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The NetAcet method has been developed to make predictions of N-terminal acety-
lation sites, but more information of the data set could be utilized to improve
the performance of the model. By employing a new way to extract patterns from
sequences and using a sample balancing mechanism, we obtained a correlation
coefficient of 0.85, and a sensitivity of 93% on an independent mammalian data
set. A web server utilizing this method has been constructed and is available at
http://166.111.24.5/acetylation.html.
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Introduction

N-terminal acetylation is one of the most common
protein modifications in eukaryotes, occurring on ap-
proximately 80%-90% of the cytosolic mammalian
proteins (1 , 2 ). Previously, much work has been done
to make predictions based on the data available. The
latest achievement in this field is the NetAcet method
(3 ).

The NetAcet method was based on a yeast dataset
(1 , 2 ) and the Yeast Protein Map (YPM) resource
(4 ). Only substrates reported to be acetylated by
N-acetyltransferase A (NatA) were extracted. After
redundancy reduction, there were finally 57 positive
and 72 negative sequences.

In NetAcet, sequences were first truncated to their
N-terminal 40 residues. Then, patterns were ex-
tracted with a window size of seven amino acids, with
position 1 being the target residue. Only negative
examples with either serine, threonine, alanine, or
glycine in the first position of the window were used,
as the other types were trivial.

An artificial neural network was trained using 3-
fold cross-validation, with the extracted patterns as
its training set. Since the number of negative exam-
ples was much greater than that of positive ones (there
were 57 positive examples but more than 1,000 neg-
ative ones), 57 negative examples were randomly se-
lected from the overall negative data set. Along with
the 57 positive examples, they composed the input to
the model. A Matthews correlation coefficient (MCC;
ref. 5 ) of 0.69 was obtained from the model, with a
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sensitivity of 75% and a specificity of 92%. On an
independent test set of mammalian N-acetylated pro-
tein extracted from Uniprot (6 ), it achieved a sensi-
tivity of 74% on acetylated serines.

Results

After improving the experiment, we obtained a
Matthews correlation coefficient of 0.85. This reflects
a sensitivity of 86% and a specificity of 97%. In Ne-
tAcet, the corresponding values are 0.69, 75% and
92% (Table 1). The specificity on negative examples
with a serine residue at position 2 is 98%. That is
about 38% higher than NetAcet.

Table 1 Performance Comparison of

the Two Methods

Performances NetAcet SVM

MCC 0.69 0.85

Sensitivity 75% 86%

Specificity 92% 97%

Specificity on non-acetylated

serines

60% 98%

Sensitivity on N-acetylserine of

mammalian data

74% 93%

We also tested the model on a mammalian pro-
tein data set extracted from the Uniprot. By using
the FtDescription (Feature) option from Sequence Re-
trieval System, we extracted 260 mammalian proteins
reported to have N-acetylated serine. By using the
Decrease redundancy program provided by ExPASy,
we obtained 77 mammalian proteins that have the
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maximum similarity of 80%. We tested the training
model on this data set and obtained a sensitivity of
93% (72 were found with acetylated serine).

Discussion

The sensitivity obtained from the cross validation is
86%, which is 7% lower than that from the mam-
malian data (93%). That is because there are only
acetylated serines in the mammalian data. Further-
more, for other types of substrates (threonine, ala-
nine, and glysine), we obtained a much lower perfor-
mance with the same model, which we attribute to
the inadequacy of positive examples of other types
of acetylated residues. The method presented here
greatly improves the prediction performance of N-
acetylation of N-acetyltransferase A. The experiment
results convince us that N-terminal methionine cleav-
age has a profound effect on N-terminal acetylation.
This relationship will become clearer if more data are
available to enable further statistical analysis.

Methods

We employed the same data set used by NetAcet as
our training set, but we made improvements in the
way to extract patterns. Furthermore, we used the
support vector machine (SVM) as the training model.

The data set is composed of yeast proteins. As
previous studies indicated, removal of N-terminal me-
thionine is an essential function in yeast (1 , 2 ). More-
over, methionine excision occurs before N-terminal
acetylation, and it also takes place at N-terminal. So
we are encouraged by these facts to assume that the
pattern of the acetylated site is more or less relative
to the methionine cleavage at N-terminal of the se-
quence. Interestingly, the information contained in
the positive data set is consistent with our hypothesis
to a certain degree. The acetylated site is either lo-
cated at N-terminal or rightly next to the N-terminal
methionine. If all the information can be encoded into
the patterns, the model will be able to perform better
in classification.

So we extracted patterns like this. In addition to
subsequent residues following an acetylated site, we
included one more residue ahead of each acetylated
site. If the acetylated residue is located first at N-
terminal, we use a symbol “X” to represent the residue
ahead of it. We found that all positive examples
begin with either “M” or “X” (Figure 1). Thus the

Fig. 1 Shannon information (7 ) sequence logo (8 ) of

57 acetylation sites in the positive samples, in the format

of extracted patterns. The height of each letter is made

proportional to its frequency, and the letters are sorted

so that the most common one is on top. Acetylation is

reported on Position 2 in the logo. Position 1 is either

methionine (M) or empty (X). Position 2 is mostly oc-

cupied by S, which means that our positive samples are

primarily composed of acetylated serines.

information about the N-terminal methionine cleav-
age has been encoded into the patterns that we have
extracted.

With regard to negative examples, patterns were
also extracted as described above, with the target
residue at position 2. However, in order to balance
the information added to positive examples, we no
longer select negative examples in a completely ran-
dom way, as NetAcet did. Instead, we collected all
the negative examples that began with “M” or “X”
(the number amounts to 40), and made them “fixed
negative examples”. Then we selected the other neg-
ative examples randomly from the ones left in order
to form a training set of 171 examples, which will be
the input to the model.

Finally, the SVM model was trained using 3-fold
cross-validation. Sparse coding was used for translat-
ing the amino acids to data input to the model (9 ).
In our experiment several window lengths have been
tried. In the optimal case (when the window length
is 5), the RBF kernel was used with the optimal pa-
rameters γ = 0.14, C = 1.1.
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