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Classifying Genomic Sequences by Sequence Feature Analysis
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Traditional sequence analysis depends on sequence alignment. In this study, we
analyzed various functional regions of the human genome based on sequence fea-
tures, including word frequency, dinucleotide relative abundance, and base-base
correlation. We analyzed the human chromosome 22 and classif ied the upstream,
exon, intron, downstream, and intergenic regions by principal component analysis
and discriminant analysis of these features. The results show that we could clas-
sify the functional regions of genome based on sequence feature and discriminant
analysis.
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Introduction

Since the beginning of the Human Genome Project,
a huge amount of genomic sequences have been gen-
erated. It becomes more and more important to an-
notate these raw sequences. Eukaryotes have genes
that contain upstream, exon, intron, and downstream
regions. It is even more important to classify these
various functional regions. Seeking appropriate fea-
tures is the key to solve this problem. In recent years,
several sequence features have been proposed, includ-
ing word frequency (WF; ref. 1 ), synonymous codon
choice, amino acid usage, G+C content (2 ), and nu-
cleotide composition constraint (3 ). In this study, we
present a novel sequence feature extraction algorithm
and multidimensional statistical analysis to classify
genomic sequences.

Results and Discussion

We extracted the sequence feature information from
the collected sequence data of the human chromosome
22, reduced the dimensionality of sequence feature
vector by principal component analysis (PCA), and
classified the datasets by discriminant analysis.

Word frequency

Reinert et al (4 ) provided the concept of word fre-
quency. Since a DNA sequence is formed by using an
alphabet of four letters (A, T, C, G) denoting four
DNA bases, we can define DNA k-words, which are
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k-tuples formed by using these four letters. For an
integer k ≥ 1, clearly there are 4k possible k-words.
We assume that fw is the frequency of w in the DNA
sequences with the length of L:

fw =
nw

L

In this study, we analyze mainly 2-word and 3-
word frequencies, which form 42=16 and 43=64 di-
mensional frequency vectors, respectively.

Dinucleotide relative abundance

Karlin and Burge (5 ) defined the formula of dinu-
cleotide relative abundance (DRA) as the following:

Tij =
pij

pipj

in which pi or pj means the frequency of appearance
of a single base i or j, and pij means that of joint
probabilities of bases i and j. The DRA feature forms
a 16-dimensional vector. If one sequence is completely
stochastic and the bases are mutually independent,
then theoretically pij = pipj and the value of Tij is 1.
Therefore, the deviation of Tij of one sequence oppo-
site to 1 could evaluate the bias of dinucleotide.

Base-base correlation

We have proposed a novel feature called base-base cor-
relation (BBC) with the following formula:

Tij(k) =
k∑

l=1

pij(l) · log2

(pij(l)
pipj

)
i, j ∈ {1, 2, 3, 4}
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Here, pi and pj are defined as above, while pij(l)
means the joint probabilities of bases i and j at a dis-
tance of l. Tij(k) represents the average relevance of
the two-base combination with different gaps from 1
to k. It reflects a local feature of two bases with an in-
terval of k. The BBC feature forms a 16-dimensional
vector.

For a given DNA sequence, the features of 2-word,
3-word, DRA, and BBC form a 112-dimensional vec-
tor in all.

Principal component analysis

Let X1, X2, . . . , Xp denote the p index considered,
then we have

S =




S11 S12 · · ·S1p

S21 S22 · · ·S2p

...
...

...
Sp1 Sp2 · · ·Spp




The above matrix is the covariance matrix of X1, X2,
. . . , Xp, in which the principal diagonal elements S11,
S22, . . . , Spp represent the variance of X1, X2, . . . ,
Xp, respectively, reflecting the p index variation de-
gree. Therefore, S11 +S22 + · · ·+Spp means the total
variation degree of the p index.

Now we seek a new index y1 = a11x1 + a12x2 +
· · ·+ a1pxp instead of the original p index. Moreover,
we expect this new index could contain the original
information as far as possible. We suppose λ1 ≥ λ2 ≥
· · · ≥ λγ (γ ≤ p) is the non-vanishing characteristic
root. Then S11 +S22 + · · ·+Spp = λ1 +λ2 + · · ·+λγ .
Thus we extract the γ overall index of y1, y2, . . . ,
yγ , whose variance is equal to the original p index
variance, that is to say, the information that the γ

index contains is equal to the information that the
original p index contains. If γ is much smaller than
p, the method greatly reduces the index but does not
affect the analysis result. Because the overall index
y1 = a11x1 + a12x2 + · · ·+ a1pxp is the biggest when
the variance is λ1, so the ability of synthesizing the p

index of y1 is the strongest. We define y1, y2, . . . , yγ

as the first, second, . . . , and the γth principal com-
ponent, respectively. Then

λγ

λ1 + λ2 + · · ·+ λγ
=

λγ

S11 + S22 + · · ·+ Spp

which expresses the proportion of yγ variance in the
total variance, and it is called the variance contribu-
tion rate of the γth principal component (6 ).

Here we reduced the original 112-dimensional vec-
tor to a 21-dimensional vector according to whether
the eigenvalue is bigger than 1 (Table 1).

Discriminant analysis

The basic principle of discriminant analysis is that
the studied object that could be portrayed by the p

index could also be described with the stochastic vec-
tor X = (X1, X2, . . . , Xp)T. Let π1, π2, . . . , πs denote
the s kinds of the object that we study. If an object
belongs to the jth kind, then it is recorded as X ∈ πj .
The main goal of discriminant analysis is to seek the
decision function g(X) of X according to different dis-
criminative criteria, and to determine the category of
X based on the attribute of g(X). The main criteria
to construct discriminative function include the short-
est distance criterion, the smallest expectation loss
criterion, the Fisher criterion, and so on. Sandberg
et al (7 ) used a näıve Bayesian classifier to capture
whole-genome characteristics in short sequences. In
our method, we use the Fisher criterion whose basic
principle is to find the most appropriate projection
axis to make the two kinds of samples that project
on this axis to be the least, thus make the classified
effect to be the best.

We firstly analyzed the upstream, coding, and
downstream regions of the sequence (Figure 1). The
scatter plots in Figure 1 show the values of the cases
on two discriminant functions, and we can see ob-
vious differences among the coding, upstream, and
downstream regions. It is observed that the coding
regions (green) prefer to appear on the positive side
of Function 1, whereas the upstream (red) and down-
stream (blue) regions prefer to appear on the nega-
tive side. The two discriminant functions cannot dis-
tinguish between upstream and downstream regions.
We think the reason is that regulatory elements are
located in upstream regions and the gene regulatory
information is not considered when we use these three
sequence features. Therefore, we may seek a more
effective sequence feature related to known gene reg-
ulatory knowledge to distinguish the two regions.

In order to further investigate non-coding regions,
we expanded the datasets from three kinds to five
kinds, and selected three features, namely WF, DRA,
and BBC, which constructed a 112-dimensional vector
as mentioned above. The SPSS software (8 ) was ap-
plied to carry on discriminant analysis and the result
is shown in Table 2, which was used to assess how well
the discriminant function works. From the result, we
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Table 1 The Result of Principal Component Analysis

Component Initial eigenvalue Extraction sum of squared loadings

Total Variance (%) Cumulation (%) Total Variance (%) Cumulation (%)

1 31.128 27.793 27.793 31.128 27.793 27.793

2 12.589 11.240 39.033 12.589 11.240 39.033

3 8.365 7.469 46.503 8.365 7.469 46.503

4 8.075 7.210 53.713 8.075 7.210 53.713

5 4.726 4.220 57.933 4.726 4.220 57.933

6 4.192 3.743 61.675 4.192 3.743 61.675

7 3.836 3.425 65.100 3.836 3.425 65.100

8 3.425 3.058 68.158 3.425 3.058 68.158

9 2.938 2.624 70.782 2.938 2.624 70.782

10 2.775 2.478 73.259 2.775 2.478 73.259

11 2.606 2.327 75.586 2.606 2.327 75.586

12 1.928 1.721 77.308 1.928 1.721 77.308

13 1.880 1.678 78.986 1.880 1.678 78.986

14 1.663 1.485 80.471 1.663 1.485 80.471

15 1.565 1.397 81.868 1.565 1.397 81.868

16 1.515 1.353 83.221 1.515 1.353 83.221

17 1.293 1.154 84.375 1.293 1.154 84.375

18 1.276 1.139 85.515 1.276 1.139 85.515

19 1.170 1.045 86.559 1.170 1.045 86.559

20 1.067 0.953 87.512 1.067 0.953 87.512

21 1.052 0.939 88.451 1.052 0.939 88.451

22 0.925 0.826 89.277

23 0.831 0.742 90.019

24 0.786 0.702 90.721

25 0.677 0.605 91.326

Table 2 The Statistical Result of Discriminant Analysis*

Result Predicted group membership Total

Group 1 2 3 4 5

Original 1 71 0 7 8 14 100

2 1 94 0 2 3 100

3 7 0 86 5 2 100

4 4 1 13 69 13 100

5 5 2 12 12 69 100

Cross- 1 68 4 8 7 13 100

validated 2 1 94 0 2 3 100

3 7 0 86 5 2 100

4 6 2 16 57 19 100

5 9 4 18 13 56 100

* “Original” is the classification result of each observated sample, and “Cross-validated” is the alternately confirmed

result. Groups 1 to 5 represent the upstream, exon, intron, downstream, and intergenic regions, respectively. In

“Predicted group membership”, the established discriminative function reclassifies the source data and is compared

with the primary variable value to compute the probability of mistaken discriminant. For example, for the 1st group of

samples with the total number of 100, the constructed discriminative function based on the original data predicts that

the number belongs to the 1st, 2nd, 3rd, 4th, and 5th group is 71, 0, 7, 8, and 14, respectively.
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Fig. 1 Classification of the upstream (red), coding (green), and downstream (blue) regions. The horizontal axis

represents the function value of the first linear distinction, and the vertical axis represents the function value of the

second linear distinction, which is based on calculations from the variable value.

can see that the classification accuracy of the exon,
intron, upstream, downstream, and intergenic regions
is 94%, 86%, 71%, 69%, and 69%, respectively. The
classification accuracy of exon and intron is relatively
high, while that of upstream, downstream, and in-
tergenic regions is relatively low. This can help us
identify genes and study the gene structure (exon-
intron arrangement). The 3-word frequency can help
us reveal hidden sequence features in coding regions.
Recent discoveries have suggested that non-coding re-
gions may not be merely “junk DNA” as previously
thought. High densities of long interspersed nuclear
elements (LINEs) and short interspersed nuclear el-
ements (SINEs) occur in non-coding regions as the
signal to start methylating a region of DNA (9 , 10 ).
The sequence features that we have used may not
match inherent sequence features in non-coding re-
gions. Therefore, the classification accuracy of non-
coding regions is lower than that of coding regions.
Our future project is to further improve the clas-
sification accuracy of non-coding regions by seeking
new features and more efficient algorithms.

Conclusion

Nowadays algorithms and software for gene prediction
have been developed widely. However, to our knowl-

edge, researches on how to effectually distinguish the
exon, intron, and intergenic regions have not made
breakthrough. We have proposed a novel analysis
method of genomic sequences based on sequence fea-
ture and statistic analysis. The results show that our
analysis algorithm could improve the identification
accuracy of the upstream, exon, intron, downstream,
and intergenic regions from DNA sequences, espe-
cially the exon (94%) and intron (86%) regions.

Materials

We used the human chromosome 22 and collected
the upstream (1,000 bp), exon, intron, downstream
(1,000 bp), and intergenic regions (1,000 bp) accord-
ing to the gene annotation database of the University
of Santa Cruz Golden Path human genome sequence
(http://genome.cse.ucsc.edu).
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