Timeline of Genomics $(1977-2004)^*$

Year	Event and Theoretical Implication/Extension		Reference
1977	Frederick Sanger (1980 Noble Prize Laureates for Chemistry) explores the technology of DNA se- quencing. Sanger and colleagues use the technique to determine the sequence of all 5,375 nucleotides of the bacteriophage phi-X174, the first complete determination of the genome of an organism.	1. 2. 3.	 Sanger, F., et al. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467. Sanger, F., et al. 1977. The nucleotide se- quence of bacteriophage phi-X174. J. Mol. Biol. 125: 225-246. Sanger, F., et al. 1977. Nucleotide se- quence of bacteriophage phi X174 DNA. Nature 165: 687-695.
	Allan Maxam and Walter Gilbert (1980 Nobel Prize Laureate for Chemistry) develop a new method for sequencing DNA, called Maxam-Gilbert chemical degradation method. They use the technique to determine the sequence of the operon of a bacterial genome.		Maxam, A.M. and Gilbert, W. 1977. A new method for sequencing DNA. <i>Proc.</i> <i>Natl. Acad. Sci. USA</i> 74: 560-564.
	Louise Chow and Richard Roberts, and independently Phillip Sharp (the latter two are 1993 Nobel Prize Laureates for Physiology or Medicine) show that eukarotic genes contain many interruptions, called INTRONS.	1. 2.	Chow, L.T., Gelinas, R.E., Broker, T.R., and Roberts, R.J. 1977. An amazing se- quence arrangement at the 5' ends of ade- novirus 2 messenger RNA. <i>Cell</i> 12: 1-8. Berget, S.M., Moore, C., and Sharp, P.A. 1977. Spliced segments at the 5'-terminus of adenovirus 2 late mRNA. <i>Proc. Natl.</i> <i>Acad. Sci. USA</i> 74: 3171-3175.
	Carl Woese uses ribosomal RNA analysis to iden- tify a third form of life, the Archea, whose genetic makeup is distinct from but related to both Bacte- ria and Eucaryea.	1. 2.	 Woese, C.R. and Fox, G.E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. <i>Proc. Natl. Acad. Sci. USA</i> 74: 5088-5090. Fox, G.E., Pechman, K.R., and Woese, C.R. 1977. Comparative cataloging of 16S ribosomal ribonucleic acid: molecular approach to procaryotic systematics. <i>Int. J. Syst. Bacteriol.</i> 27: 44-57.
	Herbert Wayne Boyer and colleagues synthesize a gene for the human hormone somatostatin, repre- senting the first synthesis of a functional polypep- tide product from a gene of chemically synthesized origin.		Itakura, K., Hirose, T., Crea, R., Riggs, A.D., Heyneker, H.L., Bolivar, F., and Boyer, H.W. 1977. Expression in <i>Es-</i> <i>cherichia coli</i> of a chemically synthesized gene for the hormone somatostatin. <i>Sci-</i> <i>ence</i> 198: 1056-1063.
1978	Michael Smith (1993 Nobel Prize Laureate for Chemistry) establishes oligonucleotide-based, site- directed mutagenesis.		Smith, M. 1978. Mutagenesis at a spe- cific position in a DNA molecule. <i>J. Biol.</i> <i>Chem.</i> 253: 6651-6560.
	Vasudha B. Reddy and colleagues first sequence the genome of the simian virus 40.		Reddy, V.B., et al. 1978. The genome of simian virus 40. Science 200: 494-502.
	Frederick Sanger and colleagues develop ultrathin gels for improved sequence analysis.		Sanger, F. and Coulson, A.R. 1978. The use of thin acrylamide gels for DNA sequencing. <i>FEBS Lett.</i> 87: 107-110.

* Edited by the Editorial Office of Genomics, Proteomics & Bioinformatics.

Year	Event and Theoretical Implication/Extension		Reference
1979	H. Chaim Birnboim introduces a method to isolate the plasmid DNA.	1. 2.	 Birnboim, H.C. and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. <i>Nucleic Acids Res.</i> 7: 1513-1523. Birnboim, H.C. 1983. A rapid alkaline extraction method for the isolation of plasmid DNA. <i>Methods Enzymol.</i> 100: 243-255.
1980	 David Botstein, Ray White, Mark Skolnick, and Ronald Davis initiates the use of restriction fragment length polymorphisms (RFLPs) in mapping genes to indicate genetic differences among individuals. Frederick Sanger and colleagues develop 		 Botstein, D., White, R., Skolnick, M., and Davis, R. 1980. Contruction of a genetic linkage map in man using restriction frag- ment length polymorphisms. Am. J. Hum. Genet. 32: 314-331. Sanger, F., et al. 1980. Cloning in single-
	the random shotgun method to prepare templates for DNA sequencing.		stranded bacteriophage as an aid to rapid DNA sequencing. <i>J. Mol. Biol.</i> 143: 161- 178.
1981	Stephen Anderson first reports of mtDNA se- quencing, now called the Anderson or more com- monly the Cambridge Reference Sequence/CRS. He	1.	Anderson, S. 1981. Sequence and organiza- tion of the human mitochondrial genome. <i>Nature</i> 290: 457-465.
	also develops the shotgun sequencing strategy.	2.	Anderson, S. 1981. Shotgun DNA sequenc- ing using cloned DNase I-generated frag- ments. <i>Nucleic Acids Res.</i> 9: 3015-3027.
	Thomas Cech finds the self-splicing RNA from Tetrahymena.	1.	Grabowski, P.J., Zaug, A.J., and Cech, T.R. 1981. The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of Tetrahy- mena. <i>Cell</i> 23: 467-476. Zaug, A.J. and Cech, T.R. 1982. The in- tervening sequence excised from the ribo- somal RNA precursor of Tetrahymena con- tains a 5-terminal guanosine residue not encoded by the DNA. <i>Nuclec Acids Res.</i> 10: 2823-2838.
	Thomas Wagner and colleagues produce the first transgenic animals by transferring genes from other animals into mice.	1. 2.	 Wagner, T.E., et al. 1981. Microinjection of a rabbit beta-globin gene into zygotes and its subsequent expression in adult mice and their offspring. Proc. Natl. Acad. Sci. USA 78: 6376-6380. Costantini, F. and Lacy, E. 1981. Intro- duction of a rabbit beta-globin gene into
	J. C. Chang and Y. W. Kan detect the sickle cell anemia by restriction enzyme analysis of the DNA, making it the first genetic illness diagnosed antenatally at the gene level directly.		the mouse germ line. <i>Nature</i> 294: 92-94. Chang, J.C. and Kan, Y.W. 1981. Antena- tal diagnosis of sickle cell anaemia by direct analysis of the sickle mutation. <i>Lancet</i> 2: 1127-1129.
	Wang De-Bao and coworkers first complete the synthesis of yeast alanine transfer ribonucleic acid.	1.	Wang, D.B. 1980. Synthesis of 3'-half molecule (nucleotides 36–76) of yeast ala- nine transfer ribonucleic acid. <i>Nucleic</i>
		2.	Acids Symp. Ser. 7: 325-333. Wang, D.B., et al. 1983. Total synthesis of yeast alanine transfer ribonucleic acid. Sci. Sin. B. 26: 464-481.

Geno. Prot. Bioinfo. Vol. 2 No. 4 November 2004

Year	Event and Theoretical Implication/Extension		Reference
1981	Mary Harper and colleagues map the gene for insulin. Mapping by <i>in situ</i> hybridization became a standard method.	1.	 Harper, M.E. and Saunders, G.F. 1981. Localization of single copy DNA sequences of G-banded human chromosomes by <i>in situ</i> hybridization. <i>Chromosoma</i>. 83: 431-439. Harper, M.E., <i>et al.</i> 1981. Localization of the human insulin gene to the distal end of the short arm of chromosome 11. <i>Proc. Natl. Acad. Sci. USA</i> 78: 4458-4460.
1982	Frederick Sanger and colleagues sequence the en- tire genome of bacteriophage lambda using a ran- dom shotgun technique.		Sanger, F., <i>et al.</i> 1982. Nucleotide sequence of bacteriophage lambda. <i>J. Mol. Biol.</i> 162: 729-733.
	Stanley B. Prusiner (1997 Nobel Prize Laureate for Physiology or Medicine) finds evidence that a class of infectious proteins he calls PRIONS cause scrapie, a fatal neurodegenerative disease of sheep.		Prusiner, S.B. 1982. Novel proteinaceaous particles cause scrapie. <i>Science</i> 216: 136- 144.
	Gerald Rubin and Allan Spradling develop methods for making transgenic <i>Drosophila</i> .		Rubin, G.M. and Spradling, A.C. 1982. Genetic transformation of <i>Drosophila</i> with transposable element vectors. <i>Science</i> 218: 348-353.
	Los Alamos National Laboratory forms Gen-Bank , NIH's publicly accessible genetic sequence database.		
1983	Kary B. Mullis (1993 Nobel Prize Laureate for Chemistry) invents the polymerase chain reaction (PCR), a method for rapidly and easily cloning DNA fragments.	 1. 2. 3. 	 Saiki, R.K., et al. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analyses for diagnosis of sickle cell anemia. Science 230: 1350-1354. Mullis, K.B. and Faloona, F.A. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155: 335-350. Saiki, R.K., et al. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491.
	Scott D. Putney and colleagues recognize that essentially random cloning and sequencing could provide rapid access to the messenger RNAs in the cell: they develop the method later called EST (expressed sequence tag).		Putney, S.D., <i>et al.</i> 1983. A new troponin T and cDNA clones for 13 different muscle proteins, found by shotgun sequencing. <i>Nature</i> 302: 718-721.
	James Gusella maps the first disease gene linked to Huntington's disease, which is on chromosome 4.		Gusella, J.F., <i>et al.</i> 1983. A polymorphic DNA marker genetically linked to Huntington's disease. <i>Nature</i> 306: 234-238.
	G. Schröder and colleagues perform the first genetic transformation of plant cells by Ti plasmids.	1. 2.	Schröder, G., <i>et al.</i> 1983. The conserved part of the T-region in Ti-plasmids ex- presses four proteins in bacteria. <i>EMBO</i> <i>J.</i> 2: 403-409. Willmitzer, L., <i>et al.</i> 1983. The use of Ti-plasmids as plant-directed gene vectors.
		۵.	Ti-plasmids as plant-directed gene vectors Folia. Biol. (Praha) 29: 106-114.

Year	Event and Theoretical Implication/Extension		Reference
1983	Andrew Murray and Jack Szostak synthesize the first artificial chromosome.	1. 2.	Murray, A.W. and Szostak, J.W. 1983. Construction of artificial chromosomes in yeast. <i>Nature</i> 305: 189-193. Murray, A.W. and Szostak, J.W. 1987. Ar- tificial chromosomes. <i>Sci. Am.</i> 257: 62-68.
1984	Alec Jeffreys develops "genetic fingerprinting" for identifying individuals by analyzing polymor- phic (variable) sequences in their DNA.		Jeffreys, A.J., <i>et al.</i> 1985. Individual- specific "finger-prints" of human DNA. <i>Nature</i> 316: 75-79.
	Richard Baer and colleagues complete the entire DNA sequence of the Epstein-Barr virus.		Baer, R., <i>et al.</i> 1984. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. <i>Nature</i> 310: 207-211.
	William McGinnis discovers homeotic (Hox) regulatory genes, and demonstrates that a single mutation in a Hox gene suffices to suppress all limb development in the thoracic region of fruit flies.	1. 2.	McGinnis, W., et al. 1984. A con- served DNA sequence in homoeotic genes of the <i>Drosophila</i> Antennapedia and bitho- rax complexes. <i>Nature</i> 308: 428-433. McGinnis, W., et al. 1984. A homolo- gous protein-coding sequence in <i>Drosophila</i> homeotic genes and its conservation in other metazoans. <i>Cell</i> 37: 403-408.
	Charles Cantor and David Schwartz develop pulsed field gel electrophoresis.		Schwartz, D.C. and Cantor, C.R. 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel elec- trophoresis. <i>Cell</i> 37: 67-75.
1985	Robert Sinsheimer convenes Santa Cruz meet- ing, which develops idea of complete characteriza- tion of the human genome. Renato Dulbecco suggests sequencing the genome to help to under- stand cancer. Charles DeLisi proposes a project to sequence the genome to help understand radia- tion damage.	1. 2.	 Sinsheimer, R.L. 1989. The Santa Cruz Workshop—May 1985. <i>Genomics</i> 5: 954- 956. Dulbecco. R. 1986. A turning point in cancer research: sequencing the human genome. <i>Science</i> 231: 1055-1056.
1986	Brigitte Royer-Pokora for the first time clones one human disease gene positionally for the chronic granulomatous disease.		Royer-Pokora, B., <i>et al.</i> 1986. Cloning the gene for an inherited human disorder- chronic granulomatons disease on the basis of its chromosomal location. <i>Nature</i> 322: 32-38.
	Leroy Hoodinventsthe first automatic DNAfluorescence sequencer.		Smith, L.M., <i>et al.</i> 1986. Fluorescence de- tection in automated DNA sequence anal- ysis. <i>Nature</i> 321: 674-679.
1987	Maynard Olson invents "yeast artificial chro- mosomes" (YACs), expression vectors for large proteins.		Burke, D.T., Carle, G.F., and Olson, M.V. 1987. Cloning of large segments of exoge- nous DNA into yeast by means of artificial chromosome vectors. <i>Science</i> 236: 806- 812.
	Helen Donis-Keller and colleagues publish the first human genetic map with 403 markers.		Donis-Keller, H., <i>et al.</i> 1987. A genetic linkage map of the human genome. <i>Cell</i> 51: 319-337.
	DuPont scientists develop a system for rapid DNA sequencing with fluorescent chain- terminating dideoxynucleotides.		

Year	Event and Theoretical Implication/Extension	Reference
1989	HUGO (Human Genome Organisation), an inter- national association of researchers involved in the Human Genome Project, is created to help coordi- nate activities and to assist in sharing of data and resources.	
	Francis Collins and colleagues identify the gene coding for the cystic fibrosis transmembrane con- ductance regulator protein (CFTR) on chromosome 7, which causes cystic fibrosis when mutant.	 Drumm, M.L., et al. 1988. Physical mapping of the cystic fibrosis region by pulse-field gel electrophoresis. Genomics 2: 346-354. Iannuzzi, M.C., et al. 1989. Isolation of additional polymorphic clones from the cystic fibrosis region, using chromosome jumping from D7S8. Am. J. Hum.Genet. 44: 695-703. Dean, M., et al. 1990. Approaches to localizing disease genes as applied to cystic fibrosis. Nucleic Acids Res. 18: 345-350.
	James Weber and Paula May use MI- CROSATELLITES as new genetic markers, a stretch of DNA made of a two to four base-pair long sequence that is repeated in tandem.	Weber, J.L. and May, P.E. 1989. Abun- dant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. <i>Am. J. Hum. Genet.</i> 44: 388-396.
	Maynard Olson developssequence tagged site(STS)as another marker.	Olson, M.V., <i>et al.</i> 1989. A common lan- guage for physical mapping of the human genome. <i>Science</i> 245: 1434-1435.
	Stanley Fields develops the "two-hybrid" approach for looking at interactions between pairs of proteins by expressing them in yeast.	Fields, S. and Song, O. A novel genetic sys- tem to detect protein-protein interactions. <i>Nature</i> 340: 245-246.
	Thomas P. Beebe Jr. and colleagues first ob- serve the DNA double-helix structure directly by scanning tunneling microscope (STM).	Beebe, T.P. Jr., <i>et al.</i> 1989. Direct ob- servation of native DNA structures with the scanning tunneling microscope. <i>Sci-</i> <i>ence</i> 243: 370-372.
1990	US Department of Energy and NIH officially launch the Human Genome Project (HGP).	 Watson, J.D. 1990. The Human Genome Project: past, present, and future. Science 248: 44-49. Cantor, C.R. 1990. Orchestrating the Hu- man Genome Project. Science 248: 49-51.
	Sydney Brenner proposes sequencing human cD-NAs to provide rapid access to human genes.	Brenner, S. 1990. The human genome: the nature of the enterprise. In <i>Human</i> <i>Genetic Information: Science, Law and</i> <i>Ethics. Ciba Found. Symp.</i> 149: 6-12.
	Three groups develop capillary electrophoresis, one team led by Lloyd Smith, the second by Barry Karger, and the third by Norman Dovichi.	 Luckey, J.A., et al. 1990. High-speed DNA sequencing by capillary electrophore- sis. Nucleic Acids Res. 18: 4417-4421. Guttman, A., Cohen, A.S., Heiger, D.N., and Karger, B.L. 1990. Analytical and micropreparative ultrahigh resolution of oligonucleotides by polyacrylamide gel high-performance capillary electrophore- sis. Anal. Chem. 62: 137-141. (to next page)

Year	Event and Theoretical Implication/Extension		Reference
1990		3.	(<i>Continued</i>) Swerdlow, H., Wu, S.L., Harke, H., and Dovichi, N.J. 1990. Capillary gel elec- trophoresis for DNA sequencing. Laser- induced fluorescence detection with the sheath flow cuvette. <i>J. Chromatogr.</i> 516: 61-67.
	David Lipman, Eugene Myers, and colleaguespublishthe BLAST (basic local alignment searchtool) algorithmfor aligning sequences.		Altschul, S.F., Gish, W., Miller, W., My- ers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. <i>J. Mol. Biol.</i> 215: 403-410.
1991	Mark Adams and colleagues propose the concept of expressed sequence tag (EST).		Adams, M.D., <i>et al.</i> 1991. Complementary DNA sequencing: expressed sequence tags and human genome project. <i>Science</i> 252: 1651-1656.
	Mary-Claire King finds evidence that a gene on human chromosome 17 causes the inherited form of breast cancer and also increases the risk of ovarian cancer.		King, M.C. 1991. Localization of the early- onset breast cancer gene. <i>Hosp. Pract.</i> 26: 121-126.
	Edward Uberbacher and Richard Mural develop GRAIL , the first of many gene-finding programs.		Uberbacher, E.C. and Mural, R.J. 1991. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. <i>Proc. Natl. Acad. Sci.</i> <i>USA</i> 88: 11261-11265.
1992	David Page and colleagues complete the first physical map of the human Y chromosome.	1.	Vollrath, D., <i>et al.</i> 1992. The human Y chromosome: a 43-interval map based on naturally occurring deletions. <i>Science</i> 258: 52-59.
		2.	Foote, S., <i>et al.</i> 1992. The human Y chro- mosome: overlapping DNA clones span- ning the euchromatic region. <i>Science</i> 258: 60-66.
	Helen Donis-Keller and colleagues publish the low-resolution genetic linkage map of the entire human genome.		NIH/CEPH Collaborative Mapping Group. 1992. A comprehensive genetic linkage map of the human genome. <i>Science</i> 258: 67-86, 148-162.
	Jean Weissenbach and colleagues complete a genetic map of human genome.		Weissenbach, J., <i>et al.</i> 1992. A second- generation linkage map of the human genome. <i>Nature</i> 359: 794-801.
	Andrew Collins and colleagues publish gene maps of human chromosome 1.		Collins, A., et al. 1992. Integration of gene maps: chromosome 1. Proc. Natl. Acad. Sci. USA 89: 4598-4602.
	Kathleen Mills and colleagues construct genetic and physical maps of human chromosome 4.		Mills, K.A., <i>et al.</i> 1992. Genetic and physical maps of human chromosome 4 based on dinucleotide repeats. <i>Genomics</i> 14: 209-219.
	Ilya Chumakov and colleagues complete a physical map of human chromosome 21.		Chumakov, I., <i>et al.</i> 1992. Continuum of overlapping clones spanning the entire hu- man chromosome 21q. <i>Nature</i> 359: 380- 387.

Year	Event and Theoretical Implication/Extension	Reference
1992	Eric Lander and colleagues complete a genetic map of the mouse.	Dietrich, W., et al. 1992. A genetic map o the mouse suitable for typing intraspecific crosses. <i>Genetics</i> 131: 423-447.
	Steve Oliver and colleagues identify the entire sequence of 315 kb of one of the sixteen chromosomes of the yeast <i>Saccharomyces cerevisiae</i> , representing a major advance toward the sequencing of all the chromosomes of yeast.	Oliver, S.G., <i>et al.</i> 1992. The complete DNA sequence of yeast chromosome III <i>Nature</i> 357: 38-46.
	Mark Adams, Craig Venter, and colleagues describe a fast new approach to gene discovery using ESTs.	 Adams, M.D., et al. 1992. Sequence identification of 2,375 human brain genes. Nature 355: 632-634. Adams, M.D., et al. 1995. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of DNA sequence. Nature 377 3-174.
	Mel Simon and colleagues develop bacterial artificial chromosomes (BACs) for cloning.	Shizuya, H., et al. 1992. Cloning and sta ble maintenance of 300-kilobase-pair frag ments of human DNA in Escherichia col using an F-factor-based vector. Proc Natl. Acad. Sci. USA 89: 8794-8797.
	Kousaku Okubo uses a method based on single- strand partial sequencing of cDNAs from libraries enriched in the 3' end portions to establish tissue expression profiles.	 Okubo, K., et al. 1992. Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nat Genet. 2: 173-179. Matsubara, K. and Okubo, K. 1993. cDNA analyses in the human genome project Gene 135: 265-274.
1993	Daniel Cohen , Ilya Chumakov , and Jean Weissenbach produce a rough map of all 23 pairs of human chromosomes.	Cohen, D., Chumakov, I, and Weissenbach J. 1993. A first-generation physical map o the human genome. <i>Nature</i> 366: 698-701.
	Maynard Olson and colleagues publish physical maps of six chromosomes of <i>Saccharomyces cerevisiae</i> .	Riles, L., <i>et al.</i> 1993. Physical maps o the six smallest chromosomes of <i>Saccha</i> <i>romyces cerevisiae</i> at a resolution of 2.6 kilobase pairs. <i>Genetics</i> 134: 81-150.
1994	Jeffrey Murray and colleagues complete a com- prehensive genetic linkage map of the human genome.	Murray, J.C., <i>et al.</i> 1994. A comprehen- sive human linkage map with centimorgar density. Cooperative Human Linkage Cen- ter (CHLC). <i>Science</i> 265: 2049-2054.
	Marc Wilkins coins the term PROTEOME to mean all the proteins expressed by the genome.	Wilkins, M.R., et al. (eds.) 1997. Pro teome Research: New Frontiers in Func tional Genomics. Springer-Verlag, Berlin Germany.
1995	John Sulston and Robert Waterston propose to produce a draft sequence of the human genome by 2000.	Marshall, E. 1995. A strategy for sequencing the genome 5 years early. <i>Science</i> 267 783-784.
	Ilya Chumakov and colleagues map the human genome using yeast artificial chromosomes (YACs), and some chromosomes, notably 22, are mapped in finer detail. The map is an important step toward clone-based sequencing.	Chumakov, I.M., <i>et al.</i> 1995. A YAC con- tig map of the human genome. <i>Nature</i> 377 175-297.

Year	Event and Theoretical Implication/Extension	Reference
1995	Thomas Hudson and colleagues publish a phys- ical map of the human genome containing 15,000 markers.	Hudson, T.J., <i>et al.</i> 1995. An STS-based map of the human genome. <i>Science</i> 270: 1945-1954.
	Craig Venter and colleagues publish the first genome sequence of a free-living organism, <i>Haemophilus influenzae</i> (1.8 Mb).	Fleischmann, R.D., <i>et al.</i> 1995. Whole- genome random sequencing and assembly of <i>Haemophilus influenzae</i> Rd. <i>Science</i> 269: 496-512.
	Craig Venter and colleagues complete the genome sequence of $Mycoplasma$ genitalium (0.58 Mb), the smallest known genome of any free-living organism.	Fraser, C.M., <i>et al.</i> 1995. The minimal gene complement of <i>Mycoplasma genital-</i> <i>ium. Science</i> 270: 397-403.
	Michael Reeve and Carl Fuller find a novel thermostable polymerase for DNA sequencing.	Reeve, M.A. and Fuller, C.W. 1995. A novel thermostable polymerase for DNA sequencing. <i>Nature</i> 376: 796-797.
	Patrick Brown and colleagues publish the first paper using a printed glass microarray of complementary DNA (cDNA) probes.	Schena, M., <i>et al.</i> 1995. Quantitative mon- itoring of gene expression patterns with a complementary DNA microarray. <i>Science</i> 270: 467-470.
	Richard Mathies and colleagues develop improved sequencing dyes.	Ju, J., <i>et al.</i> 1995. Fluorescence energy transfer dye-labeled primers for DNA se- quencing and analysis. <i>Proc. Natl. Acad.</i> <i>Sci. USA</i> 92: 4347-4351.
.996	Shizhen Qin and colleagues construct a high-resolution physical map of human chromosome 11.	Qin, S, et al. 1996. A high-resolution phys- ical map of human chromosome 11. Proc. Natl. Acad. Sci. USA 93: 3149-3154.
	Lee Rowen, Ben Koop, and Leroy Hood complete the sequence of the human T-cell receptor region.	Rowen, L., Koop, B.F., and Hood, L. 1996. The complete 685-kilobase DNA sequence of the human beta T cell receptor locus. <i>Science</i> 272: 1755-1762.
	William Dietrich and colleagues complete a comprehensive genetic map of the mouse genome.	Dietrich, W.F., <i>et al.</i> 1996. A compre- hensive genetic map of the mouse genome. <i>Nature</i> 380: 149-152.
	Yoshihide Hayashizaki and colleagues complete the first set of full-length mouse cDNAs.	Carninci, P., <i>et al.</i> 1996. High-efficiency full-length cDNA cloning by biotinylated CAP trapper. <i>Genomics</i> 37: 327-336.
	Craig Venter and colleagues complete the genome sequence of <i>Methanococcus jannaschii</i> (1.7 Mb).	Bult, C.J., <i>et al.</i> 1996. Complete genome sequence of the methanogenic archaeon, <i>Methanococcus jannaschii. Science</i> 273: 1058-1073.
	Steve Oliver and colleagues sequence the yeast <i>Saccharomyces cerevisiae</i> genome (12.1 Mb), the first sequenced eukaryotic genome.	 Bradbury, J. 1996. Yeast genome sequenced completely. Lancet 347: 1175. Goffeau, A., et al. 1996. Life with 6000 genes. Science 274: 546, 563-567. Mewes, H.W. 1997. Overview of the yeast genome. Nature 387: 7-65.
1997	Ian Wilmut creates the first somatocytal clone sheep (Dolly).	Wilmut, I., <i>et al.</i> 1997. Viable offspring derived from fetal and adult mammalian cells. <i>Nature</i> 385: 810-813.
	Frederick Blattner and colleagues complete the genome sequence of <i>Escherichia coli</i> (4.6 Mb).	Blattner, F.R., <i>et al.</i> 1997. The complete genome sequence of <i>Escherichia coli</i> K-12. <i>Science</i> 277: 1453-1462.

Year	Event and Theoretical Implication/Extension		Reference
1997	Joe DeRisi, Vishy Iyer, and Patrick Brown publish the first complete eukaryotic genome (<i>Sac-</i> <i>charomyces cerevisiae</i>) on a microarray.		DeRisi, J.L., Iyer, V.R., and Brown, P.O. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. <i>Science</i> 278: 680-686.
	Molecular Dynamics introduces a capillary sequenc- ing machine called MegaBACE .		
1998	Panos Deloukas and colleagues produce a rough draft of the human genome map, showing the locations of more than 30,000 genes.		Deloukas, P., <i>et al.</i> 1998. A physical map of 30,000 human genes. <i>Science</i> 282: 744- 746.
	Craig Venter and colleagues publish "Shotgun sequencing of the human genome".		Venter, J.C., <i>et al.</i> 1998. Shotgun sequenc- ing of the human genome. <i>Science</i> 280: 1540-1542.
	Francis Collins proposes SNPs initiative beginning.		Collins, F.S., Brooks, L.D., and Chakravarti, A. 1998. A DNA poly- morphism discovery resource for research on human genetic variation. <i>Genome Res.</i> 8:1229-1231.
	Bart Barrell and colleagues complete the genome sequence of <i>Mycobacterium tuberculosis</i> (4.4 Mb).		Cole, S.T., <i>et al.</i> 1998. Deciphering the biology of <i>Mycobacterium tuberculosis</i> from the complete genome sequence. <i>Nature</i> 393: 537-544.
	John Sulston, Robert Waterston, and colleagues complete the genome sequence of <i>Caenorhabditis elegans</i> (97 Mb).		The <i>C. elegans</i> Sequencing Consortium. 1998. Genome sequence of the nematode <i>Caenorhabditis elegans</i> : a platform for in- vestigating biology. <i>Science</i> 282: 2012- 2018.
	Phil Green , Brent Ewing , and colleagues pub- lish a program called phred for automatically in- terpreting sequencer data.	1. 2.	Ewing, B., Hillier, L., Wendl, M.C., and Green, P. 1998. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. <i>Genome Res.</i> 8: 175-185. Ewing, B. and Green, P. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. <i>Genome Res.</i> 8: 186-194.
	Phil Green and colleagues publish a program called consed for sequence finishing.		Gordon, D., Abajian, C., and Green, P. 1998. Consed: a graphical tool for sequence finishing. <i>Genome Res.</i> 8: 195-202.
	ABI Prism 3700 sequencing machine reaches mar- ket.		
1999	Ian Dunham and colleagues produce the first one of many DNA sequences of human chromosomes, chromosome 22, which is about 34 Mb and includes at least 550 genes.		Dunham, I., <i>et al.</i> 1999. The DNA sequence of human chromosome 22. <i>Nature</i> 402: 489-495.
2000	Masahira Hattori and colleagues complete the DNA sequence of human chromosome 21 (33 Mb).	1. 2.	Hattori, M. et al. 2000. The DNA se- quence of human chromosome 21. Nature 405: 311-319. Hattori, M., et al. 2000. The DNA se- quence of human chromosome 21. Am. J. Ophthalmol. 130: 383.

Year	Event and Theoretical Implication/Extension	Reference
2000	Mark Adams, Eugene Myers, and col- leagues publish the genome sequence of <i>Drosophila</i> <i>melanogaster</i> (137 Mb).	 Adams, M.D., et al. 2000. The genome sequence of Drosophila melanogaster. Sci- ence 287: 2185-2195. Myers, E.W., et al. 2000. A whole- genome assembly of Drosophila. Science 287: 2196-2204.
	The Arabidopsis Genome Initiative completes the sequencing of the first plant genome of <i>Arabidopsis thaliana</i> (115 Mb).	The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant <i>Arabidopsis thaliana</i> . <i>Na-</i> <i>ture</i> 408: 796-815.
	Julian Parkhill, Herve Tettelin, and colleagues respectively publish sequences of different strains of <i>Neisseria meningitidis</i> (2.2–2.3 Mb), the bacterium that causes many cases of meningitis.	1. Parkhill, J., et al. 2000. Complete DNA sequence of a serogroup A strain of <i>Neisse-</i> ria meningitidis Z2491. Nature 404: 502- 506.
		 Tettelin, H., et al. 2000. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287: 1809-1815.
2001	The International Human Genome Sequencing Consortium produces a draft sequence of the hu- man genome and makes it freely available.	 The International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome. Nature 409: 860-921. Sachidanandam, R., et al. 2001. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409: 928-933. McPherson, J.D., et al. 2001. A physical map of the human genome. Nature 409: 934-941.
	Craig Venter and colleagues publish their version of the human genome draft sequence.	Venter, J.C., <i>et al.</i> 2001. The sequence of the human genome. <i>Science</i> 291: 1304-1351.
	Charles Tilford, Kate Montgomery, Thomas Bruls, and colleagues produce the physical map of human chromosomes Y, 12, and 14, respectively.	 Tilford, C.A., et al. 2001. A physical map of the human Y chromosome. Nature 409: 943-945. Montgomery, K.T., et al. 2001. A high- resolution map of human chromosome 12. Nature 409: 945-946. Bruls, T., et al. 2001. A physical map of human chromosome 14. Nature 409: 947- 948.
	Panos Deloukas and colleagues produce the sequence of human chromosome 20.	Deloukas, P., <i>et al.</i> 2001. The DNA sequence and comparative analysis of human chromosome 20. <i>Nature</i> 414: 865-871.
	Stewart Cole and colleagues sequence the genome of <i>Mycobacterium leprae</i> (3.3 Mb) , the causative agent of leprosy.	Cole, S.T., <i>et al.</i> 2001. Massive gene decay in the leprosy bacillus. <i>Nature</i> 409: 1007- 1011.
	Barbara May and colleagues complete the genome sequence of <i>Pasteurella multocida</i> (5.6 Mb).	May, B.J., et al. 2001. Complete genomic sequence of Pasteurella multocida, Pm70. Proc. Natl. Acad. Sci. USA 98: 3460- 3465.

Year	Event and Theoretical Implication/Extension	Reference
2002	Jun Yu and colleagues finish a draft sequence of the rice (<i>Oryza sativa</i> L. ssp. <i>indica</i>) genome (420 Mb).	Yu, J., et al. 2002. A draft sequence of the rice genome (<i>Oryza sativa</i> L. ssp. <i>indica</i>). <i>Science</i> 296: 79-92.
	Stephen Goff and colleagues finish a draft sequence of the rice (<i>Oryza sativa</i> L. ssp. <i>japonica</i>) genome (420 Mb).	Goff, S.A., <i>et al.</i> 2002. A draft sequence of the rice genome (<i>Oryza sativa</i> L. ssp. <i>japonica</i>). <i>Science</i> 296: 92-100.
	Simon Gregory and colleagues publish a physical map of the mouse genome.	Gregory, S.G., <i>et al.</i> 2002. A physical map of the mouse genome. <i>Nature</i> 418: 743- 750.
	The Mouse Genome Sequencing Consortium pub- lishes its draft sequence of the mouse genome.	Mouse Genome Sequencing Consortium. 2002. Initial sequencing and comparative analysis of the mouse genome. <i>Nature</i> 420: 520-562.
	Robert Holt and colleagues finish the genome sequence of the malaria mosquito, <i>Anopheles gambiae</i> (278 Mb).	Holt, R.A., <i>et al.</i> 2002. The genome se- quence of the malaria mosquito <i>Anopheles</i> gambiae. Science 298: 129-149.
	Malcolm Gardner and colleagues publish the genome sequence of the human malaria parasite <i>Plasmodium falciparum</i> (22.9 Mb).	Gardner, M.J., <i>et al.</i> 2002. Genome se- quence of the human malaria parasite <i>Plas-</i> <i>modium falciparum. Nature</i> 419: 498-511.
	Ian Paulsen and colleagues publish the genome sequence of <i>Brucella suis</i> (3.3 Mb).	Paulsen, I.T., <i>et al.</i> 2002. The <i>Brucella</i> <i>suis</i> genome reveals fundamental similar- ities between animal and plant pathogens and symbionts. <i>Proc. Natl. Acad. Sci.</i> <i>USA</i> 99: 13148-13153.
	Samuel Aparicio and colleagues publish the genome sequence of <i>Fugu rubripes</i> (400 Mb).	Aparicio, S., <i>et al.</i> 2002. Whole-genome shotgun assembly and analysis of the genome of <i>Fugu rubripes. Science</i> 297: 1301-1310.
	Paramvir Dehal and colleagues publish the genome sequence of <i>Ciona intestinalis</i> (116.7 Mb).	Dehal, P., et al. 2002. The draft genome of <i>Ciona intestinalis</i> : insights into chordate and vertebrate origins. <i>Science</i> 298: 2157-2167.
2003	Roland Heilig, Helen Skaletsky, LaDeana Hillier, Andy Mungall, and colleagues publish the sequences of human chromosomes 14, Y, 7, and 6, respectively.	 Heilig, R., et al. 2003. The DNA sequence and comparative analysis of human chro- mosome 14. Nature 421: 601-607. Skaletsky, H., et al. 2003. The male- specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423: 825-837. Hillier, L.W., et al. 2003. The DNA se- quence of human chromosome 7. Nature 424: 157-164. Mungall, A.J., et al. 2003. The DNA se- quence and analysis of human chromosome 6. Nature 425: 805-811.
	Ewen Kirkness and colleagues publish a survey sequencing of the dog genome.	Kirkness, E.F., <i>et al.</i> 2003. The dog genome: survey sequencing and comparative analysis. <i>Science</i> 301: 1898-1903.
	James Galagan and colleagues publish the genome sequence of <i>Neurospora crassa</i> (bread mold) (43 Mb).	Galagan, J.E., <i>et al.</i> 2003. The genome sequence of the filamentous fungus <i>Neurospora crassa. Nature</i> 422: 859-868.

Year	Event and Theoretical Implication/Extension		Beference
2003	Lincoln Stein and colleagues publish the genome sequence of <i>Caenorhabditis briggsae</i> (104 Mb).		Stein, L.D., <i>et al.</i> 2003. The genome sequence of <i>Caenorhabditis briggsae</i> : a platform for comparative genomics. <i>PLoS Biol.</i> 1: E45.
2004	The International Human Genome Sequencing Consortium finishes the euchromatic sequence of the human genome.		International Human Genome Sequencing Consortium. 2004. Finishing the euchro- matic sequence of the human genome. <i>Na-</i> <i>ture</i> 431: 931-945.
	Andrew Dunham, Jane Grimwood, Sean Humphray, Panos Deloukas, Jeremy Schmutz, Joel Martin, and colleagues pub- lish the sequences of human chromosomes 13, 19, 9, 10, 5, and 16, respectively.	 1. 2. 3. 4. 5. 6. 	 Dunham, A., et al. 2004. The DNA sequence and analysis of human chromosome 13. Nature 428: 522-528. Grimwood, J., et al. 2004. The DNA sequence and biology of human chromosome 19. Nature 428: 529-535. Humphray, S.J., et al. 2004. DNA sequence and analysis of human chromosome 9. Nature 429: 369-374. Deloukas, P., et al. 2004. The DNA sequence and comparative analysis of human chromosome 10. Nature 429: 375-381. Schmutz, J., et al. 2004. The DNA sequence and comparative analysis of human chromosome 5. Nature 431: 268-274. Martin, J., et al. 2004. The sequence and analysis of duplication-rich human chromosome 16. Nature 432: 988-994.
	Richard Gibbs and colleagues complete the rat genome sequence.		Gibbs, R.A., <i>et al.</i> 2004. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. <i>Nature</i> 428: 493-521.
	The International Chicken Genome Sequencing Consortium publishes the chicken genome sequence.	 1. 2. 3. 	 Hillier, L.W, et al. 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695-716. Wong, G.K., et al. 2004. A genetic vari- ation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432: 717-722. Wallis, J.W., et al. 2004. A physical map of the chicken genome. Nature 432: 761- 764.
	Kazuei Mita, Qingyou Xia, and colleagues in- dependently publish the genome sequence of silk- worm, <i>Bombyx mori</i> (530 Mb).	1. 2.	Mita, K., et al. 2004. The genome sequence of silkworm, Bombyx mori. DNA Res. 11: 27-35. Xia, Q, et al. 2004. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306: 1937-1940.
	Motomichi Matsuzaki and colleagues complete the genome sequence of the ultrasmall unicellular red alga, <i>Cyanidioschyzon merolae</i> (16.5 Mb).		Matsuzaki, M., <i>et al.</i> 2004. Genome sequence of the ultrasmall unicellular red alga <i>Cyanidioschyzon merolae</i> 10D. <i>Nature</i> 428: 653-657.