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Fast Tree Search for A Triangular Lattice Model of Protein Folding
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Using a triangular lattice model to study the designability of protein folding, we
overcame the parity problem of previous cubic lattice model and enumerated all the
sequences and compact structures on a simple two-dimensional triangular lattice
model of size 4+5+6+5+4. We used two types of amino acids, hydrophobic and
polar, to make up the sequences, and achieved 223+212 different sequences excluding
the reverse symmetry sequences. The total string number of distinct compact
structures was 219,093, excluding reflection symmetry in the self-avoiding path of
length 24 triangular lattice model. Based on this model, we applied a fast search
algorithm by constructing a cluster tree. The algorithm decreased the computation
by computing the objective energy of non-leaf nodes. The parallel experiments
proved that the fast tree search algorithm yielded an exponential speed-up in the
model of size 4+5+6+5+4. Designability analysis was performed to understand
the search result.
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Introduction

The prediction of a protein structure from its primary
sequence is one of the most interesting problems in
computational biology (1 ). Native proteins usually
fold much too fast (by at least tens of magnitude) to
involve an exhaustive search (2 ). It is a classical puz-
zle of the protein folding that biological proteins could
not have originated from random sequences. Despite
a tremendous amount of efforts and progresses over
many decades, the problem remains essentially un-
solved.

In 1963, Anfinsen and his colleagues made a re-
markable discovery that the amino acid sequence of
a protein was fully sufficient to specify the molecule’s
ultimate 3D shape and biological activity (3 ). For
most single domain proteins, the information coded
in the amino acid sequence is sufficient to determine
the three-dimensional folded structure, which is the
minimum free energy structure. Based on this the-
ory, the protein is described by the complete list of
the atoms in a molecule, with connectivities, bond
lengths, angles, and force constants between all pairs
of atoms (4 ). This all-atom model involves complex
energy force and needs astronomical computational
time. To understand the folding mechanism, it is
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useful to study simplified models such as the
Hydrophobic-Hydrophilic model introduced by Dill
(5 , 6 ). Lattice protein folding models have been play-
ing important roles in theoretical studies of protein
folding (7 ). In these models, a protein is represented
by a self-avoiding chain of beads placed on a dis-
crete lattice, with two types of beads used to mimic
hydrophobic and polar (HP). The advantage of HP
lattice models is that they are simple enough to be
amenable to thorough theoretical study, which can
provide fruitful insights to feed back to or test against
realistic models and experiments.

The biological foundation of this model is the be-
lieved theory that the first-order driving force of pro-
tein folding (8 , 9 ) is due to a “hydrophobic collapse”
in which those residues that prefer to be shielded from
water (hydrophobic residue) are driven to the core of
the protein, while those that interact more favorably
with water (polar residues) remain on the outside of
the protein. Previous papers researched the problem
of protein folding on the cubic lattice model whose
goal was to find the fold with the maximum number
of contacts between non-covalently linked hydropho-
bic amino acids. Yet, a significant drawback of the
cubic lattice is the “parity problem”. In this paper,
we present a triangular lattice model that overcomes
the shortcomings of the cubic lattice model. Based
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on this model, we enumerated all possible compact
structures and HP sequences.

For a 3×3×3 cubic lattice model of size N=27, the
total number of compact structures is 103,346 and the
number of all possible HP sequences is 227. In the enu-
meration study, if the energy of every sequence folded
into every compact structure is valued, the total num-
ber of evaluation will be 227×103,346≈ 1.39×1013.
For the triangular models of size 3+4+5+4+3 and
size 4+5+6+5+4, the computation is 219×20,486≈
1.07×1010 and 224×1,474,782≈ 2.48×1013. It will be
strongly desirable to enumerate larger size system if
possible. So it is crucial to find a fast search algo-
rithm. In this paper, we present a fast search algo-
rithm by constructing a fast search tree. The algo-
rithm decreased the computation by computing the
objective energy of tree non-leaf nodes. The paral-
lel experiments proved that the fast tree search al-
gorithm yielded an exponential speed-up factor of
Θ

(
1.486log2 M−log2 Maxop

)
, in which M is the num-

ber of different compact construct strings, Max op is
the optimal string bound per leaf.

Model

The methods currently used for the tertiary structure
modeling are based on cubic lattice models to enu-
merate the minimization of the energy as a function
of the topological contacts. As previously stated, the
quadrate lattice model exists a defect referred as the
“parity problem”, in which only the residue in the
even position of the primary sequence and another
one in the odd site can form the topological contact.
The non-bonded neighbor can’t be made between two
even residues or two odd residues. This situation can
never be found in the triangular lattice models.

We generated and enumerated all the compact
self-avoiding walks on the triangular lattice model of
size 4+5+6+5+4 (Figure 1). There were 5,903,128
different paths in this model. We may use symme-
tries to reduce the conformational space significantly.
There are two types of symmetries for walks on this
model. The first is the two-rotation symmetry. The
second is the two-mirror symmetry, of which one
is the axial reflection and the other is the diago-
nal reflection. So we got the differently directed
5,903,128/4=1,475,782 self-avoiding walks with this
model. Among the 1,475,782 paths, we obtained re-
versal symmetries of 738,189 pairs and head-tail
symmetries of 596 pairs (Figure 1), so the number of

Fig. 1 The 4+5+6+5+4 lattice model with core sites

(black) and surface sites (gray).

different compact structures in this model was
738,189+596=738,785.

It is energetically favorable for hydrophobic amino
acids to occupy core sites, where there is low exposure
to water. In this model, we denoted a sequence of
amino acids by σi, and took only two types of amino
acids, hydrophobic and polar. The energy of a se-
quence folded into a structure was taken to be the
sum of the contributions from each amino acid upon
burial away from water:

E = −
N∑

i=1

σisi,

where si is a structure-dependent number character-
izing the degree of burial of the ith amino acid in the
chain. Larger si corresponds to a smaller surface area
accessible to the solvent. For a structure on a 3D
lattice, there are four different kinds of sites: center,
face, edge, and corner. Therefore, in principle, there
could be four different values of si. On a 2D lattice
model, we took only two values for si, and defined a
string si for each structure with si = 1 if the ith site
is a core and si = 0 if it is a surface (Figure 1).

Out of the 1,475,782 compact structures, the num-
ber of distinct structure strings was 219,093, among
which there were 25,825 lattice conformations, and
each represented exactly one structure. The 219,093
distinct structures would decrease to 109,497 exclud-
ing reversal symmetries.

Fast Search Tree

Each structure string has exactly ten 1’s and fourteen
0’s. Our goal was to find a target structure string
{sj}, which had unique and minimum energy corre-
sponding to the target sequence string {σi}. It is ob-
vious that the target structure string must possess a

246 Geno. Prot. Bioinfo. Vol. 2 No. 4 November 2004



Li and Wang

certain similarity with the target sequence string. Ac-
cording to the observation, we organized the structure
string into a binary tree and clustered similar struc-
ture strings into the same tree node (Figure 2). The
algorithm decreased the computation by computing
the objective energy of non-leaf nodes to locate the
target structure string. The distinct structure strings
was 219,093 in the model of 4+5+6+5+4. There were
thus 109,656 distinct strings that we kept in the calcu-
lation excluding the reversal structure strings. Each
node of the tree represented a subset of these strings
and maintained the following three kinds of informa-
tion. First, a structure string would have the value 1
at the ith position if and only if all the strings corre-

sponding to this node have 1’s at the ith position. We
named this kind of sites the known ones (K). Second,
a structure string would have the value 1 at the ith

position if and only if there is a table entry in this
node that has a 1 or 0 at the ith position. We named
this kind of sites the unknown ones (U). Third, each
string in a node would have 1’s at some undecided
positions. For each string, missing ones are the sum
of these 1’s. By construction, each string has exactly
ten 1’s, so the number of missing ones is equal to 10
minus the sum of known ones. That is, missing ones
are single integers no greater than 10 for each node.
We named this kind of sites the missing ones (M).

K={000…000}
U={111…111}

M=10

0 1

K={00…0…00}
U={11…0…11}

M=10

K={00…1…00}
U={11…0…11}

M=9

0 01 1

K={00…1…0…00}
U={11…0…0…11}

M=9

K={00…0…0…00}
U={11…0…0…11}

M=10

K={00…0…1…00}
U={11…0…0…11}

M=9

K={00…1…1…00}
U={11…0…0…11}

M=8

Fig. 2 A cluster tree. Underlined bold face denotes UK-renewing information; bold face denotes UK-renewed infor-

mation; ellipsis of K denotes “0”; ellipsis of U denotes “1”.

We splited each node at the position that made
two child nodes as tightly clustered as possible, and
measured this clustering for each child as the entropies
for each site, with the tightest clustering correspond-
ing to the minimum entropy. Specifically, for each
node we regarded the site of minimum entropy S of
its set of structure strings as a branch point (10 ):

S = Min {−(pi log pi + qi log qi)} ,

in which pi is the probability of the ith position being
1, and qi is the probability of the ith position being 0.

Those nodes partition the strings in the parent ac-
cording to the value of the given position i: one child
has the entire parent strings where i=1 and the other
child has all of the strings where i=0. Each leaf node
at the end of the tree contains a small list of structure
strings—in the following experiments we defined the
parameter as Max.

Given a sequence string {σi} and a node of the

tree, we hoped to obtain the bounds of all structure
strings represented by the node. Clearly, for all strings
in the node the upper bound can be expressed by:

Bupper = Min{σi ∗ (U + K), σi ∗K + m}.
Given such a tree, where the root corresponds to

all of the structure strings, the question here is how
to search the tree. We computed the upper bound
of the sequence string according to previous formula,
and called this the objective value. If there are any
leaf nodes that achieve this objective, go to next se-
quence. If not, repeat with the reversed version of the
sequence strings. Again, if we achieve the objective
value, go to next sequence. If not, decrease the objec-
tive value by 1 and try again. Repeat until the goal
is satisfying.

Given an objective value, we searched the tree as
follows, starting at the root node. If the upper bound
on the node indicates that objective value is unachiev-
able, backdate and search other nodes. If the node
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is a leaf node, check each structure string. If one
string or none has been found that satisfies the ob-
jective, backdate and search other nodes, else if two
strings have been found that achieve this objective,
exit and transfer the next sequence string. If the cur-
rent search node is not a leaf node, try each of the
child nodes. We first tried the child that matches
{σi}. The following experiments proved that only this
step would yield a speed-up factor 1.782 in the model
of size 4+5+6+5+4.

Experiments

Using the fast search tree, we were able to com-
pletely enumerate all possible HP sequences and com-
pact structures in the 4+5+6+5+4 triangular lattice
model. For every sequence, we rapidly computed the
energy value of all the compact structures, found the
structure with the minimal energy value, and recorded
the minimal energy value and energy value of the first
excited state (the second minimal energy value).

The overall computation is highly parallelizable
because each sequence can be done independently. In
order to implement the calculation of ground states
for all sequences in parallel, it is useful to divide the
sequences into groups and use these groups as the unit
of parallelism. We performed our computations with
all 223+212 HP sequences excluding reversed strings,
which produced 129 groups. These 129 groups were
executed on the Legend Group DeepComp1800 -P4
Xeon 2 GHz -Myrinet/ 512 Large Array Multiple Pro-
cessors, which is a collection of 24 computers, each
containing two Intel Pentium Pro microprocessors of
2 GHz. Every machine ran the Linux operating sys-
tem and had at least 512 MB of memory.

The parallel algorithm is described as follows. We
divided the space of sequences into 129 groups fi (0 ≤
i < 129). Parameter “num” denotes the sign of group
with the initial value of 0; Parameter “count” denotes
the number of performed group with the initial value
of 0. The operation of main processor P0 includes: (1)
take out m groups f0, f1, . . . , fm−1, send the groups
to processor P1, P2, . . . , Pm, respectively; num=m;
count=0; (2) perform the data of f th

num group, count
added by 1 and num added by 1; (3) receive the result
of processors Pi (1 ≤ i ≤ m); count added by 1; (4) if
num<n−1 (n denotes the number of groups), send the
data of f th

num group to processor Pi, else notify pro-
cessor Pi to exit; num added by 1; (5) if num<n−1,
transfer to step 2; if count equals to n, transfer to step

6; (6) collect the results of all the other processors Pi

(1 ≤ i ≤ m) and exit. The operation of other proces-
sors Pi (1 ≤ i ≤ m) includes receiving the group sent
by the main processor P0, performing the fast tree
search, and sending the result to the main processor
P0.

Each leaf node at the end of the tree contains a
small list of structure strings. We considered the max-
imum structure string number (Max) per leaf as a
variant in our experiment. The creating tree time
(Tt), search time (Tc), and total time (Total=Tt

+Tc) through the experiment are shown in Figure 3.
The computation time showed in Figure 3 is the CPU
time and its unit is second.
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Fig. 3 Search time vs. Max.

It is obvious that search time and total time are
the lowest when Max is 8. The creating tree time
decreases exponentially as Max increases (Figure 3).
The reason is that when creating the tree, every node
needs to search all the structure strings and the num-
ber of nodes in the tree increases exponentially as Max
decreases, so the creating tree time increases exponen-
tially.

At the same time, the total time increases expo-
nentially as Max increases. The reason is that the leaf
node of tree increases exponentially as Max decreases.
Futile search is eliminated by computing the objec-
tive value and aim structure string is located rapidly;
hence the search time decreases exponentially. How-
ever, when Max is less than 8, search time becomes
longer. This is because when Max is small, the leaf
node contains less structure strings, but information
in its parent node is enough to describe that (Figure
4), so continuous bisection will increase the compu-
tation of objective energy value, which makes search
time increase. Surely, the optimal Max will differ with
different models. When Max equals to the total num-
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Fig. 4 The Fractional cluster tree (Max=1). The date

denotes structure string number of node and superscript

denotes the branch site.

ber of structure strings, there is only a node in the tree
and the situation equals to enumerate all the struc-
ture strings.

The experiments proved that the fast tree search
algorithm yielded an exponential speed-up factor of
Θ

(
1.486log2 M−log2 Maxop

)
in the 4+5+6+5+4 trian-

gular lattice model, in which M is the total number of
distinct structure strings, and Max op is optimal Max.

Statistical Analysis

Whenever a ground state structure string is found
for a sequence, the reversed sequence necessarily has
the reversed structure string as a ground state. We
excluded the reversed structure string and reversed
sequence string in order to simplify and statistically
analyze the process. There were totally 109,656 such
structure strings unrelated by rotational, reflection,
or reverse labeling symmetries. For a given sequence,
the ground state structure is found by calculating the
energy of all compact structures. We completely enu-
merated all the ground states of all 223+212 possi-
ble sequences, and found that only 181,375 sequences
have unique ground states, and then we calculated
the designability of each compact structure. There
are structures that can be designed by an enormous
number of sequences, and there are poor structures
that can only be designed by a few sequences. The top
structure can be designed by 101 different sequences.
The number of structures decreases monotonically as
the number of sequences increases (Figure 5). The
result offers the evidence that the highly designable
structures can tolerate more mutations during evolu-
tion because these structures can be designed by more
different sequences.
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Fig. 5 Number of structures vs. Ns.

Under different designability situations, we ob-
tained that the ratio of sequences with the ground
state energy –10, –9, –8, and –7 among 181,375 non-
degeneracy sequences was 62.64%, 33.50%, 3.83%,
and 0.32%, respectively. The statistical relationship
between the sequences with ground state energy –10,
–9, –8 and the designability is shown in Figures 6 and
7. From the figure we can find that the sequences
with the ground state energy –10 account for 95% in
the structure of the highest designability, while those
with the ground state energy –9 and –8 account for
5% and 0, respectively; the sequences with the ground
state energy –10 account for 52% in the structure of
the lowest designability, while those with the ground
state energy –9 and –8 account for 37% and 11%,
respectively. The data shows that highly designable
structures tend to have lower energy of ground. This
indicates that the compact structures of highly des-
ignability are, on average, thermodynamically more
stable than other structures.

Considering a structure string to be a chain of 0’s
and 1’s linked by N−1 links of three types, 0-0, 1-0
or 0-1, and 1-1, with N00, N10 or N01, and N11 be-
ing the numbers of such links, respectively, we ana-
lyzed the relationship between designability and N01

(Figure 8). When N01=10, the structures of high des-
ignability occur more frequently (Figure 8A), and the
relatively high frequency of low designability struc-
tures are due to the large number of structure strings
with designability “1” (Ns=1). The tendency is ap-
proximately the same as N01=12 (Figure 8A), except
lower frequency. When N01= 8, 9, 11 (Figure 8B), the
structures of high designability occur less frequently
while the structures of low designability occur more
frequently. The tendencies of N01= 6, 7, 13 (Figure
8C) are approximately the same as each other and
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Fig. 6 Ground state energy –10 vs. Ns.
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Fig. 9 Top 12 compact structures in the 4+5+6+5+4

triangular lattice model.

have no much effect on the designability.
The occurrence of such kind of phenomenon is be-

cause that the structures of high designability have
regular secondary structures. In the top twelve struc-
tures of high designability (Figure 9), the number of

N01 should be in a suit scope to form a regular sec-
ond structure; it is appropriate to form a regular helix
structure when N01=10. This is similar to the natu-
ral protein structure. There is no regular sheet in the
structures of high designability because of the energy
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computation simplification of the lattice model.
We suppose that each dot in the 24D hypercube

represents the sequence and structure in the lattice
model. In the HP model, the energy of a sequence
folded into a particular structure is the Hamming dis-
tance between their binary strings. Hence, the num-
ber of sequences that fold uniquely to a particular
structure—the designability of the structure—is the
set of vertices lying closer to that structure than to
any others.

It happens that in the hypercube the smallest
Hamming distance between two structures is approx-
imately proportional to the difference in their respec-
tive N10 numbers. This is evident in Figure 10, where
the smallest Hamming distance is plotted against the
difference in N01 for all the pairs among the 25,825 bi-
nary structures on a 4+5+6+5+4 lattice, and is con-
sistent with results given by Li et al (11 ) in which x(p)
(the degree of clustering of hydrophobic residues) is
analogous to N01.

To see whether what we have observed so far
has anything to do with real proteins, we compared
five sequences, P1−5, each being a concatenation of
a set of real proteins or (4+5+6+5+4) lattice bi-
nary peptides. P1, the representative non-redundant
350 proteins culled from Protein Data Bank (PDB;
www.rcsb.org/pdb/); P2, the sections in P1 that fold
into helices; P3, the sections in P1 that fold into
sheets; P4, the 2,919 peptides mapped to the high-
est designabilities; P5, the 2,077 peptides mapped to
the lowest designabilities.

Firstly we defined the frequency distribution func-
tion as:

F
(l)
i (m) =

f
(l)
i (m)− f

(l)

i

Z
,

in which f
(l)
i (m) denotes the frequency of the mth bi-

nary word of length l occurring in sequence Pi and
there are 2l words of length l.

f
(l)

i denotes the average frequency of f
(l)
i (m):

f
(l)

i =

∑
m

f
(l)
i (m)

2l
.

Z = (
∑
m

(f (l)
i (m)− f

(l)

i )2)1/2 denotes the normal-

ized frequency distribution function.
The pairwise overlaps were defined as:

O
(l)
ij =

2l∑
m=1

F
(l)
i (m)F (l)

j (m),

where i = 2, 3; j = 4, 5; l = 4 ∼ 14.
The relationship between pairwise overlaps of dif-

ferent sequences is shown in Figure 11. It is seen that
P4 (P5) is positively (negatively) correlated with P3.
For all values of l, the strongest correlation occurs be-
tween the model sequence of high designability (P4)
and the real protein sequence rich in sheets (P3). The
sequence of low designability is strongly correlated
with the sequence rich in helix (P2), and the strong
correlation occurs between the two model sequences
of high (P4) and low (P5) designabilities. The strong
correlation between P2 and P5 is to some extent an
artifact of the lattice model. Since we only considered
the simple structure string, fractional compact struc-
tures will be washed out due to path degeneracy.
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Conclusion

In the opinion of algorithm, we created the cluster tree
by using the relationship between structure strings.
The algorithm decreased the computation by com-
puting the objective energy of non-leaf nodes. The
parallel experiments proved that the fast tree search
algorithm yielded an exponential speed-up in models
of size 4+5+6+5+4. In this paper, we have pre-
sented the two-dimensional triangular lattice model
to study the designability of protein folding. Through
enumerating all the possible compact structures and
HP sequences, we found that different compact struc-
tures have rather different designability. The compact
structures of high designability exhibit lower ground
state energy, showing that these structures are, on
average, thermodynamically more stable than other
ones. The research offers strong evidence that com-
pact structures of high designability are more regu-
lar and geometrically symmetric. In the opinion of
structure, the triangular lattice model has no parity
problem and its surface is more similar to the natural
proteins, therefore it is possible to get more informa-
tion from the research of highly designable compact
structures on triangular lattice models.
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