Timeline of Genomics (1951–1976)*

Year	Event and Theoretical Implication/Extension	Reference
1951	Esther M. Lederberg discovers bacteriophage lambda, the first viral episome of <i>E. coli</i> .	Lederberg, E.M. 1951. Lysogenicity in <i>E. coli</i> K12. <i>Genetics</i> 36: 560.
1952	Alfred Day Hershey (1969 Noble Prize Laureate for Physiology or Medicine) and Martha Chase perform an experiment by using T2 bacteriophage that confirms DNA not protein as the genetic mate- rial.	Hershey, A.D. and Chase, M. 1952. In- dependent functions of viral protein and nucleic acid in growth of bacteriophage. <i>J. Gen. Physiol.</i> 36: 39-56.
	Jean Brachet suggests that RNA also plays a part in the synthesis of proteins.	Brachet, J., <i>et al.</i> 1952. Une étude comparative du pouvoir inducteur en im- plantation et en microinjection des acides nucléiques et des constituants cellulaires nucléoprotéiques. <i>Arch. Biol.</i> 63: 429- 440.
	Joshua Lederberg (1958 Noble Prize Laureate for Physiology or Medicine) and Norton David Zin- der describe transduction, or transfer of genetic in- formation in <i>Salmonella typhimurium</i> .	Zinder, N.D. and Lederberg, J. 1952. Genetic exchange in <i>Salmonella</i> . J. Bacteriol. 64: 679-699.
	Renato Dulbecco (1975 Nobel Prize Laureate for Physiology or Medicine) shows that single particles of an animal virus can produce areas of cellular lysis called plaques.	Dulbecco, R. 1952. Production of plaques in monolayer tissue cultures by single par- ticles of an animal virus. <i>Proc. Natl.</i> <i>Acad. Sci. USA</i> 38: 747-752.
	Salvador Edward Luria (1969 Noble Prize Laure- ate for Physiology or Medicine) and Mary Human, and independently Jean Weigle, describe a non- genetic host-controlled modification system in bacte- riophage that leads to the study of bacterial systems of restriction and modification, and ultimately the discovery of restriction endonucleases.	 Luria, S.E. and Human, M.L. 1952. A nonhereditary, host-induced variation of bacteria viruses. J. Bacteriol. 64: 557- 569. Bertani, G. and Weigle, J.J. 1953. Host controlled variation in bacterial viruses. J. Bacteriol. 65: 113-121.
	William Hayes proposes that bacterial conjugation involves the unidirectional transfer of genes from a donor to a recipient cell. Until then, most micro- biologists believed that there was either a fusion of cells or an exchange of genetic information. Con- temporaneous with Luca Cavalli-Sforza, Joshua Lederberg, and Esther M. Lederberg, he also shows that a fertility factor, F, a non-chromosomal plasmid, is present only in donor cells.	 Hayes, W. 1952. Recombination in <i>Bact. coli</i> K-12: unidirectional transfer of genetic material. <i>Nature</i> 169: 118-119. Lederberg, J., Cavalli, L.L., and Lederberg, E.M. 1952. Sex compatibility in <i>Escherichia coli. Genetics</i> 37: 720-730.
	Joshua Lederberg and Esther M. Lederberg in- vent the replica plating technique and provide firm evidence that mutations in bacteria yielding resis- tance to antibiotics and viruses are not induced by the presence of selective agents.	Lederberg, J. and Lederberg, E.M. 1952. Replica plating and indirect selection of bacterial mutants. <i>J. Bacteriol.</i> 63: 399- 406.
	Joshua Lederberg uses the term PLASMID to describe extranuclear genetic elements that replicate autonomously.	Lederberg, J. 1952. Cell genetics and hereditary symbiosis. <i>Physiol. Rev.</i> 32: 403-430.

* Edited by the Editorial Office of *Genomics, Proteomics & Bioinformatics*.

Year	Event and Theoretical Implication/Extension	Reference
1953	Rosalind Elsie Franklin indicates that DNA is a symmetrical molecule and probably a helix by X ray diffraction study.	 Franklin, R.E. and Gosling, R.G. 1953 The structure of sodium thymonucleate fibres: I. The influence of water content II. The cylindrically symmetrical Patterson function. Acta Crystallographica 6 673-677, 678-685. Franklin, R.E. and Gosling, R.G. 1953 Evidence for a 2-chain helix in the crystalline structure of sodium deoxyribonucleate. Nature 172: 156-157.
	James Dewey Watson and Francis Harry Compton Crick (both are 1962 Noble Prize Lau- reates for Physiology or Medicine) describe the molecular structure of DNA, propose DNA to be a double-strand helix of nucleotides.	 Watson, J.D. and Crick, F.H.C. 1953 Molecular structure of nucleic acids: a structure for deoxyribonucleic acid. Na- ture 171: 737-738. Watson, J.D. and Crick, F.H.C. 1953. Ge- netic implications of the structure of de- oxyribonucleic acid. Nature 171: 964-967.
	Frederick Sanger (1958 Noble Prize Laureate for Chemistry) and his colleagues work out the com- plete amino acid sequence for the protein hormone insulin, and show that it contains two polypeptide chains held together by disulfide bridges.	 Sanger, F. and Tuppy, H. 1951. The amino-acid sequence in the phenylalany, chain of insulin. I. The identification of lower peptides from partial hydrolysates <i>Biochem. J.</i> 49: 463-481. Sanger, F. and Tuppy, H. 1951. The amino-acid sequence in the phenylalany, chain of insulin. II. The investigation of peptides from enzymic hydrolysates <i>Biochem. J.</i> 49: 481-490. Sanger, F. and Thompson, E.O. 1953. The amino-acid sequence in the glycyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. <i>Biochem. J.</i> 53: 353-366. Sanger, F. and Thompson, E.O. 1953. The amino-acid sequence in the glycyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. <i>Biochem J.</i> 53: 353-366. Sanger, F. and Thompson, E.O. 1953. The amino-acid sequence in the glycyl chain of insulin. II. The investigation of peptides from enzymic hydrolysates. <i>Biochem. J.</i> 53: 366-374. Sanger, F. 1959. Chemistry of insulin determination of the structure of insulir opens the way to greater understanding of life processes. <i>Science</i> 129: 1340-1344. Sanger, F. 1960. Chemistry of insulin. <i>Br Med. Bull.</i> 16: 183-188.
1954	Paul Charles Zamecnik and his colleagues discover that ribonucleoprotein particles, later named ribosomes, are the site of protein synthesis.	 Keller, E.B., Zamecnik, P.C., and Loftfield R.B. 1954. The role of microsomes in the incorporation of amino acids into proteins <i>J. Histochem. Cytochem.</i> 2: 378-386. Littlefield, J.W., Keller, E.B., Gross, J. and Zamecnik, P.C. 1955. Studies on cy- toplasmic ribonucleoprotein particles from the liver of the rat. <i>J. Biol. Chem.</i> 217 111-123.

Year	Event and Theoretical Implication/Extension	Reference
1954	George Gamow proposes the hypothesis of heretical coden.	Gamow, G. 1954. Possible relation be- tween deoxyribonucleic acid and protein structures. <i>Nature</i> 173: 318.
1955	Severo Ochoa (1959 Noble Prize Laureate for Physiology or Medicine) and Marianne Grunberg-Manago discover the first RNA poly- merase, polynucleotide phosphorylase.	 Grunberg-Manago, M., Oritz, P.J., and Ochoa, S. 1955. Enzymatic synthesis of nu- cleic acidlike polynucleotides. Science 122: 907-910. Grunberg-Manago, M., Ortiz, P.J., and Ochoa, S. 1956. Enzymic synthesis of polynucleotides. I. Polynucleotide phosphorylase of Azotobacter vinelandii. Biochim. Biophys. Acta. 20: 269-285. Brummond, D.O., Staehelin, M., and Ochoa, S. 1957. Enzymatic synthesis of polynucleotides. II. Distribution of polynucleotide phosphorylase. J. Biol. Chem. 225: 835-849. Ochoa, S. 1957. Enzymic synthesis of polynucleotides. III. Phosphorolysis of natural and synthetic ribopolynucleotides. Arch. Biochem. Biophys. 69: 119-129.
	Seymour Benzer works out the fine structure of the rII region of phage T4 of <i>E. coli</i> , and coins the terms CISTRON, RECON, and MUTON.	Benzer, S. 1955. Fine structure of a genetic region in bacteriophage. <i>Proc. Natl. Acad. Sci. USA</i> 41: 344-354.
1956	Arthur Kornberg (1959 Noble Prize Laureate for Physiology or Medicine) crystallizes DNA poly- merase, the enzyme required for synthesizing DNA.	 Bessman, M.J., Kornberg, A., Lehman, I.R., Simms, E.S. 1956. Enzymic synthe- sis of deoxyribonucleic acid. Biochim Bio- phys. Acta. 21: 197-198. Lehman, I.R., et al. 1958. Enzymatic syn- thesis of deoxyribonucleic acid. I. Prepa- ration of substrates and partial purifica- tion of an enzyme from Escherichia coli. J. Biol. Chem. 233: 163-170. Bessman, M.J., et al. 1958. Enzymatic synthesis of deoxyribonucleic acid. II. Gen- eral properties of the reaction. J. Biol. Chem. 233: 171-177. Kornberg, A. 1974. DNA Synthesis. Free- man, San Francisco, United States.
	Christian Boehmer Anfinsen (1972 Noble Prize Laureate for Chemistry) concludes that the three- dimensional conformation of proteins is specified by their amino acid sequence.	 Anfinsen, C.B. and Redfield, R.R. 1956. Protein structure in relation to function and biosynthesis. Adv. Protein Chem. 48: 1-100. Redfield, R.R. and Anfinsen, C.B. 1956. The structure of ribonuclease. II. The preparation, separation, and relative align- ment of large enzymatically produced frag- ments. J. Biol. Chem. 221: 385-404.
	Joe Hin Tjio and Albert Levan revised Walther Flemming's 1898 estimate of the human chromo- some count from 24 pairs to 23 pairs.	Tijo, J.H. and Levan, A. 1956. The chro- mosome number in man. <i>Hereditas</i> 42: 1- 6.

Year	Event and Theoretical Implication/Extension	 Reference
1956	D. L. D. Caspar and Rosalind Franklin independently show the location of the ribonucleic acid within the protein capsid in tobacco mosaic virus.	Caspar, D.L.D. 1956. Radial density dis- tribution in the tobacco mosaic virus par- ticle. <i>Nature</i> 177: 928. Franklin, R. 1956. Location of the ribonu- cleic acid in the tobacco mosaic virus par- ticle. <i>Nature</i> 177: 929.
	Gerhard Schramm and Alfred Gierer show that RNA from tobacco mosaic virus is infectious and by itself can cause the disease and result in new viral particles.	Gierer, A. and G. Schramm. 1956. In- fectivity of ribonucleic acid from tobacco mosaic virus. <i>Nature</i> 177: 702-702.
	Vernon Martin Ingram reports that normal and sickle-cell hemoglobin differ by a single amino acid substitution.	Ingram, V.M. 1956. Specific chemical dif- ference between the globins of normal hu- man and sickle-cell anemia haemoglobin. <i>Nature</i> 178: 792-794.
1957	Francois Jacob (1965 Noble Prize Laureate for Physiology or Medicine) and Elie Wollman pro- vide evidence of the circular nature of the chro- mosome in <i>E. coli</i> after analyzing data from inter- rupted mating experiments.	Wollman, E. and Jacob, F. 1957. Sur les processus de conjugaison et de reconbinai- son chez <i>Escherichia coli. Ann. Inst. Pas-</i> <i>teur</i> 93: 323-339.
	Heinz Fraenkel-Conrat show that the genetic material of tobacco mosaic virus was RNA.	Fraenkel-Conrat, H. and Williams, R.C. 1957. Virus reconstitution: combination of protein and nucleic acid from different strains. <i>Biochim. Biophys. Acta.</i> 24: 87.
	Paul Charles Zamecnik, Mahlon Bush Hoagland, and Mary L. Stephenson isolate transfer RNA and postulate its function.	Zamecnik, P.C., Hoagland, M.B., and Stephenson, M.L. 1957. Observations on the role of RNA in protein synthesis. In <i>Cellular Biology: Nucleic Acids and</i> <i>Viruses.</i> Vol. 5, pp. 273-274. New York Academy of Sciences, New York, USA.
	Seymour Benzer shows that recombination can occur between mutations in the same gene and that genes consist of linear arrays of subunits that can be altered.	Benzer, S. 1957. The elementary units of heredity. In <i>The Chemical Basis of Hered-</i> <i>ity</i> (eds. McElroy, W.D. and Glass, B.). pp. 70-93. Johns Hopkins Press, Balti- more, United States.
1958	Francis Crick works out the "central dogma", explaining how DNA functions to make protein. The "sequence hypothesis" posits that the DNA sequence specifies the amino acid sequence in a protein. He also suggests that genetic information flows only in one direction, from DNA to messenger RNA to protein, the central concept of the central dogma.	Crick, F. 1958. On protein synthesis. Symp. Soc. Exp. Biol. 12: 138-163. Crick, F. 1970. Central dogma of molecu- lar biology. Nature 227: 561-563.
	John Cowdery Kendrew (1962 Noble Prize Laureate for Chemistry) elucidates the three- dimensional structure of myoglobin.	Kendrew, J.C., <i>et al.</i> 1958. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. <i>Nature</i> 181: 662-666.
	Matthew Meselson and Franklin Stahl use the density gradient equilibrium centrifugation technique to demonstrate the semiconservative distribution of density label during DNA replication in $E. \ coli$, confirming the prediction of Crick and Wat-	Meselson, M. and Stahl, F. 1958. The replication of DNA in <i>Escherichia coli Proc. Natl. Acad. Sci. USA</i> 44: 671-682.

son.

Year	Event and Theoretical Implication/Extension	Reference
1958	StanfordMoore,DarrelH.Spack-man,andWilliamHowardSteindevisethe automatic amino acid analyzer,accelerated the analysis of proteins.which greatly	Moore, S., Spackman, D.H., and Stein, W.H. 1958. Automatic recording appara- tus for use in the chromatography of amino acids. <i>Fed. Proc.</i> 17: 1107-1115.
1959	Arthur Pardee, Francois Jacob, and Jacque Monod (1965 Noble Prize Laureate for Physi- ology or Medicine) show that the enzyme beta- galactosidase is induced by changes in culture con- ditions. This is the first example of negative control of induction and is due to the action of a repres- sor protein. It sets the stage for other experiments aimed at further delineating the interaction of a reg- ulatory protein with a site on DNA to control the expression of other genes.	Pardee, A., Jacob, F., and Monod, J. 1959. The genetic control and cytoplasmic expression of "inducibility" in the synthesis of beta-galactosidase by <i>E. coli. J. Mol. Biol.</i> 1: 165.
	Jerome Lejeune, Marthe Gautier, and Ray- mond Turpin show that Down's syndrome is a chromosomal aberration involving trisomy of a small telocentric chromosome.	Lejeune, J., Gautier, M., and Turpin, R. 1959. Etude des chromosomes soma- tiques de neuf enfants mongoliens. <i>Compt.</i> <i>Rendu. Acad. Sci.</i> 248: 1721-1722.
	O. Sawada and others demonstrate that antibi- otic resistance can be transferred between <i>Shigella</i> strains and <i>Escherichia coli</i> strains by extrachro- mosomal plasmids, without involving either trans- formation or transduction.	Ochiai, K., Yamanaka, T., Kimura, K., and Sawada, O. 1959. <i>Nippon lji.</i> 1861: 34.
	Robert L. Sinsheimer demonstrates that bac- teriophage phiX174 of <i>E. coli</i> contains a single- stranded DNA molecule.	Sinsheimer, R.L. 1959. A single-stranded DNA from bacteriophage phiX174. <i>Brookhaven Symp Biol.</i> 12: 27-34.
1960	Francois Jacob, David Perrin, Carmen Sanchez, and Jacques Monod propose the OPERON concept for control of bacteria gene ac- tion. Jacob and Monod later propose that a protein repressor blocks RNA synthesis of a specific set of genes, the lac operon, unless an inducer, lactose, binds to the repressor.	 Jacob, F., Perrin, D., Sanchez, C., and Monod, J. 1960. L'operon: groupe de genes a l'expression coordonne par un op- erateur. <i>Compt. Rendu. Acad. Sci.</i> 245: 1727-1729. Jacob, F. and Monod, J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. <i>J. Mol. Biol.</i> 3: 318-356.
	C. H. Werner Hirs, Stanford Moore, and William H. Stein (the latter two are 1972 No- ble Prize Laureates for Chemistry) determine the amino acid sequence of ribonuclease.	Hirs, C.H., Moore, S., and Stein, W.H. 1960. The sequence of the amino acid residues in performic acid-oxidized ribonu- clease. <i>J. Biol. Chem.</i> 235: 633-647.

Max Perutz (1962 Noble Prize Laureate for Chemistry) elucidated the three-dimensional structure of hemoglobin.

1961 Mary Lyon discovers X-chromosome inactivation.

Sydney Brenner (2002 Noble Prize Laureate for Physiology or Medicine), Francois Jacob, and Matthew Meselson use phage infected bacteria to show that ribosomes are the site of protein synthesis and confirm the existence of a messenger RNA (mRNA). 13: 165-183. Lyon, M.F. 1961. Gene action in the X chromosome of the mouse (*Mus musculus*

Brookhaven Symp.

Perutz, M.F. 1960.

L.). Nature 190: 372-373.

hemoglobin.

Brenner, S., Jacob, F., and Meselson, M. 1961. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. *Nature* 190: 576-581.

Structure of

Biol.

Year	Event and Theoretical Implication/Extension	Reference
1961	Francis Crick , Sydney Brenner and colleagues propose that DNA code is written in "words" (called CODONS) formed of three DNA bases. They also propose that a particular set of RNA molecules, subsequently called transfer RNAs (tRNAs), act to "decode" the DNA.	Crick, H.F.C., Barnett, L., Brenner, S., and Watts-Tobin, R.J. 1961. General na- ture of genetic code for proteins. <i>Nature</i> 192: 1227-1232.
	Benjamin D. Hall and Sol Speigleman show that singled stranded T2 phage DNA can form a hybrid with RNA from T2 infected <i>Escherichia coli</i> , thus demonstrating the potential of DNA-RNA hy- bridization methods.	Hall, B.D. and Speigelman, S. 1961. Se- quence complemetarity of T2-DNA and T2-specific RNA. <i>Proc. Natl. Acad. Sci.</i> <i>USA</i> 47: 137-146.
	Marshall W. Nirenberg (1968 Noble Prize Lau- reate for Physiology or Medicine) and Heinrich J. Matthaei translate the first genetic codon UUU for phenylalanine. This is the start of successful efforts to decipher the genetic code.	 Nirenberg, M.W. and Matthaei, H.J. 1961. The dependence of cell-free protein synthesis in <i>E. coli</i> upon naturally occurring or synthetic polyribonucleotides. <i>Proc. Natl. Acad. Sci. USA</i> 47: 1589.
1962	Daniel Nathans (1978 Noble Prize Laureate for Physiology or Medicine), Norton Zinder , and col- leagues use <i>E. coli</i> cell-free system together with bacteriophage f2 RNA to produce viral coat protein identical in amino acid sequence to that isolated di- rectly from the virus.	Nathans, D., Notani, G., Schwartz, J.H., and Zinder, N.D. 1962. Biosynthesis of the coat protein of coliphage f2 by <i>E. coli</i> ex- tracts. <i>Proc. Natl. Acad. Sci. USA</i> 48: 1424-1431.
	Werner Arber (1978 Noble Prize Laureate for Physiology or Medicine) proves that a kind of re- striction endonuclease existing in body to cut DNA unmethylized.	 Arber, W. 1962. Biological specificities of desoxyribonucleic acid. <i>Pathol. Microbiol.</i> 25: 668-681. Arber, W. and Dussoix, D. 1962. Host specificity of DNA produced by <i>E. coli.</i> I. Host controlled modification of phage lambda. <i>J. Mol. Biol.</i> 5: 18-36. Dussoix, D. and Arber, W. 1962. Host specificity of DNA produced by <i>E. coli.</i> II. Control over acceptance of DNA from in- fecting phage lambda. <i>J. Mol. Biol.</i> 5: 37-49.
	Arthur Kornberg synthesizes DNA <i>in vitro</i> , showing that DNA polymerase will produce new strands using precursors, an energy source and a template DNA molecule.	Swartz, M.N., Trautner, T.A., and Kornberg, A. 1962. Enzymatic synthesis of de- oxyribonucleic acid. XI. Further studies on nearest neighbor base sequences in de- oxyribonucleic acids. J. Biol. Chem. 237: 1961-1967.
1963	James Watson finds that RNA needs for transla- tion.	Watson, J.D. 1963. Involvement of RNA in the synthesis of proteins. <i>Science</i> 140: 17-26.
	Marshall Nirenberg, Heinrich Matthaei, and Severo Ochoa show that a sequence of three nu- cleotide bases (a codon) determines each of 20	1. Nirenberg, M., <i>et al.</i> 1963. Approximation of genetic code via cell-free protein synthe- sis directed by template RNA. <i>Fed. Proc.</i> 22, 55 c1

22: 55-61.
2. Nirenberg, M., et al. 1966. The RNA code and protein synthesis. Cold Spring Harbor Symp. Quant. Biol. 31: 11-24.

cleotide bases (a codon) determines each of 20 amino acids, and finally "cracked" the genetic code.

Year	Event and Theoretical Implication/Extension		Reference
1963	Brian John McCarthy and Ellis T. Bolton de- scribes a method for quantitative determination of the extent of hybridization of DNA or RNA from different biological sources. By this means, it is pos- sible to determine the extent of sequence homology in the genomes of the organisms.		MaCarthy, B.J. and Bolton, E.T. 1963. An approach to the measurement of genetic re- latedness among organisms. <i>Proc. Natl.</i> <i>Acad. Sci. USA</i> 50: 156-164. Hoyer, B.H., McCarthy, B.J., and Bolton, E.T. 1964. A molecular approach in the systematics of higher organisms. DNA interactions provide a basis for detecting common polynucleotide sequences among diverse organisms. <i>Science</i> 144: 959-967.
1964	Charles Yanofsky and colleagues establish that gene sequences and protein sequences are collinear: changes in DNA sequence can produce changes in protein sequence at corresponding positions.		Yanofsky, C., <i>et al.</i> 1964. On the colinear- ity of gene structure and protein structure. <i>Proc. Nat. Acad. Sci. USA</i> 51: 266-274.
	Robin Holliday proposes that genetic recombina- tion in yeast proceeds through two single stranded breaks made simultaneously at the same sites on the two DNA molecules to be recombined.		Holliday, R. 1964. A mechanism for gene conversion in fungi. <i>Gen. Res.</i> 5: 282-304.
	R. Bruce Merrifield (1984 Noble Prize Laureate for Chemistry) invents the solid-phase method for peptide synthesis.		Merrifield, R.B. 1964. Solid-phase peptide synthesis. 3. An improved synthesis of bradykinin. <i>Biochemistry</i> 14: 1385-1390. Merrifield, R.B. 1965. Automated synthe- sis of peptides. <i>Science</i> 150: 178-185.
1965	Robert William Holley (1968 Noble Prize Laureate for Physiology or Medicine) completes determining the sequence of 77 nucleotides in yeast alanine tRNA.		Holley, R.W., et al. 1965. Structure of a ribonucleic acid. Science 147: 1462-1465. Holley, R.W., et al. 1965. Nucleotide sequences in the yeast alanine transfer ribonucleic acid. J. Biol. Chem. 240: 2122-2128.
	Sol Spiegelman and Ichiro Haruna discover an enzyme that allows RNA molecules to duplicate themselves.		Spiegelman, S., <i>et al.</i> 1965. The synthesis of a self-propagating and infectious nucleic acid with a purified enzyme. <i>Proc. Natl. Acad. Sci. USA</i> 54: 919.
	Sydney Brenner and colleagues characterize the codons used as stop signals in DNA code.		Brenner, S., <i>et al.</i> 1965. Genetic code: the "nonsense" triplets for chain termination and their suppression. <i>Nature</i> 206: 994-998.
	Ellis Englesberg and colleagues show that an ac- tivator protein is required for the expression of the genes determining arabinose metabolism in <i>E. coli</i> .		Englesberg, E., <i>et al.</i> 1965. Positive con- trol of enzyme synthesis by gene C in the L-arabinose system. <i>J. Bacteriol.</i> 90: 946- 957.
	Chinese Scientists first complete the synthesis of crystalline bovine insulin.	2.	Du, Y.C., et al. 1961. Resynthesis of insulin from its glycyl and phenylalanyl chains. Sci. Sin. 10: 84-104. Kung, Y.T., et al. 1965. Total synthesis of crystalline bovine insulin. Sci. Sin. 14: 1710-1716. Kung, Y.T., et al. 1966. Total synthesis of

 Kung, Y.T., et al. 1966. Total synthesis of crystalline insulin. Sci. Sin. 15: 544-561.

Year	Event and Theoretical Implication/Extension	Reference
1966	Jonathan R. Beckwith and Ethan R. Signer transpose the lac region of <i>E. coli</i> into another mi- croorganism to demonstrate genetic control.	 Beckwith, J.R., Signer, E.R., and Epstein W. 1966. Transposition of the lac region o <i>E. coli. Cold Spring Harb. Symp. Quant</i> <i>Biol.</i> 31: 393-401. Beckwith, J.R. and Signer, E.R. 1966 Transposition of the lac region of <i>Es</i> <i>cherichia coli.</i> I. Inversion of the law operon and transduction of lac by phi80 <i>J. Mol. Biol.</i> 19: 254-265. Fox, C.F., Beckwith, J.R., Epstein, W. and Signer, E.R. Transposition of the law region of <i>Escherichia coli.</i> II. On the role of thiogalactoside transacetylase in lactosy metabolism. <i>J. Mol. Biol.</i> 19: 576-579.
1967	Werner Arber and colleagues show that bacterial cells contain highly specific enzymes that add methyl groups to adenosine and cytosine at recognition sites.	 Arber, W. and Kehnlein, U. 1967. Mutational loss of the B-specific restriction in bacteriophage fd. <i>Pathol. Microbiol.</i> 30, 946-952. Arber, W. and Linn, S. 1969. DNA modification and restriction. <i>Annu. Rev. Biochem.</i> 38: 467-500.
	Waclaw Szybalski and William C. Summers show that only one DNA strand (the sense strand) acts as a template for RNA synthesis. They use the technique of DNA-RNA hybridization to anneal the newly synthesized RNA to a parent DNA strand.	 Summers, W.C. and Szybalski, W. 1967 Y-irradiation of deoxyribonucleic acid i dilute solutions: I. A sensitive metho for detection of single-strand breaks of polydisperse DNA samples (bacteriophage Sarcina lutea, Escherichia coli, Bacilla subtilis, Crytophaga johnsoni). J. Mo Biol. 26: 107-123. Summers, W.C. and Szybalski, W. 1967 Gamma-irradiation of deoxyribonuclei acid in dilute solutions: II. Molecula mechanisms responsible for inactivation of phage, its transfecting DNA, and bacteria transforming activity. J. Mol. Biol. 26: 227-235.
	Walter Gilbert and Mark Ptashne isolate the lac repressor regulatory protein and the lambda repressor protein from bacteriophage respectively.	 Gilbert, W. and Muller-Hill, B. 1966. Iso lation of the lac repressor. Proc. Nat Acad. Sci. USA 56: 1891-1898. Ptashne, M. 1967. Isolation of the phag repressor. Proc. Natl. Acad. Sci. USA 57 306-313. Ptashne, M. 1967. A Genetic Switch Phage and Higher Organisms. Blackwe Publishers, Oxford, United Kingdom.
	Thomas Brock identifies the thermophile bac- terium <i>Thermus aquaticus</i> from which heat stable DNA polymerase is later isolated and used in the polymerase chain reaction. Isolation and culture of this organism later leads to the discovery of the domain Archea.	 Brock, T.D. 1967. Micro-organism adapted to high temperatures. Nature 214 882-885. Brock, T.D. 1967. Life at high temperatures. Science 158: 1012-1019.

Year	Event and Theoretical Implication/Extension	Reference
1967	Martin Gellert and coworkers isolates DNA ligase from <i>E. coli</i> .	 Gellert, M. 1967. Formation of covalent circles of lambda DNA by <i>E. coli</i> extracts. <i>Proc. Natl Acad. Sci. USA</i> 57: 148-155. Zimmerman, S.B., Little, J.W., Oshinsky C.K., and Gellert, M. 1967. Enzymatic joining of DNA strands: a novel reaction of diphosphopyridine nucleotide. <i>Proc. Nat</i> <i>Acad. Sci. USA</i> 57: 1841-1848. Little, J.W., Zimmerman, S.B., Oshin- sky, C.K., and Gellert, M. 1967. Enzy- matic joining of DNA strands. II. An enzyme-adenylate intermediate in the dyp- dependent DNA ligase reaction. <i>Proc.</i> <i>Natl Acad. Sci. USA</i> 58: 2004-2011.
	Theodor O. Diener discovers viroids, plant viruses that do not have a protein capsid. The infectious agent is a low molecular weight RNA that contains no protein capsid.	Diener, T.O. and Raymer, W.B. 1967. Potato spindle-tuber virus: a plant virus with properties of free nucleic acid. <i>Sci-</i> <i>ence</i> 158: 378-381.
	R. John Collier describes the mechanism by which diphtheria toxin inhibits protein synthesis in a cell-free system from recticulocytes. This is the first definition at the molecular level of the function of a bacterial protein virulence factor.	Collier, R.J. 1967. Effect of diphtheria toxin on protein synthesis: inactivation of one of the transfer factors. <i>J. Mol. Biol.</i> 25: 83-89.
	Mary Weiss and Howard Green employ somatic cell hybridization to advance human gene mapping.	Weiss, M.G. and Green, H. 1967. Human- mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes. <i>Proc. Nat</i> <i>Acad. Sci. USA</i> 58: 1104-1111.
1968	Charles Helmstetter and Stephen Cooper , using the "baby machine", establish the rules for replication in the <i>Escherichia coli</i> cell cycle.	Cooper, S. and Helmstetter, C. 1968. Chromosome replication and the division cycle of <i>Escherichia coli</i> B/r. <i>J. Mol. Biol.</i> 31: 519-540.
	R. Okazaki finds the discontinuous synthesis of the lagging strand during DNA replication, which is later called Okazaki fragment.	Okazaki, R., <i>et al.</i> 1968. Mechanism of DNA chain growth. I. Possible disconti- nuity and unusual secondary structure of newly synthesized chains. <i>Proc. Natl.</i> <i>Acad. Sci. USA</i> . 59: 598-605.
	Roy Britten and Dave Kohne discover repeating sequences in genome.	Britten, R.J. and Kohne, D.E. 1968. Re- peated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. <i>Science</i> 161: 529-540.
1969	Don J. Brenner and colleagues establish a more reliable basis for the classification of clinical isolates among members of the Enterobacteriaceae. They use nucleic acid reassociation in which denatured DNA-labelled DNA fragments of one organism are reacted under annealing conditions with DNA of another organism. Studies on many species have proven the value of DNA-DNA hybridization to de- fine a species.	Brenner, D.J., <i>et al.</i> 1969. Polynucleotide sequence relationships among members of the Enteriobactiaceae. <i>J. Bacteriol.</i> 98: 637-650.

Year	Event and Theoretical Implication/Extension	Reference
1969	Gerald M. Edelman and Rodney R. Porter (both are 1972 Noble Prize Laureates for Physiol- ogy or Medicine) independently elucidate the struc- ture of gamma globulin.	 Edelman, G.M., et al. 1969. The covalent structure of an entire gammaG immunoglobulin molecule. Proc. Natl. Acad. Sci. USA 63: 78-85. Fruchter, R.G., Jackson, S.A., Mole, L.E., and Porter, R.R. 1970. Sequence studies of the Fd section of the heavy chain of rabbit immunoglobulin G. Biochem. J. 116: 249-259. O'Donnell, I.J., Frangione, B., and Porter, R.R. 1969. The disulphide bonds of the heavy chain of rabbit immunoglobulin G. Biochem. J. 116: 261-268.
	Jonathan Beckwith first separates a bacterial gene.	Schwartz, D.O. and Beckwith, J.R. 1969. Mutagens which cause deletions in <i>Escherichia coli. Genetics</i> 61: 371-376.
1970	Howard Temin and David Baltimore (both are 1975 Noble Prize Laureates for Physiology or Medicine) independently discover reverse transcrip- tase, an enzyme that makes DNA from an RNA template; enzymatic isolation of DNA will become important for genetic engineering.	 Temin, H.M. and Mizutani, S. 1970. RNA- dependent DNA polymerase in virions of <i>Rous sarcoma</i> virus. <i>Nature</i> 226: 1211- 1213. Baltimore, D. 1970. Viral RNA-dependent DNA polymerase. <i>Nature</i> 226: 1209-1211.
	Hamilton Smith (1978 Noble Prize Laureate for Physiology or Medicine) and Kent Wilcox iso- late the first restriction enzyme, <i>Hind</i> II, a protein that cuts DNA at specific sites defined by the base sequence.	Smith, H.O. and Wilcox, K.W. 1970. A restriction enzyme from <i>Haemophilus influenzae</i> : I. Purification and general properties. <i>J. Mol. Biol.</i> 51: 379-391.
1971	Ray Wu and Ellen Taylor deduce the sequence of 12 bases at the ends of the genome of the bacterial virus lambda.	 Wu, R. 1970. Nucleotide sequence analysis of DNA. I. Partial sequence of the cohesive ends of bacteriophage lamda and 186 DNA. J. Mol. Biol. 51: 501-521. Wu, R. and Taylor, E. 1971. Nucleotide se- quence analysis of DNA. II. Complete nu- cleotide sequence of the cohesive ends of bacteriophage lambda DNA. J. Mol. Biol. 57: 491-511.
1972	Paul Berg (1980 Noble Prize Laureate for Chem- istry) creates the first recombinant DNA molecule.	Jackson, D.A., Symons, R.H., and Berg, P. 1972. Biochemical method for insert- ing new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of <i>Escherichia</i> <i>coli. Proc. Natl. Acad. Sci. USA</i> 69: 2904-2909.
	Janet Mertz and Ronald Davis confirm that the <i>Eco</i> R1 cuts DNA at a specific site four to six nucleotides long and yields cohesive ends. This opens the way for cloning.	Mertz, J.E. and Davis, R.W. 1972. Cleav- age of DNA by R1 restriction endonuclease generates cohesive ends. <i>Proc. Natl. Acad.</i> <i>Sci USA</i> 69: 3370-3374.
1973	Stanley Norman Cohen (1986 Noble Prize Laureate for Physiology or Medicine) and Her- bert Wayne Boyer develop recombinant DNA technology, showing that genetically engineered DNA molecules may be cloned in foreign cells.	Cohen, S.N., Chang, A.C.Y., Boyer, H.W., and Helling, R.B. 1973. Construction of bi- ologically functional bacterial plasmids <i>in</i> <i>vitro. Proc. Natl. Acad. Sci. USA</i> 70: 3240-3244.

Year	Event and Theoretical Implication/Extension	Reference
1973	Dan Nathans, George Khoury, and Malcolm Martin use restriction enzymes to produce the first physical map of a DNA molecule for the virus SV40.	Adler, S.P. and Nathans, D. 1973. Studies of SV40 DNA: V. Conversion of circular to linear SV40 DNA by restriction endonucle- ase from <i>Escherichia coli</i> B. <i>Biochim. Bio- phys. Acta.</i> 299: 177-188. Khoury, G., Martin, M.A., Lee, T.N., Dana, K.J., and Nathans, D. 1973. A map of simian virus 40 transcription sites ex- pressed in productively infected cells. <i>J.</i> <i>Mol. Biol.</i> 78: 377-389.
	George Laver and Robert Webster demon- strate that the genomes of influenza virus strains re- sponsible for pandemics possess genome fragments acquired by genome segment reassortment from in- fluenza strains circulating in animals.	Laver, G. and Webster, R.G 1973. Stud- ies on the origin of pandemic influenza. III. Evidence implicating duck and equine in- fluenza as possible progenitors of the Hong Kong strain of human influenza. <i>Virology</i> 51: 391-393.
	Joseph Sambrook refines DNA electrophoresis by using agarose gel and staining with ethidium bro- mide.	Sharp, P.A., Sugden, B., and Sambrook, J. 1973. Detection of two restriction endonuclease activities in <i>Haemophilus</i> <i>parainfluenzae</i> using analytical agarose— ethidium bromide electrophoresis. <i>Bio-</i> <i>chemistry</i> 12: 3055-3063.
1974	Jeff Schell and Marc Van Montagu discover that a circular strand of DNA (a plasmid) carried by <i>Agrobacterium tumefaciens</i> transforms plant cells into tumor cells.	Zaenen, I., Van Larebeke, N., Van Mon- tagu, M., and Schell, J. 1974. Super- coiled circular DNA in crown-gall inducing <i>Agrobacterium strains. J. Mol. Biol.</i> 86: 109-127. Van Larabeke, N., Engler, G., Holsters, M., Elcacker, S.V.D., Zaenen, I., Schilper- oort, R.A., and Schell, J. 1974. Large plas- mid in <i>Agrobacterium tumefaciens</i> essen- tial for crown gall-inducing ability. <i>Nature</i> 252: 169-170.
	David Hogness and Michael Grunstein develop colony hybridization, a technique to transfer bacterial colonies to filters, lyse, and fix the DNA. Labeled probes of single stranded DNA, complementary to the fixed DNA, can be applied to determine the identity of the unknown bacterium.	 Kreigstein, H.J. and Hogness, D.S. 1974. Mechanism of DNA replication in <i>Drosophila</i> chromosomes: structure of replication forks and evidence for bidirectionality. <i>Proc. Natl. Acad. Sci. USA</i> 71: 135-139. Grunstein, M. and Hogness, D.S. 1975. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. <i>Proc. Natl. Acad. Sci. USA</i> 72: 3961-3965.
1975	Edward Southern develops a powerful tech- nique for DNA analysis that has been known as Southern blotting.	Southern, E.M. 1975. Detection of spe- cific sequences among DNA fragments sep- arated by gel electrophoresis. <i>J. Mol. Biol.</i> 98: 503-517.
	Cesar Milstein and Georges J. F. Kohler (both are 1984 Nobel Prize Laureates for Physiology or Medicine) fuse mouse cells together to produce monoclonal antibodies.	Kohler, G. and Milstein, C. 1975. Contin- uous cultures of fused cells secreting anti- body of predefined specificity. <i>Nature</i> 256: 495-497.

Year	Event and Theoretical Implication/Extension	Reference
1975	C. M. Wei and Bernard Moss, and Aaron Shatkin independently show that messenger RNA contains a specific nucleotide cap at its 5'-end that affects correct processing during translation.	Wei, C.M. and Moss, B. 1975. Methylated nucleotides block the 5'-terminus of vac- cinia virus mRNA. Proc. Natl. Acad. Sci. USA 72: 318-322. Furuichi, Y., Morgan, M., Muthukr- ishnan, S., and Shatkin, A. 1975. Reovirus messsenger RNA contains a methylated blocked 5'-terminal strucure m7G(5')ppp(5')GmpCp. Proc. Natl. Acad. Sci. USA 72: 362-367.
	Mary-Claire King and Allan Wilson discover regulator genes—genes that control the timing and output of structural genes.	King, M.C. and Wilson, A.C. 1975. Evo- lution at two levels in humans and chim- panzees. <i>Science</i> 188: 107-116.
1976	J. Michael Bishop and Harold E. Varmus (both are 1989 Noble Prize Laureates for Physi- ology or Medicine) show that oncogenes appear on animal chromosomes, and alterations in their struc- ture or expression can result in cancerous growth.	Stehelin, D., Guntaka, R.V., Varmus, H.E., and Bishop, J.M. 1976. Purifica- tion of DNA complementary to nucleotide sequences required for neoplastic transfor- mation of fibroblasts by avian sarcoma viruses. <i>J. Mol. Biol.</i> 101: 349-365. Stehelin, D., Varmus, H.E., Bishop, J.M., and Vogt, P.K. 1976. DNA related to the transforming gene(s) of avian sarcoma virus is present in normal avian DNA. <i>Na-</i> <i>ture</i> 260: 170-173.
	Sidney Altman and Thomas R. Cech (both are 1989 Noble Prize Laureates for Chemistry) in- dependently show that RNA can serve directly as a catalyst of hydrolytic reaction.	Altman, S. 1975. Biosynthesis of transfer RNA in <i>Escherichia coli. Cell</i> 4: 21-30. Cech, T.R. and Pardue, M.L. 1976. Elec- tron microscopy of DNA crosslinked with trimethylpsorlen: test of the secondary nature of eukaryotic inverted repeat se- quences. <i>Proc. Natl. Acad. Sci. USA</i> 73: 2644-2648.
	Susumu Tonegawa (1987 Noble Prize Laureate for Physiology or Medicine) first demonstrate so- matic recombination in immunoglobulin genes.	Hozumi, N. and Tonegawa, S. 1976. Ev- idence for somatic rearrangement of im- munoglobulin genes coding for variable and constant regions. <i>Proc. Natl. Acad. Sci</i> <i>USA</i> 73: 3628-3632.