linear permu-
tation, we obtain an algorithm with the same asymp-
totic cost to sort a circular permutation. Therefore,
we only consider sorting a linear permutation with
α < 2.

To sort a 0/1 sequence S = s1s2 . . . sn with only
reversals whose lengths do not exceed k, we divide S

into small segments such that for each segment (i, j):
1. There are at most bk/2c 0’s and at most bk/2c

1’s in {si, si+1, . . . , sj}.
2. There are either bk/2c 0’s or bk/2c 1’s in

{si, si+1, . . . , sj+1}.
We first sort each segment separately based on the

algorithms described in Bender et al for 0/1 sequences

and on the corresponding cost model. Then we per-
form bubble sort on blocks of 0’s and 1’s, in which
each swap is mimicked by a reversal of length not
greater than k.

There are O(n/k) segments, and each segment
has length of O(k). Let us denote the cost to sort
each subsequence whose length l does not exceed k

by B′(l). The cost to sort a permutation is:

B(n) ≤ O(n/k)B′(k) + O(n2/k2)f(k).

To sort a permutation π, it needs to divide the se-
quence around the median and recursively sort both
halves. In order to divide around the median, we map
each element less than the median to 0 and map each
element greater than or equal to the median to 1.
Thus, the cost to sort a permutation is:

P (n) ≤ 2P (n/2) + B(n).

Theorem 3: When the cost of reversals is f(l) =
lα, 0 ≤ α < 1, for linear permutations, each 0/1 se-
quence can be sorted with cost O(n + n2kα−2), and
each permutation can be sorted with cost O(n log n+
n2kα−2).

Proof : The cost to sort a 0/1 sequence of length
not exceed k is B′(l) = O(l). We have B(n) =
O(n/k)O(k)+O(n2/k2)O(kα). Hence, B(n) = O(n+
n2kα−2). For the permutation, the cost is P (n) =
2P (n/2)+O(n+n2kα−2). Hence, P (n) = O(n log n+
n2kα−2).

Theorem 4: When the cost of reversals is f(l) =
l, for linear permutations, each 0/1 sequence can be
sorted with cost O(n log k + n2/k), and each permu-
tation can be sorted with cost O(n log n log k+n2/k).

Proof : The cost to sort a 0/1 sequence of length
not exceed k is B′(l) = O(l log l). We have B(n) =
O(n/k)O(k log k) + O(n2/k2)O(k). Hence, B(n) =
O(n log k + n2/k). For the permutation, the cost
is P (n) = 2P (n/2) + O(n log k + n2/k). Hence,
P (n) = O(n log n log k + n2/k).

The above upper bounds for 0/1 sequences are
tight. When k is small, i.e. k2−α = O(n/ log n), we
have n log n = O(n2kα−2). For this case, the upper
bounds for permutations are also tight. When k = n,
our results are the same as that in Bender et al.

Next, we consider the case when 1 < α < 2.
Theorem 5: When the cost of reversals is f(l) =

lα, 1 ≤ α < 2, for linear permutations, each 0/1
sequence can be sorted with cost O(n2kα−2), and
each permutation can be sorted with cost O(n log n+
n2kα−2).
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Proof : The cost to sort a 0/1 sequence of
length not exceed k is B′(l) = O(lα). We have
B(n) = O(n/k)O(kα) + O(n2/k2)O(kα). Hence,
B(n) = O(n2kα−2). For the permutation, the cost
is P (n) = 2P (n/2) + O(n2kα−2). Hence, P (n) =
O(n2kα−2 + n log n).

In this case, the upper bounds are tight for both
0/1 sequences and permutations. When k = n, our
results are the same as that in Bender et al.

Approximation algorithms for 1 ≤ α < 2

Constant approximation algorithm for S =
11 . . . 100 . . . 0

We present 2-approximation algorithms for the se-
quence S = 11 . . . 100 . . . 0. Although they only solve
the problem on one special sequence, these algorithms
are important since they serve as the basis to sort gen-
eral 0/1 sequences.

Let a and b be the length of the blocks of 1’s and
0’s in S, respectively. Without loss of generality, as-
sume that a ≤ b. When b < k/2, the sequence can be
sorted optimally by a single reversal. The following
theorem states that there are 2-approximation algo-
rithms to sort S in the remaining cases.

Theorem 6: There is a 2-approximation algo-
rithm for SBRLR (S, k, α).

Proof : We consider four cases based on the parity
of k and the relationship between a and k/2.

Case 1. k is even and a ≥ k/2. Let k = 2k′,
a = k′i+p, and b = k′j+q for k′, i, j ≥ 1 and p, q < k′.
By the inversion argument similar to that used in de-
riving lower bounds, we can prove that L = 4 a b kα−2

is a lower bound of the cost of sorting S. We prove
that the following algorithm sorts S with a cost at
most 2L.

1. Divide the block of 1’s into i blocks of length k′

and 1 block of length p such that the block of length
p is at the right end of the original block.

2. Divide the block of 0’s into j blocks of length k′

and 1 block of length q such that the block of length
q is at the left end of the original block.

3. Move the block of p 1’s to the right end of S.
4. Move the block of q 0’s to the left end of S.
5. Sort the remaining blocks by bubble sort, and

each swap is mimicked by a reversal of length k.
The cost of this algorithm is analyzed in the fol-

lowing. Step 3 has the cost j(p+k′)α +(p+ q)α, Step
4 has i(q + k′)α, and Step 5 has ij(2k′)α. Hence, the

total cost of this algorithm is:

A = j(p + k′)α + i(q + k′)α + (p + q)α + ij(2k′)α.

Let F (p, q) = 8abkα−2 −A

= 8(k′i + p)(k′j + q)kα−2 −A,
we have:

∂F
∂q = 8(k′i + p)kα−2 − iα(q + k′)α−1 − α(p + q)α−1

≥ 8k′ikα−2 − iαkα−1 − αkα−1

≥ 4ikα−1 − 2ikα−1 − 2ikα−1

≥ 0

Similarly, ∂F
∂q ≥ 0 and thus F is increasing on both

p and q. Hence F (p, q) ≥ F (0, 0) > 0. So A < 2L.
Case 2. k is even and a < k/2. We augment

the inversion argument with simple calculus. First, it
can be shown that the function f(x) = (x+a)α/ax is
decreasing on (0, a

α−1 ) and increasing on ( a
α−1 ,+∞).

Thus, f(x) ≥ f(t) where t = min{k − a, a
α−1} for all

x ∈ (0, k − a].
Now let l1, l2, . . . , lp be the length of reversals in

the optimal reversal series to sort S, such that li ≤ k

for all 1 ≤ i ≤ p, and ni be the number of inversions
removed by performing reversal li. If li ≤ 2a, we have
ni ≤ l2i /4 and hence

lαi
ni
≥ lα−2

i ≥ (2a)α−2 = f(a) ≥ f(t).

Otherwise we have ni ≤ a(li − a) and hence
lαi /ni ≥ f(li − a) ≥ f(t). Hence lαi

ni
≥ f(t) for all

1 ≤ i ≤ p.
The optimal cost to sort S is then:

lα1 + lα2 + · · ·+ lαp = n1
lα1
n1

+ n2
lα2
n2

+ · · ·+ np
lαp
np

≥ (n1 + n2 + · · ·np)f(t)
= abf(t)
= b(a+t)α

t

Let L = b(a+t)α

t , the following algorithm sorts S

by a cost at most 2L:
1. Since (a + b) > 2k′ ≥ (t + a), b = t i + r for

some i ≥ 1, we divide the block of 0’s into i block of
length t and one block of length r.

2. Move the block of 1’s to the right end of S using
i reversal of length t+a and a reversal of length a+r.

The cost of this algorithm is:

i(t + a)α + (a + r)α ≤ (i + 1)(t + a)α

≤ 2i(t + a)α

≤ 2 b
t (t + a)α

= 2L

Case 3. k is odd and a ≥ k/2. Similar to Case 1.
Case 4. k is odd and a < k/2. Similar to Case 2.
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(2 log2 |S| + 1)-approximation algorithm for 0/1
sequences

We utilize the algorithms in previous section to sort
general 0/1 sequences. First we sort a sequence S

where |S| = 2t by the following algorithm:
1. Divide S into two halves L and R.
2. Sort L and R recursively. After this step we

have the sequence 00 . . . 011 . . . 100 . . . 011 . . . 1.
3. Use the algorithms in the previous section to

swap the first block of 1’s with the second block of
0’s.

The performance of this algorithm is given by The-
orem 7. In proving this theorem, we intensively use
the concept of reduction of a reversal on a subse-
quence S′ of a sequence S. If r is a reversal on S, we
define the reduction r|S′ of r on S′ to be the trans-
formation that reverses the order of elements of S′,
which are affected by r. For example, assume that r

affects the segment s1s2s3s4s5, and s1, s3, s4 are the
elements of S′, then r|S′ reverses the order of s1, s3, s4

in S′, that is, it puts s1 to the position of s4 and vice
versa. It is readily verified that r|S′ is a reversal on S′,
that is, it reverses the order of consecutive elements
of S′. Furthermore, if R = r1, r2, . . . , rk sorts S, then
R|S′ = r1

|S′ , r
2
|S′ , . . . , r

k
|S′ sorts S′.

Proposition 1: Let OPTS , OPTL, OPTR be the
optimal cost to sort S, L, R, respectively, we have
OPTS ≥ OPTL + OPTR.

Proof : Let R be a reversal series that sorts S.
For a reversals r, we have |r|L| + |r|R| = |r|, where
|x| denotes the length of reversal x. Since 1 ≤ α ≤ 2,
we have |r|L|α + |r|R|α ≤ |r|α. Hence, the total cost
to sort L and R is less than that to sort R. This
completes the proof.

Proposition 2: Let S be a 0/1 sequence and k

be a position. If there are i 1’s on the left of k and
j 0’s on the right of k, then the cost of sorting S is
bigger than that of sorting T = 1i0j .

Proof : We map the tth 1 on the left of k in S to
the tth 1 of T , and the tth 0 on the right of k in S to
the tth 0 of T . Let T ′ be the subsequence of S whose
elements are mapped to those of T . The reduction
of any reversal sequence sorting S on T ′ sorts T ′ and
hence sorts T . Hence the cost of sorting T must not
exceed the cost of sorting S.

Theorem 7: The algorithm above sorts a 0/1
sequence S with the cost of 2OPTS log2 |S| when
|S| = 2t for some integer t.

Proof : Let C(S), C(L), C(R) be the cost of sort-
ing S, L, and R by the algorithm, and D be the cost

of Step 3. Proposition 2 shows that D ≤ 2OPTS .
Hence, we have the following recurrence:

C(S) ≤ C(L) + C(R) + 2OPTS .

By an induction on |S| using Proposition 1, we can
verify that C(S) = 2OPTS log2 |S|.

To sort a general sequence S, let 2k ≤ |S| < 2k+1,
we insert (2k+1 − |S|) 0’s to the left of S to get a se-
quence S′ of length 2k+1. It is obvious that the cost
to sort S is at most the cost to sort S′, and any algo-
rithm that sorts S also sorts S′ with the same cost.
Hence OPTS = OPTS′ , and

C(S) ≤ C(S′) ≤ 2 log2 |S′|OPTS′ ≤ (2 log2 |S|+1)OPTS .

Hence, there is a (2 log2 |S| + 1)-approximation algo-
rithm to sort general 0/1 sequences.

(
2(log2 n)2+log2 n

)
-approximation algorithm for

linear permutations

Again, we first give the algorithm to sort the sequence
S where |S| = 2k for some integer k:

1. Find the median of the permutation.
2. Divide the permutation into halves with the

right half containing all the elements bigger than the
median, and the left half containing all the elements
smaller than the median. We can do this by consider-
ing the elements bigger than the median 1’s and the
elements smaller than the element 0’s and invoke the
algorithm in the previous section.

3. Sort the two halves recursively.
The performance of this algorithm is given in the

following theorem:
Theorem 8: Let OPTS be the optimal cost of

sorting a permutation S. The above algorithm sorts
S in 2(log2 |S|)2OPTS .

Proof : Since the cost of Step 2 is at most
2(log2 |S|), the cost of this algorithm satisfies the re-
currence:

C(|S|) ≤ 2C(|S|/2) + 2 log2 |S|OPTS .

The theorem then follows a simple induction.
To sort a general permutation S where 2t ≤

|S| < 2t+1, we concatenate S with the sequences
|S|(|S|+ 1) · · · 2t+1 to get a permutation S′ of length
2t+1, and apply the above algorithm. By similar ar-
guments as in the previous section, we obtain the(
2(log2 n)2 + log2 n

)
approximation ratio.

Geno. Prot. Bioinfo. Vol. 3 No. 2 2005 125



Sorting by Restricted-Length-Weighted Reversals

A more exact analysis of the approximation

ratio when k = Ω(|S|)

Here, we prove that the above approximation algo-
rithms for 1 ≤ α < 2 and k = Ω(|S|) has the approxi-
mation ratios of O(1) for 0/1 sequences and O(log n)
for permutations. For a 0/1 sequence S of length n,
let w(i, S) denote the number of wrong-sided elements
according to position i, that is, the number of extra 1’s
in the first i elements in S plus the number of extra 0’s
in the last (n− i) elements in S when compared with
the sorted sequence. The potential function W (S) is
defined as follows:

W (S) =
n∑

i=1

w(i, S)α−1

Using a result in Bender et al, we have
W (S) − W (SL) − W (SR) ≥ cw(x, S)α, where c =
1/8 [(3/4)α−1 − (1/4)α−1] and x is the number of 0’s
in S.

Let k ≥ c1n, we need to prove that C(S) ≤
C(SL) + C(SR) + Tw(x, S)α for some constant T . In
other words, this is equivalent to proving that the cost
to sort the sequence S′ = 11 . . . 100 . . . 0 whose length
is w(x, S) should not exceed Tw(x, S)α.

Let k′ = k/2, suppose there are p k′ 1’s and qk′ 0’s
in S′. The cost to sort S′ using the above approxima-
tion algorithm is 2p qkα, whereas w(x, S) = (p+q)k/2.
Besides, p k′ + qk′ = n, thus either p k′ ≤ n/2 or
qk′ ≤ n/2. Assume p k′ ≤ n/2, hence p ≤ n/k ≤ 1/c1.
We have:

w(x, S)α = [(p + q)k/2]α

= c(p + q)αkα 4
(3/2)α−1−(1/2)α−1

≥ c(p + q)αkα 4
(3/2)2−1−(1/2)2−1

(since 1 ≤ α < 2)
≥ 4c(p + q)kα

≥ 4cc1p qkα

Hence, we can choose T = 1/2 cc1. By induction,
we have C(S) = O

(
W (S)

)
, that is, the above algo-

rithm is an O(1)-approximation algorithm for 0/1 se-
quences.

When S is a permutation, using the approxima-
tion algorithm for permutations, we have C(S) =
2C(S/2) + O(OPT ). An easy induction shows that
C(S) = O(OPT log n), that is, the above algorithm
is an O(log n)-approximation algorithm for permuta-
tions.

Conclusion

We have presented tight or nearly tight lower and up-
per bounds for the problem of sorting by restricted-
length-weighted reversals, and also the approximation
algorithms for a wide range of α. These results can
be extended in various directions.

One direction is to strengthen the approximation
ratio algorithms or determine the hardness of the
problem based on the value of k or/and the value of
α. Furthermore, the approximation algorithm for the
case where α < 1 is still open.

We can also work with other length-weighted func-
tions that are consistent with some meaningful distri-
bution. Another extension is to consider the more
general problem when f is a step function:

f(l) =





f1(l) if l ≤ k1

f2(l) if k1 < l ≤ k2

. . .

Finally, it is interesting and important to find a
cost function that can be verified in practice.
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