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The three-dimensional (3D) structure prediction of proteins is an important task in
bioinformatics. Finding energy functions that can better represent residue-residue
and residue-solvent interactions is a crucial way to improve the prediction accu-
racy. The widely used contact energy functions mostly only consider the contact
frequency between different types of residues; however, we find that the contact
frequency also relates to the residue hydrophobic environment. Accordingly, we
present an improved contact energy function to integrate the two factors, which can
reflect the influence of hydrophobic interaction on the stabilization of protein 3D
structure more effectively. Furthermore, a fold recognition (threading) approach
based on this energy function is developed. The testing results obtained with 20
randomly selected proteins demonstrate that, compared with common contact en-
ergy functions, the proposed energy function can improve the accuracy of the fold
template prediction from 20% to 50%, and can also improve the accuracy of the
sequence-template alignment from 35% to 65%.
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Introduction

The knowledge of protein structures plays a very
important role in understanding protein functions,
studying protein-protein interactions (1 ), recon-
structing protein structures (2 ), and performing ra-
tional drug design (3 ). Protein structures can be
determined by both experimental and computational
methods. Experimental methods such as x-ray crys-
tallography and nuclear magnetic resonance can de-
termine the three-dimensional (3D) structure of pro-
teins precisely; however, currently these methods are
still inefficient and can only be applied to a small
part of proteins (1 ). On the other hand, computa-
tional methods can, in principle, not only overcome
the shortages of experimental methods, but also as-
sist in understanding the mechanism of protein folding
(4 ). As a result, computational methods have been
studied extensively and become an effective way to
analyze protein structures (5 ).

Methods for predicting the protein 3D structure
can be divided into three main categories: homology
modeling (6 , 7 ), fold recognition (8 , 9 ), and ab initio
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prediction (10 ). The homology modeling methods
first search for homological proteins of the target pro-
tein in a structure-known protein database, and then
use the structures of the homological proteins as tem-
plates to build a structure model for the target pro-
tein. The fold recognition methods try to find a fold
template for the target protein from a template li-
brary, and then construct a full structure model for
the target protein based on the selected fold template.
The ab initio prediction methods, which predict the
structure of the target protein only based on its se-
quence information, calculate the energy for all possi-
ble conformations that the target sequence may fold
into, and select the conformation with the lowest en-
ergy as the native conformation of the target protein.

In addition, according to the information used, the
protein structure prediction methods can also be clas-
sified into two classes. The first one uses the informa-
tion of known protein structures and evolution, which
searches for homologous proteins of the target protein
first, and then builds the structural model for the tar-
get protein based on the structural information of the
homological proteins. This class includes the above
mentioned homology modeling and fold recognition
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methods based on PSI-BLAST (7 ) or hidden Markov
model (11 , 12 ). The second class makes use of the in-
formation about residue-residue and residue-solvent
interactions, which creates energy functions by statis-
tical or theoretical analysis first, and then uses the
functions to search for the optimal structure from a
structure template library or all possible conforma-
tions of the target protein. The threading (13 ) and
ab initio prediction methods (10 ) belong to this class.
Obviously, for the second class, it is crucial that the
energy functions should be able to describe residue-
residue or residue-solvent interactions efficiently (14 ).

In threading methods, the widely used energy
functions are obtained from statistical analysis (15 ),
and most of them are based on the contact energy
between residues (16 , 17 ). These energy functions
define pairwise residue contact energy scores accord-
ing to the residue-residue contact frequency occurred
in known protein structures. The basic idea of these
energy functions was first proposed by Tanaka and
Scheraga (18 ), and various improvements have been
made by subsequent researchers, such as combing the
hydrophobic property of residues (19 , 20 ), consider-
ing the orientation anisotropy of side chains (21 ), ap-
plying atom-level functions (22 ), and using more com-
plicated models (multi-body models) (23 ). In addi-
tion, the performance of applying these energy func-
tions to protein fold recognition has also been eval-
uated by previous researches (24–26 ). The results
indicate that the energy functions merely based on
the residue contact frequency are inexact, and one of
the reasons might be that the influence of the hy-
drophobic interaction on contact energy has not been
considered. In the process that protein sequences
fold into advanced structures, the hydrophobic inter-
action is believed to be the dominant driving force
(27 ), which makes hydrophobic residues come into
the core and makes hydrophilic residues tend to exist
on the surface. This phenomenon indicates that the
contact preference between residues relates to solvent
molecules to some extent, and therefore the influence
of the solution environment (hydrophobic environ-
ment) should be considered while analyzing the pair-
wise residue contact energy. However, some of the
existing pairwise energy functions take no account of
the influence of the hydrophobic interaction on the
structure stability at all (16 ), others only consider
the solution influence in terms of the hydrophobic
property of residues (19 ). For threading-based pro-
tein fold recognition, these functions are not able to
reflect the influence of the hydrophobic environment

on the residue contact energy effectively.
In this study, the preference of residues to the

hydrophobic environment is analyzed by a statisti-
cal method, and an improved contact energy func-
tion that considers both the residue contact frequency
and the residue hydrophobic environment is proposed,
which can reflect the influence of hydrophobic inter-
action on protein structure stability more effectively.
Furthermore, a fold recognition (threading) approach
based on this energy function is developed, and the
testing results demonstrate that, compared with com-
mon contact energy functions, the proposed one can
improve the accuracy of protein fold recognition more
effectively.

Results

The contact energy considering residue

hydrophobic environment

First, a dataset consisting of the structural infor-
mation of 525 proteins was collected from the Pro-
tein Data Bank (PDB) database (28 ) for analyzing
the residue contact energy and developing the en-
ergy function (see Materials and Methods). Accord-
ing to this dataset, the coordinates of Cβ atoms of
all residues (Cα atoms for glycine) were obtained and
used to evaluate the distance between residues. This
distance was further used to determine whether two
residues were contacted with each other. Then, the
solvent accessible surface areas (SASAs) of residues
(29 ) were obtained by the POPS program (30 ) to de-
termine the hydrophobic environment for each of the
residues. Based on SASA, the hydrophobic environ-
ment was classified into three types, hydrophobic, hy-
drophilic, and neutral (uncertain). Finally, the infor-
mation of residue distance and hydrophobic environ-
ment was integrated to determine the residue contact
energy (see Materials and Methods).

The contact energy was defined for each of the 400
possible residue pairs between 20 types of amino acids.
Furthermore, for each residue pair, there were nine
possible combinations in terms of residue hydrophobic
environment. Totally, 3,600 items of residue contact
energy were determined. The contact energy related
to asparagines and cysteines is shown in Figure 1.

The statistical result indicates that the residue
contact energy is distinct for different residue pairs
or different combinations of residue hydrophobic en-
vironment. The analysis of this result reveals that:
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Fig. 1 Examples of the relationship between the residue contact energy and the residue hydrophobic environment.

The x-axis represents twenty types of amino acids, and the y-axis represents the residue contact energy; different

curves represent different hydrophobic environment. The letters H, N, and P denote hydrophobic, neutral (uncertain),

and polar (hydrophilic), respectively. A. Residue contact energy related to asparagine (ASP). It can be seen that the

contact energy of residue pairs containing asparagine tends to be high when the residue pairs are in the HH state (that

is, both residues are in the hydrophobic position; the only exception is the pair with cysteine), but tends to be low in

the HP or PH state. B. Residue contact energy related to cysteine (CYS). For some residue pairs consisting of cysteine

and another residue such as cysteine, leucine, tryosin, or tyrosine, the contact energy is high when the residue pairs are

in the PP state, which is distinct from that related to asparagine.

(1) For most residue pairs, their contact energy scores
tend to be large when both residues are in the hy-
drophobic position, but small when one is in the hy-
drophobic position and the other in the hydrophilic
position. (2) The contact energy scores for different
residue pairs are quite different from each other. (3)
The contact energy scores of some residue pairs are
special. For example, the distributions of contact fre-
quency between cysteine and other residues tend to
be random, but the contact probability is high when
two cysteine residues appear in the hydrophilic envi-
ronment simultaneously (Figure 1B).

The prediction accuracy of applying the

contact energy to threading

In this study, the proposed contact energy was ap-
plied to protein fold recognition using the threading
method, and a dataset consisting of 20 randomly se-
lected proteins was used to test the prediction accu-
racy. The PDB identifiers of these proteins are shown
in Table 1. For the purpose of comparison, the predic-
tion accuracy of commonly used contact energy was
also tested. Three measures, including self-template
prediction accuracy, sequence-template alignment ac-
curacy, and native alignment score, were used to eval-
uate the prediction performance.

Self-template prediction accuracy

To evaluate the accuracy of self-template prediction,
z-scores (31 ) of the alignments between the target
protein sequence and each template in a template li-
brary were calculated and used to rank the templates,
then the position of the target template in the ranked
templates can reflect the accuracy of self-template
prediction. The testing results indicate that, com-
pared with the common energy function, the improved
energy function can perform better for 14 out of the
20 test proteins (70%). The percentage of testing pro-
teins whose z-scores are ranked within the top 10%,
25%, and 50% of all library templates are given in
Table 2.

Sequence-structure alignment accuracy

The accuracy of the alignment between target se-
quences and their own structures, which judges
whether the optimal alignments are consistent with
actual situations, was also used to evaluate the fold
recognition effect. As there were certain alignment
errors, shifts from the exact alignment within four
residues were counted as correct alignments (16 ). In
this test, 7 out of 20 proteins (35%) were aligned cor-
rectly using the common energy function, while the
percentage was 65% for the improved energy function.
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Table 1 Features of the Twenty Testing Proteins

PDB ID Secondary structure No. of Group

No. of α-helix No. of β-sheet S–S bonds

1ahu 3 0 0 Better

1cuk 3 0 0 Better

1hry 3 0 0 Better

1ahl 0 3 3 Better

1aw6 2 0 0 Better

1fre 1 2 0 Better

1r2a 2 0 0 Better

1lea 3 0 0 Better

1cbn 2 2 2 Better

1co4 2 2 0 Better

1auu 0 3 0 Better

1sei 1 3 0 Better

1nkl 5 0 3 Better

1neq 5 0 0 Better

1tpm 0 3 1 Equal

1ehs 2 0 2 Worse

1fd4 1 3 3 Worse

1mkn 0 3 3 Worse

1hyk 0 2 2 Worse

1chc 1 3 0 Worse

Table 2 Percentages of the Testing Proteins with Different z-score Ranks

Energy function Top 10% Top 25% Top 50%

Common energy function 20% 55% 85%

Improved energy function 50% 80% 95%

Native alignment score

The effect of energy functions can also be evaluated by
the difference of energy scores between the sequence-
template native alignments and random alignments.
The energy scores of the sequence-template native
alignments were obtained by aligning the residues of
target sequences to their own positions in the tem-
plates, and the energy scores of random alignments
were calculated by randomly aligning the residues of
target sequences to the templates. For each target se-
quence, 1,000 random alignments were made, and the
average score of these alignments was used for this
target sequence. In this test, when the improved en-
ergy function was used, the native alignment scores of
75% of proteins were higher than their average scores
of random alignments, and this figure was only 50%
for the common energy function.

Discussion

The above testing results demonstrate that the con-
tact energy function combining with the hydrophobic
environment is superior to the common energy func-
tion, indicating that the hydrophobic environment not
only relates to the residue contact energy, but also
influences the accuracy of fold recognition.

In order to analyze whether the prediction accu-
racy was correlated with protein structure features,
we divided the 20 testing proteins into three groups,
namely “Better”, “Equal”, and “Worse”, according to
the template prediction accuracy. The “Better” group
means that the template prediction accuracy using
the improved energy function was better than us-
ing the common energy function, the “Worse” group
refers to the contrary situations, and the “Equal”
group represents that the prediction accuracy was
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equal. Then, the secondary structures and the num-
ber of disulfide bonds in these proteins were analyzed.
The results are given in Table 1.

As can be seen from Table 1, most of the proteins
in the “Better” group belong to the α class or α/β

class, while most of the proteins in the “Worse” group
belong to the β class. In addition, the prediction ac-
curacy also relates to the number of disulfide bonds
in proteins. The reasons of the above phenomenon
might be: when α-helix forms its compact confor-
mation, it will be driven by outside forces like the
repulsion and attraction of solvent molecules, conse-
quently, the influence of hydrophobic interaction is
more significant for proteins consisting of α-helix; on
the contrary, as β-sheet is not so tight as α-helix, it
may be stabilized by residue interaction, therefore it is
unnecessary to consider the hydrophobic interaction.

However, the optimal alignment between target se-
quences and their own templates may not be exact,
which might be caused by the following reasons: (1)
The contact energy is derived from statistical analy-
sis, which only reflects the statistically possible inter-
actions between residues. (2) The optimal alignment
is obtained by global alignment, which cannot guar-
antee that all local alignments are optimal. (3) For
a specific residue, the residues around it may have
similar characters with it.

Materials and Methods

Dataset

A total of 525 proteins were selected from the PDB
database for analyzing the contact energy function,
which meet the following criteria: (1) None of the
identity between each other is less than 30%. (2) The
structure is determined by x-ray crystallography. (3)
The resolution is better than 2.0 Å. (4) The sequence
consists of 30–750 amino acids.

Residue hydrophobic environment

The residue hydrophobic environment can be deter-
mined by the SASA of residue (29 ), which is defined
as the center area traced out by solvent molecules as
they roll over the exposure surface of residues in the
solvent (32 ). A small value of SASA means that the
residue tends to be in the hydrophobic environment,
otherwise, it tends to be in the hydrophilic environ-
ment. There are many programs for calculating SASA

(30 , 33 ), most of them are based on the atom coor-
dinates submitted by users. In this research, a freely
available program POPS (30 ) was used. Based on
the SASA value, we classified the environment of the
residues into three types: hydrophobic, hydrophilic,
and neutral (uncertain).

Contact energy function

Common energy function

The common contact energy function is based on the
contact preference of residues. The contact energy
between residues ai and aj is defined as

ec(ai, aj) = log
p (ai, aj ; rc)
p 0(ai, aj ; rc)

(1)

where p (ai, aj ; rc) is the probability that the distance
between ai and aj is less than the designated cutoff
value rc, and p 0(ai, aj ; rc) is the expected probability
correspondingly.

During fold recognition, the residues of the target
protein are first placed onto templates by some align-
ment methods, then the score of the alignment can be
determined by

EAlign = −
∑

i<j

ec(ai, aj) σ(rij − rc) (2)

where (i, j) is a site pair of the template; ai and aj are
residue types on sites i and j; σ(x) is equal to 0 when
x > 0 and is equal to 1 when x ≤ 0; and rij is the
distance between sites i and j. The energy functions
based on the above idea are still broadly used in fold
recognition methods.

Improved energy function

In this study, an improved energy function is pro-
posed, which concerns not only the residue type, but
also the residue hydrophobic environment. This en-
ergy function is given by

ei
c(ai, aj ; envi, envj) = log

pc(ai, aj ; envi, envj)
p 0(ai, aj ; envi, envj)

(3)

where pc(ai, aj ; envi, envj) is the probability that ai

and aj contact with each other in the hydropho-
bic environment envi and envj , respectively, and
p 0(ai, aj ; envi, envj) is the expected probability. The
distance between residues is measured by the distance
between Cβ atoms (Cα atoms for glycine), and the
cutoff rc is set as 7.5 Å.
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Similar to Equation (2), the energy score of the
sequence-template alignment is defined as

EAlign = −
∑

i<j

ec(ai, aj ;Tenvi
, Tenvj

) σ(rij − rc) (4)

where (Tenvi
, Tenvj

) denotes the hydrophobic environ-
ment of sites i and j in the template.

Protein fold recognition based on

threading

Threading is an efficient method for protein fold
recognition, which can be used to evaluate the struc-
tural similarity among proteins with low sequence
identity. The threading process realized in this study
is shown in Figure 2, which consists of the following
steps:

1. Build the fold template library. Based on the
classification of the CATH database (34 ), 438 fold

families and their representative structures were se-
lected, resulting in a fold template library containing
438 structures.

2. Determine residue contact energy. The residue
contact energy scores were utilized to calculate the
alignment score between target sequences and struc-
ture templates, which was determined by Equations
(2) and (4).

3. Align target sequences to structure templates.
Because the sequence lengths of the target protein and
template proteins are usually different and gaps are
allowed in the sequence-structure alignment, it would
be an NP-problem to search the optimal alignment.
To solve this problem, the divide-and-conquer algo-
rithm (16 ), an approximate global optimal searching
algorithm, was adopted in this study.

4. Determine the optimal template. The fittest
template of target sequences was determined by z-
score (31 ).
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Fig. 2 The flow chart of the threading process in this study.
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