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DNA sequences can be treated as finite-length symbol strings over a four-letter
alphabet (A, C, T, G). As a universal and computable complexity measure, LZ
complexity is valid to describe the complexity of DNA sequences. In this study, a
concept of conditional LZ complexity between two sequences is proposed according
to the principle of LZ complexity measure. An LZ complexity distance metric
between two nonnull sequences is defined by utilizing conditional LZ complexity.
Based on LZ complexity distance, a phylogenetic tree of 26 species of placental
mammals (Eutheria) with three outgroup species was reconstructed from their
complete mitochondrial genomes. On the debate that which two of the three main
groups of placental mammals, namely Primates, Ferungulates, and Rodents, are
more closely related, the phylogenetic tree reconstructed based on LZ complexity
distance supports the suggestion that Primates and Ferungulates are more closely
related.
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Introduction

Approaches of phylogenetic tree reconstruction using
biological molecular data, such as DNA, RNA, and
protein sequences, can be divided into two groups
(1 ). The first group reconstructs phylogenetic trees
by evaluating the trees’ topology based on certain op-
timal criteria, among which the two most available
ones are maximum parsimony and maximum likeli-
hood. The second group utilizes various distance mea-
sures, in which a phylogenetic tree is reconstructed
from a distance matrix that is obtained by calculating
distances between every two sequences. Traditional
sequence distance matrices include p-distance, Jukes-
Cantor distance, Kimura distance, Gamma distance,
and so on (2 ), all of which require sequence alignment
that is strict with the sequence data to be aligned.
Generally, before sequence alignment, it is necessary
to perform some pretreatments such as extracting re-
lated structure or function segments from primary se-
quences and performing gene prediction (3 ). Further-
more, it is much empirical to select or create a se-
quence alignment score matrix (4 ), the difference of
which may affect alignment results tremendously. To
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overcome these problems, more and more researchers
begin to try alignment-free methods for DNA se-
quence comparison and analysis (5 ).

Complexity is one of the most basic properties of
a symbolic sequence. In respect that DNA sequences
can be treated as finite-length symbol strings over a
four-letter alphabet (A, C, T, G), DNA sequence com-
plexity is much attractive to many researchers (5 ).
Kolmogorov complexity, the first formal theoretical
description of sequence complexity, was proposed by
Kolmogorov from the view of algorithm information
theory (5 ). Li et al (6 ) first introduced Kolmogorov
complexity to DNA sequence analysis and proposed a
DNA sequence distance matrix based on it. Because
Kolmogorov complexity is not computable, Chen et al
(7 ) made use of data compression gain to approximate
Kolmogorov complexity. However, the generalization
of the approximate method is greatly limited because
the data compression gain varies evidently with the
object to be compressed and the algorithm that a cer-
tain compressor uses (8 ). In contrary, LZ complexity,
another significant complexity measure proposed by
Lempel and Ziv (9 ), is easily computable and is also
a universal depiction of sequence complexity.

Based on the computational principle of LZ com-
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plexity, we propose a concept of conditional LZ com-
plexity between two sequences. An LZ complexity
distance metric is defined according to conditional LZ
complexity. The LZ complexity distance has been ap-
plied to the reconstruction of a phylogenetic tree of 26
species of placental mammals (Eutheria) with three
outgroup species.

Model

Sequence LZ complexity and condi-

tional LZ complexity

Preliminaries

Given a symbolic sequence S = s1s2 . . . sn, the func-
tion l(S) = n denotes the length of S. S(i, j) denotes
the subsequence sisi+1 . . . sj of S that starts at po-
sition i and ends at position j, where if i > j or
j < 1, then S(i, j) is a null sequence (denoted by ϕ).
The vocabulary of S, denoted by v(S), is defined as
the set formed by all the subsequences (words). The
concatenation of S and another sequence Q forms a
new sequence R = SQ, where S is called a prefix of
R and R is called an extension of S. If there exists
an integer i, then S = R(1, i). When the length of
S is not specified explicitly, it is convenient to iden-
tify the prefix of S by means of a special operator π

where Sπi = S
(
1, l(S)− i

)
, i = 0, 1, . . . In particular,

Sπ0 = S, and Sπi = ϕ for i ≥ l(S).
An extension R = SQ is said to be reproducible

from S, denoted by S → R, if Q ∈ v(Rπ). In se-
quence reproduction process, since Q ∈ v(Rπ) implies
the existence of a positive integer p ≤ l(S) such that
qi = rp+i−1, i = 1, 2, . . . , l(Q), R can be generated
from S by first copying the known symbol sp = rp

of S to obtain q1 = r1+l(S); then q2 = r2+l(S) can be
obtained by copying rp+1 (which may still be a sym-
bol of S or, if p = l(S), the first and already known
symbol of Q), and so on, until the last symbol of Q.

A nonnull sequence S is said to be producible
from its prefix S(1, j), denoted by S(1, j) ⇒ S, if
S(1, j) → Sπ and j < l(S). The distinction between
the production process S(1, j) ⇒ S and the reproduc-
tion process S(1, j) → S lies in the recursive copying
process that characterizes the latter. It is required
that the extended subsequence S

(
j +1, l(S)

)
belongs

to the vocabulary of Sπ, namely S
(
j + 1, l(S)

) ∈
v(Sπ), in the reproduction process. While in the pro-
duction process, it is required that the subsequence
S

(
j + 1, l(S) − 1

)
belongs to v(Sπ). The production

process allows for a single-symbol innovation at the
end of the copying process.

Sequence LZ complexity

Any nonnull sequence S can be built from a null se-
quence ϕ using an m-step production process:

ϕ ⇒ S(1, h1) ⇒ S(1, h2) ⇒ · · · ⇒ S(1, hi) ⇒ · · · ⇒
S(1, hm)

Note that 1 ≤ m ≤ l(S) and hm = l(S). Let h0 = 1,
the above m-step production process of sequence S

can result in a parsing of S as follows:

H(S) = S(h0, h1) S(h1 + 1, h2) . . . S(hi−1 + 1, hi) . . .

S(hm−1 + 1, hm)

where H(S) is called a production parsing of sequence
S and Hi(S) = S(hi−1 + 1, hi) is called the ith pro-
duction component of H(S). The number of produc-
tion components in a production parsing is denoted
by cH(S).

A production component Hi(S) and the corre-
sponding production step S(1, hi−1) ⇒ S(1, hi) are
said to be maximum if S(1, hi−1) 9 S(1, hi), where
9 denotes the negation of →. A production parsing
H(S) is said to be minimum if each of its produc-
tion components, with a possible exception of the last
one, is maximum. Using E(S) to denote the mini-
mum production parsing, the number of production
components in E(S) can be denoted as cE(S). It has
been proved by Lempel and Ziv that the minimum
production parsing of a given sequence is unique (9 ).

Lempel and Ziv (9 ) defined the complexity of a
sequence as the number of production components
in the minimum production parsing of this sequence,
which is called sequence LZ complexity. Using c(S)
to denote the LZ complexity of sequence S, we have
c(S) = cE(S). According to the definition of sequence
LZ complexity, the minimum production parsing of a
certain sequence can be built and then the LZ com-
plexity of this sequence can be easily obtained. Kas-
par and Schuster (10 ) presented a detailed algorithm
and a flow chart to compute sequence LZ complexity.
The following three inequalities have also been proved
in previous studies (9 , 10 ):

c(S) < c(SQ) (1)

c(S) < c(QS) (2)

c(SQ) ≤ c(S) + c(Q) (3)

For a detailed analysis of many other properties of
sequence LZ complexity, see previous studies (9 , 10 ).
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Sequence conditional LZ complexity

Sequence LZ complexity can significantly describe the
complexity of a single sequence. To depict the com-
plexity relationship between two sequences, we pro-
pose a notion of conditional LZ complexity according
to the principle of sequence LZ complexity.

Given a sequence T , an extension R = SQ of se-
quence S is said to be conditional reproducible from
S, denoted by [T ]S → R, if Q ∈ v(TRπ). To extend S

into R, the reproduction process only uses the vocab-
ulary of sequence Rπ, namely v(Rπ); whereas by con-
catenating T before S, the conditional reproduction
process also uses the information offered by T , namely
the vocabulary v(TRπ), where v(Rπ) ∈ v(TRπ). This
is the main difference between the reproduction pro-
cess and the conditional reproduction process.

Given a sequence T , a nonnull sequence S is said
to be conditional producible from its prefix S(1, j),
denoted by [T ]S(1, j) ⇒ S, if [T ]S(1, j) → Sπ and
j < l(S). Similar to the production parsing of S, given
a conditional sequence T , the conditional production
parsing of S using an m-step conditional production
process can be built as:

H(S|T ) = S(h0, h1) S(h1+1, h2) . . . S(hi−1+1, hi) . . .

S(hm−1 + 1, hm)

where Hi(S|T ) = S(hi−1 + 1, hi) is called the ith

conditional production component of H(S|T ). The
number of conditional production components in
a conditional production parsing is denoted by
cH(S|T ). A conditional production component Hi(S|T )
and the corresponding conditional production step
[T ]S(1, hi−1) ⇒ S(1, hi) are said to be maximum if
[T ]S(1, hi−1) 9 S(1, hi). A conditional production
parsing H(S|T ) is said to be minimum if each of
its conditional production components, with a pos-
sible exception of the last one, is maximum. Similar
to the minimum production parsing, the minimum
conditional production parsing is also unique. In re-
spect that, relative to the minimum production pars-
ing, any conditional production component Hi(S|T ) is
obtained from a larger vocabulary v(TRπ) ⊇ v(Rπ),
so the length of each maximum production compo-
nent will not be longer than that of the corresponding
maximum conditional production component. Using
E(S|T ) to denote the minimum conditional produc-
tion parsing, the number of conditional production
components in E(S|T ) can be denoted as cE(S|T ).

Definition 1: The conditional LZ complexity of
sequence S relative to the conditional sequence T is
c(S|T ), and c(S|T ) = cE(S|T ).

Note that the conditional LZ complexity of S rel-
ative to T equals the LZ complexity of S when T is
null, namely c(S|T ) = c(S) if T = ϕ.

Given sequences S, Q, and T , the following in-
equalities can be deduced according to the definition
of the minimum conditional production parsing and
Inequalities (1) and (2):

c(S|TQ) ≤ c(S|T ), c(S|QT ) ≤ c(S|T ) (4)

c(S|T ) ≤ c(SQ|T ), c(S|T ) ≤ c(QS|T ) (5)

Inequality (4) implies that the conditional LZ com-
plexity of the given sequence will not be increased by
concatenating a sequence after or before the condi-
tional sequence. Inequality (5) implies that the condi-
tional LZ complexity of the given sequence will not be
decreased by concatenating a sequence after or before
the original sequence. We present another inequality
as the following:

c(SQ|T ) ≤ c(S|T ) + c(Q|TS) (6)

Proof : Let sequence R = SQ and c(SQ|T ) = a.
The minimum conditional production parsing of R

with given T is E(R|T ) = R(1, h1) . . . R(ha−1+1, ha).
Assuming that the last symbol of sequence S, sl(S),
lies in the kth maximum conditional production com-
ponent of sequence R with given T , then Ek(R|T ) =
R(hk−1 + 1, hk), we have (hk−1 + 1) ≤ l(S) ≤ hk

and c(S|T ) = k. Let sequence L = R
(
l(S) + 1, hk

)

and sequence M = R
(
hk + 1, l(R)

)
, then it is ob-

vious that Q = LM . R(hk + 1, hk+1) . . . R(ha−1 +
1, ha), a suffix of E(R|T ), happens to be the mini-
mum conditional production parsing of sequence M

relative to the conditional sequence TSL, that is,
E(M |TSL) = R(hk + 1, hk+1) . . . R(ha−1 + 1, ha).
Hence c(M |TSL) = a − k = c(R|T ) − c(S|T ) and
c(R|T ) − c(S|T ) = c(M |TSL). For LM = Q, by
Inequality (4), c(M |TSL) ≤ c(M |TS), and by In-
equality (5), c(M |TS) ≤ c(LM |TS) = c(Q|TS).
Since c(R|T ) − c(S|T ) = c(M |TSL) ≤ c(Q|TS), so
c(R|T ) = c(SQ|T ) ≤ c(S|T ) + c(Q|TS).

The following inequality indicates that conditional
LZ complexity satisfies the triangle inequality:

c(Q|T ) ≤ c(Q|S) + c(S|T ) (7)

Proof : By Inequality (4), c(Q|TS) ≤ c(Q|S).
By Inequality (5), c(Q|T ) ≤ c(SQ|T ). Adding the
above two deduced inequalities, we have c(Q|TS) +
c(Q|T ) ≤ c(Q|S) + c(SQ|T ), that is, c(Q|T ) ≤
c(Q|S) + c(SQ|T ) − c(Q|TS). By Inequality (6),
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c(SQ|T ) − c(Q|TS) ≤ c(S|T ). Hence c(Q|T ) ≤
c(Q|S) + c(S|T ).

Distance metric of sequence LZ com-

plexity

A distance metric defined on a set of objects should
satisfy the following four conditions:

1. d(x, y) > 0, ∀x 6= y (nonnegative);
2. d(x, y) = 0, ∀x = y (identity);
3. d(x, y) = d(y, x), ∀x 6= y (symmetry);
4. d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z (triangle in-

equality).
For nonnull sequences, we can measure the similar-

ity between two sequences in quantity by computing
their conditional LZ complexity. By Inequality (6),
sequence conditional LZ complexity also satisfies the
triangle inequality. However, sequence conditional LZ
complexity is not in symmetry, thus it cannot be used
as a sequence distance metric directly.

Therefore, based on conditional LZ complexity,
we propose a distance measure between nonnull se-
quences as:

D(x, y) = max{c(x|y), c(y|x)} (8)

For nonnull sequences x, y, and z, by the
definition of conditional LZ complexity, D(x, y) > 0
is always satisfied if x 6= y. The proposed distance
also satisfies the identity condition up to an additive
O(1) term if x = y. It is obvious that D(x, y) is in
symmetry for every two sequences x and y. By In-
equality (7), we have c(x|y) ≤ c(x|z) + c(z|y) and
c(y|x) ≤ c(y|z)+c(z|x). Hence max{c(x|y), c(y|x)} ≤
max{c(x|z), c(z|x)} + max{c(z|y), c(y|z)}, which im-
plies that D(x, y) also satisfies the triangle inequality.
Thus, the proposed distance is a valid distance met-
ric. We call the proposed distance metric defined on
nonnull sequences as LZ complexity distance.

Application

The mammalian phylogenetic relationship at the
molecular level still remains to be a controversial topic
in nowaday molecular genetics (11 ). Researches using
different types of molecular data and analysis meth-
ods result in different conclusions to the debate about
which two of the three main groups of placental mam-
mals, namely Primates, Ferungulates, and Rodents,
are more closely related. There are three possible
phylogenetic trees, as shown in Figure 1, by introduc-
ing an outgroup that has comparatively close relation-
ship to placental mammals into the phylogeny analy-
sis. Alignment analysis using some proteins encoded
by mitochondrial genome supports that the evolu-
tional relationship between Primates and Rodents is
more closely related (12 ). The reconstructed phy-
logenetic tree’s topology suggested in these studies is
[Ferungulates (Primates, Rodents)] (Figure 1B). How-
ever, alignment analysis using mitochondrial DNA
(mtDNA) sequences (13 ) or some proteins encoded by
nuclear genome (14 ) gives the tree’s topology of [Ro-
dents (Primates, Ferungulates)], which suggests that
Primates and Ferungulates are more closely related
(Figure 1A).

Motivated by the studies of Cao et al (12 ) and
Reyes et al (11 ), we chose the whole mitochondrial
genomes of 26 species of placental mammals as molec-
ular data to reconstruct the phylogenetic tree of Eu-
therian orders. Similar to their studies, opsossum,
wallaroo, and platypus were selected as the outgroup.
All the 29 data files were obtained from the GenBank
database, and the 29 species and their access numbers
are listed in Table 1.

Firstly, 29 mtDNA sequences were extracted from
the above 29 data files. Then the conditional LZ com-
plexity between every two sequences was computed.
The LZ complexity distances were measured accord-
ing to Equation (8). Using the LZ complexity dis-
tances between sequences, a distance matrix was built

A B C

Fig. 1 Three possible trees among Primates, Ferungulates, and Rodents relative to the outgroup.
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Table 1 The 29 Mammalian Species and Their GenBank Access Numbers

Group Species Access number

Primates Human (Homo sapiens) V00662

Common chimpanzee (Pan troglodytes) D38116

Pigmy chimpanzee (Pan paniscus) D38113

Gorilla (Gorilla gorilla) D38114

Orangutan (Pongo pygmaeus) D38115

Gibbon (Hylobates lar) X99256

Baboon (Papio hamadryas) Y18001

Ferungulates White rhinoceros (Ceratotherium simum) Y07726

Harbor seal (Phoca vitulina) X63726

Gray seal (Halichoerus grypus) X72004

Cat (Felis catus) U20753

Fin whale (Balenoptera physalus) X61145

Blue whale (Balenoptera musculus) X72204

Cow (Bos taurus) V00654

Horse (Equus caballus) X79547

Donkey (Equus asinus) X97337

Great rhinoceros (Rhinoceros unicornis) X97336

Dog (Canis familiaris) U96639

Sheep (Ovis aries) AF010406

Pig (Sus scrofa) AJ002189

Hippopotamus (Hippopotamus amphibius) AJ010957

Rodents Rat (Rattus norvegicus) X14848

Mouse (Mus musculus) V00711

Squirrel (Sciurus vulgaris) AJ238588

Fat dormouse (Glis glis) AJ001562

Guinea pig (Cavia porcellus) AJ222767

Outgroup Opossum (Didelphis virginiana) Z29573

Wallaroo (Macropus robustus) Y10524

Platypus (Ornithorhyncus anatinus) X83427

up. To reconstruct the phylogenetic tree, we utilized
the neighbor-joining method (15 ) in PHYLIP soft-
ware package of version 3.63 (16 ) and the TreeView
tool of version 1.6.6 (17 ).

The phylogenetic tree reconstructed through the
proposed LZ complexity distance method is shown
in Figure 2. It indicates the topology of [Rodents
(Primates, Ferungulates)] about the Eutherian orders’
phylogeny, which is in accordance with the overall
structure of the phylogeny presented in the studies
of Cao et al (12 ) and Reyes et al (11 ). Furthermore,
all branches in the tree completely agree with the re-
sult in Cao et al (12 ) and most of the clades conform
to the result in Reyes et al (11 ) except for the posi-
tion of guinea pig. As a species of nonmurid rodents,
guinea pig is grouped into neither nonmurid rodents
nor murid rodents, but shows an outgroup status rel-

ative to Primates, Ferungulates, and Rodents in Fig-
ure 2. Such an unexpected disagreement may sug-
gest some deep biological implications, for the phylo-
genetic position of guinea pig stays as one of the most
controversial topics in system biology (18–20).

In this study, we also reconstructed a phyloge-
netic tree using sequences of coding regions (data not
shown). A total of 12 mitochondrial genes that en-
code 12 mitochondrial proteins were extracted from
each of the 29 species’ mitochondrial genomes. Then
the 12 gene sequences corresponding to one species
were concatenated to form a new mtDNA sequence.
We computed the LZ complexity distance between ev-
ery two of these 29 concatenated sequences and then
built up a distance matrix from these data. Using the
distance matrix, another phylogenetic tree was recon-
structed and it was completely in accordance with the

210 Geno. Prot. Bioinfo. Vol. 3 No. 4 2005



Li et al.

Fig. 2 The phylogenetic tree reconstructed from the mtDNA sequences of 26 species of placental mammals using LZ

complexity distance, where opossum, wallaroo, and platypus were used as the outgroup.

tree shown in Figure 2. Phylogeny inferred through
the above approach also implied that Primates and
Ferungulates are more closely related.

Conclusion

The proposed sequence LZ complexity distance sat-
isfies all the four conditions of distance metric theo-
retically and has been applied successfully to the phy-
logenetic tree reconstruction of 26 species of placen-
tal mammals. The phylogeny inferred through the LZ
complexity distance measure is in agreement with the
overall structure of some previous studies, which indi-
cates the validity of using the proposed sequence LZ
complexity distance to analyze the evolutionary rela-
tionship of DNA sequences in quantity. The computa-
tion of the proposed distance is totally automatic and

alignment-free. Unlike most existing methods of phy-
logenetic tree reconstruction, the proposed method
does not require gene identification nor any prior bi-
ology knowledge such as an accurate alignment score
matrix.

Among the debate that which two of the three
main groups of placental mammals, namely Primates,
Ferungulates, and Rodents, are more closely related,
the phylogenetic tree reconstructed based on the pro-
posed sequence LZ complexity distance using whole
mitochondrial genome supports the suggestion that
Primates and Ferungulates are more closely related.
In the reconstruction of the phylogenetic tree of 26
species of placental mammals, results obtained re-
spectively from the complete mitochondrial genomes
and some coding regions in mitochondrial genomes are
both significant in biological sense. Thus we see that
the proposed method works well without the limita-
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tions of coding sequences. The proposed sequence LZ
complexity distance provides a new available choice to
compare and analyze noncoding sequences abounded
in genomes.
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