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Abstract Breakthroughs in cell fate conversion have made it possible to generate large quantities

of patient-specific cells for regenerative medicine. Due to multiple advantages of peripheral blood

cells over fibroblasts from skin biopsy, the use of blood mononuclear cells (MNCs) instead of skin

fibroblasts will expedite reprogramming research and broaden the application of reprogramming

technology. This review discusses current progress and challenges of generating induced pluripotent

stem cells (iPSCs) from peripheral blood MNCs and of in vitro and in vivo conversion of blood cells

into cells of therapeutic value, such as mesenchymal stem cells, neural cells and hepatocytes. An

optimized design of lentiviral vectors is necessary to achieve high reprogramming efficiency of

peripheral blood cells. More recently, non-integrating vectors such as Sendai virus and episomal

vectors have been successfully employed in generating integration-free iPSCs and somatic stem cells.
Introduction

Conventional clinical therapies using small molecules, biologi-

cals and other agents have achieved great success in curing dis-
eases and extending life expectancy. However, many disorders
induced by diseased cells, damaged tissues or dysfunctional or-

gans can only be cured by replacing them with functional cells,
tissues or organs.

The establishment of the first human embryonic stem cell
(hESC) line in 1998 conferred new hopes for patients that re-

quire replacement therapy, since ESCs can self-renew in main-
tenance culture and can also be theoretically differentiated into
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any cell type in the human body using differentiation induction
culture methods [1]. Patient-specific ESC lines would be used
to prevent immune rejection by allogeneic transplantation.

The somatic cell nuclear transfer (SCNT) technology pio-
neered by John Gurdon in 1962 and successfully used to clone
Dolly the Sheep in 1996 [2] has failed to create patient-specific

ESCs until 2013 [3].
Yamanaka and Thomson/Yu took an unconventional ap-

proach during the race to create ESC-like cells from somatic
cells. They established a small viral vector-based gene expres-

sion library by cloning dozens of factors that were highly
expressed in ESCs. Twenty-four genes were carefully hand-
picked in Yamanaka’s library [4], which was more manageable

than Thomson/Yu’s library of 50–100 genes [5]. They both
screened for a combination of factors that are both necessary
and essential for reprogramming fibroblasts into pluripotency,

in contrast to the identification of a single master factor in ear-
lier transdifferentiation and reprogramming studies [6]. Yama-
naka’s delicate experimental design and serendipity led to the

identification of four factors––Oct4 (also known as Pou5f1),
Sox2, Klf4 and Myc (also known as c-Myc)––and won him
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the 2012 Nobel Prize in Physiology or Medicine jointly with
John Gurdon for successful cellular reprogramming in 2006
[7–9].

Of interest, two factors in the Thomson/Yu combination
are different from the four Yamakana factors: NANOG and
LIN28. More studies have used the Yamanaka combination

than the Thomson/Yu combination, likely because the Yama-
naka factors themselves are more efficient in reprogramming.
However, it has been found that the addition of NANOG

and LIN28, and especially LIN28, can further increase the effi-
ciency of Yamanaka factor-mediated reprogramming [10].
OCT4 and SOX2 are the two common factors between the
combinations of Yamanaka factors and Yu/Thomson factors.

Indeed, future study found that OCT4 and SOX2 are the most
essential factors for reprogramming, with OCT4 and SOX2
alone being sufficient to reprogram fibroblasts [11] or blood

CD34+ cells [12] into iPSCs at high efficiency.
The reprogramming of somatic cells to iPSCs has been con-

sidered the most important breakthrough in life sciences since

the discovery of DNA structure [7–9]. Cellular reprogramming
technology has changed the direction of stem cell research and
will undoubtedly continue to impact the field of stem cells and

regenerative medicine for decades to come. More recently, the
concept of in vitro and in vivo direct reprogramming has been
introduced and continues to gain momentum [13]. This tech-
nique sidesteps the generation of iPSCs and may be more suit-

able for some applications in regenerative medicine. Progresses
on direct reprogramming will be discussed later in this review.
Blood as a cellular source for reprogramming

Fibroblasts are the cellular source for many reprogramming

experiments performed in the last decade, but may not be
the best choice for directed reprogramming. Mouse embryonic
fibroblasts (MEFs) served as the source cells in Yamanaka’s
landmark paper and were used likely because of their common

availability in ESC cultures as supporting cells [4]. Conse-
quently, fibroblasts were also used in the majority of following
studies on cellular reprogramming. Skin biopsy is currently the

best approach to procure human primary fibroblasts. How-
ever, skin biopsy is an invasive and non-sterile procedure
and requires 2–3 weeks to expand harvested cells before exper-

imentation. Skin cells harbor more mutations due to environ-
mental insults such as UV irradiation than cells from inside the
body [14]. In contrast to these shortcomings of dermal fibro-

blasts, peripheral blood is already widely used in medical diag-
nostics and is obviously the most accessible resource for
cellular reprogramming.

White blood cells are the nucleated cells in peripheral blood

(PB) at concentrations of 3.6–11 · 106/ml. Nucleated periphe-
ral blood cells are composed of granulocytes (mostly neutro-
phils), monocytes, T lymphocytes, B lymphocytes and a few

progenitor cells. The major components of PB are red blood
cells and platelets, which can be depleted by treatment of red
blood cell lysis buffer followed by multiple centrifugations.

Alternatively, gradient centrifugation with Ficoll depletes both
red blood cells and granulocytes, leading to the enrichment of
mononuclear cells (MNCs).

Of interest, Tao Cheng and colleagues reported that termi-

nally-differentiated mouse granulocytes have greater repro-
gramming efficiency than hematopoietic stem/progenitor cells
by SCNT [15]. In contrast to SCNT, reprogramming with
exogenously expressed factors is inefficient and requires multi-
ple cell cycles to achieve pluripotency. As such, primary gran-

ulocytes, monocytes and B lymphocytes are among the most
difficult cells to be reprogrammed due to the lack of reliable
protocols to expand these cells. Epstein-Barr virus immortal-

ized lymphoblastoid B cells can be readily expanded in
ex vivo culture and thus be reprogrammed to pluripotency
[16,17]. Primary progenitor cells and mature T cells in PB

can be readily expanded using established methods and are
among the most successfully-used sources for reprogramming.

T cells are the most abundant cells after granulocytes in PB
(20–30%) and T cells can be readily expanded with IL-2 and

anti-CD3/CD28 microbeads [18]. Reprogramming of T cells
into pluripotency has been achieved by many labs using differ-
ent approaches [18–20]. T cell reprogramming has the potential

to rejuvenate aged T cells for immunotherapy [21,22]. How-
ever, mature T cells harbor a single T cell receptor (TCR) after
somatic recombination and have lost the ability to regenerate

the T cell repertoire with unlimited possibilities. Thus, most
investigators focused on reprogramming of non-lymphoid
cells.

In contrast to mature T or B cells, blood progenitors con-
tain an intact genome. In addition, they can be expanded in
culture conditions that favor the proliferation of myeloid cells
or erythroid cells [12,23]. Blood stem/progenitor cells express

surface marker CD34 and reside in the stem cell niche. How-
ever, approximately 1% stem/progenitor cells enter circulation
each day. Although only 0.01–0.1% cells in PB are CD34+

cells, this population can be enriched by magnetic-activated
cell sorting (MACS). Alternatively, culture of MNCs for sev-
eral days leads to the expansion of CD34+ cells to a 5–20%

purity, which can be used for reprogramming without further
purification. Interestingly, culturing MNCs in serum-free med-
ium supplemented with cytokines including erythropoietin

(EPO) is able to expand erythroid progenitors that express
CD36, CD71 and CD235a; these cells have also been success-
fully reprogrammed to iPSCs by Linzhao Cheng’s group
[23,24]. Whether myeloid progenitors or erythroid progenitors

are a better source for reprogramming has not been reported.

Critical factors for reprogramming somatic cells

to pluripotency

The mechanisms of Yamanaka factor-mediated reprogram-

ming have been intensively studied over the past years. Among
the numerous publications, several recent reports deserve spe-
cial attention. One line of studies suggest that Oct4, Sox2 and

Klf4 are pioneer factors that bind at enhancers of genes that
promote reprogramming and actively open local chromatin,
eventually establishing the transcription networks of pluripo-
tent stem cells (PSCs) [25,26]. A second theory proposes that

pluripotency factors function as lineage-specific master tran-
scription factors that prevent commitment of cells to mutually
exclusive lineages [27]. In support of this second theory, we

found that balanced expression of mesendoderm specifier
OCT4 and neuroectoderm specifier SOX2 supports high-effi-
ciency reprogramming of blood CD34+ cells into pluripotency

[12]. More intriguingly, Hongkui Deng and associates recently
found that OCT4 can be replaced with other mesendoderm
specifiers such as GATA3, GATA6 and SOX7, while SOX2
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can be replaced by neuroectoderm specifiers like GMNN (also
know as Geminin) in reprogramming mouse cells [28]. More-
over, two counteracting lineage specifiers can synergistically

induce pluripotency in the absence of both OCT4 and SOX2
[28]. In further support of this finding, Belmonte’s group re-
ported that replacement of OCT4 and SOX2 with mesendo-

derm-related genes like GATA3 and ectoderm-related genes
like ZNF521 can also reprogram human cells [29]. Although
OCT4, SOX2 and other factors can be replaced by lineage spe-

cifiers, the reprogramming efficiency is generally lower than
the commonly used factors that are delineated below.

OCT4 has been found to be the most important factor for
cellular reprogramming. Increasing OCT4 in ESCs by �50%
induces differentiation into both mesoderm and endoderm
cells [30]. Recently, we found that a high level of OCT4 alone
can directly reprogram CD34+ cells into mesoderm progenitor

cells or mesenchymal stem cells (MSCs) [31].
SOX2 is a master regulator of both iPSCs and neural stem

cells (NSCs). SOX2-overexpressing ESCs show biased differ-

entiation toward neural lineage [32,33]. It has been reported re-
cently that SOX2 alone can reprogram fibroblasts directly into
NSCs [34].

KLF4 is not essential for reprogramming induction in itself,
but is critical for generating iPSCs with high quality. Klf4
plays important roles in generating iPSCs that can form
high-contribution chimaeras or yield ‘‘all-iPSC mice’’ by tetra-

ploid (4n) complementation [35,36]. Mechanistic studies dem-
onstrate super-enhancers in ESCs that determine the cell
identity are particularly enriched in Klf4, suggesting that

Klf4 enhances the core transcriptional network of iPSCs or
ESCs [37]. In addition, a recent study reveals a functional role
of Klf4 in mediating higher-order chromatin structure for

maintaining and inducing pluripotency [38].
MYC increases reprogramming efficiency by approximately

tenfold in many systems [39]. Recent studies indicate that the

potency of MYC is accounted for by its role as a nonlinear
amplifier of the existing gene expression program [40,41].
However, MYC is a potent oncogene; re-activation of MYC
in the progeny of iPSCs induces tumor formation [36,42] and

therefore it is preferable to avoid the use of MYC in repro-
gramming. We have recently found that the use of an im-
proved episomal vector system allows MYC to be completely

omitted from the factor combination without significantly
decreasing the reprogramming efficiency of PB MNCs [43].

BCL-XL is not commonly used as a factor for facilitating

reprogramming. Surprisingly, we found that BCL-XL in-
creases efficiency of Yamanaka factor-mediated reprogram-
ming of adult PB MNCs by tenfold [43]. With the use of the
four factors––OCT4, SOX2, KLF4 and BCL-XL, we can gen-

erate as many as 20–30 integration-free iPSCs from 1 ml PB
[43]. The anti-apoptotic activity of BCL-XL may explain these
potent effects. It may also play a role in self-renewal and pro-

liferation of iPSCs, because recurrent amplifications at the
BCL-XL-harboring chromosome region 20q11.21 was selected
after long-term ESC culture [44].

shTP53 has been used to considerably increase the repro-
gramming efficiency of blood cells [18,24,45]. Knockdown of
p53 unfortunately heightens the risk of generating iPSCs with

considerable genetic abnormalities due to the genome guardian
nature of p53 [46,47].

Many small molecules have been reported to be able to
increase reprogramming efficiency [48]. Among them, sodium
butyrate, a histone deacetylase inhibitor, is the most important
one for reprogramming of blood cells. Butyrate substantially
enhances iPSC derivation from both mouse and human cells

by increasing the expression of endogenous pluripotency-asso-
ciated genes and upregulating the expression of miR-302/367
cluster [49–51].

Other factors such as NANOG [52], LIN28 [53], and miR-
302 family [54] also play important roles in boosting repro-
gramming efficiency. We are currently investigating the ability

of these factors to increase PB reprogramming efficiency when
introduced to our 4-factor-mediated reprogramming protocol
[43].

Approaches for reprogramming blood cells

to pluripotency

Highly efficient generation of iPSCs with improved lentiviral

vectors

Both gammaretroviral vectors and lentiviral vectors have been
used for successful cellular reprogramming. However, VSV-G

(the G glycoprotein of the vesicular stomatitis virus) pseudo-
typed lentiviral vectors are more widely used due to a higher
packaging capacity, better titers and the ability to transduce al-

most any type of cells including non-dividing cells from differ-
ent species [55,56].

In early studies, investigators used viral vectors for repro-
gramming of fibroblasts to convert blood CD34+ cells into

iPSCs. The vectors that lead to high-level gene expression
and thereby efficient reprogramming of fibroblasts do not nec-
essarily induce high-level expression of reprogramming factors

in blood CD34+ cells. Several successful endeavors were re-
ported, but the reprogramming efficiency was at 0.01% or low-
er [57–59]. Our group recently used the long-terminal repeat

(LTR) from spleen focus-forming virus (SFFV), a strong pro-
moter in hematopoietic cells, to express reprogramming fac-
tors. Subsequently we converted 2% cord blood CD34+ cells

into iPSCs with OCT4 and SOX2 alone [12], with efficiency
reaching up to 20% when the 4 Yamanaka factors––OCT4,
SOX2, MYC and KLF4––are used simultaneously [60].

It is critical that reprogramming factors are expressed at high

levels to achieve high-efficiency reprogramming. We found that
when the expression levels of reprogramming factors decrease to
a ‘‘threshold’’, successful reprogramming cannot be achieved

[12]. This is most likely because more transcription factors in
an individual cell can turn on the expression of pluripotency-re-
lated genes more efficiently and more rapidly. This dosage-

dependent effect of reprogramming factors has been recently
confirmed by Hochedlinger’s lab, who reported that elevated
expression of Yamanaka factors can successfully reprogram

some somatic cells that are refractory to reprogramming medi-
ated by low-levels of Oct4, Sox2 and Klf4 [61].

To achieve high-level cellular reprogramming, the following
parameters need to be considered when designing an expres-

sion vector.

Promoter

Promoter is one of the most important factors to consider

when designing a gene-expression vector. The strength of a
promoter is contextual, depending on cell types. There is no
single best promoter that is suited for all cell types. Therefore,
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Figure 1 Different lentiviral vector design leads to differential

transgene expression levels

A. The SFFV promoter is stronger than other commonly-used

promoters in human hematopoietic cells. Human cord blood

CD34+ cells were transduced with four GFP-expressing lentiviral

vectors at the same multiplicity of infection (MOI). Expression of

GFP was analyzed by flow cytometry at 3 days after transduction.

The backbone of the lentiviral vector was described in detail

previously [11]. SFFV, long-terminal repeat from spleen focus-

forming virus; CAG, CMV immediate-early enhancer/chicken b-
actin promoter; EF1, elongation factor 1a; PGK, phosphoglycer-

ate kinase 1; GFP, green fluorescent protein. B. Linking multiple

genes with 2A is a better strategy than dual promoters for the

expression of multiple genes. The expression of reprogramming

factors OCT4, SOX2 and KLF4 was driven by the SFFV

promoter. 293T cells were transduced with four lentiviral vectors

at the same MOI. Expression of OCT4 was analyzed by

intracellular staining and flow cytometry at 3 days after transduc-

tion. The linkage of multiple genes with 2A leads to decreased

expression of each one (Lenti SFFV-OCT4 vs. Lenti SFFV-OCT4-

2A-SOX2 vs. Lenti SFFV-OCT4-2A-SOX-2A-KLF4). The use of

dual promoters considerably decreases the transgene expression

compared to the vector design of a single promoter with 2A linkers

(Lenti SFFV-OCT4-2A-SOX2-2A-KLF4 vs. Lenti SFFV-OCT4-

2A-SOX2-PGK-KLF4). The data shown here are representative

of three independent experiments with similar results.

Zhang XB / Reprogramming of Human Peripheral Blood 267
determination of the relative strength of a particular promoter
in cells of interest becomes important. For example, the inter-
nal cytomegalovirus (CMV) promoter is a powerful promoter

in 293T cells and other cell lines, but showed weak activity in
hematopoietic cells [62]. The murine stem cell virus (MSCV)
LTR drives high-level expression of transgenes in MSCV-

based gammaretroviral vectors, which are widely used in the
study of hematopoietic stem cells (HSCs) and leukemia [63–
65]. Paradoxically, the MSCV LTR actually underperforms

when used within the lentiviral vector backbone. We found
that SFFV is much stronger than other promoters in driving
transgene expression in human hematopoietic cells in compar-
ison to other promoter candidates, such as CMV immediate-

early enhancer/chicken b-actin promoter (CAG), elongation
factor 1a (EF1) and phosphoglycerate kinase 1 (PGK) (Fig-
ure 1A). Accordingly, the use of the SFFV promoter in the len-

tiviral construct leads to a more than 100-fold increase in
reprogramming efficiency compared with other systems
[12,60]. Further identification of other promoters that are

stronger than SFFV would have a positive impact on this field.

The posttranscriptional regulatory element

The posttranscriptional regulatory element from woodchuck

hepatitis virus (WPRE) can stabilize mRNA transcripts, lead-
ing to increased expression at the protein level. We and other
investigators have found that inclusion of WPRE in the lentiv-

iral constructs increases the transgene expression by approxi-
mately fivefold [66,67]. We also found that WPRE can
considerably increase gene expression when inserted at the

downstream of a transgene in episomal vectors [12].

Synthetic genes

Codon optimization and other strategies may occasionally in-
crease gene expression in mammalian cells. This strategy may
not always give rise to desirable results, however. When we

used a codon optimization program in an attempt to increase
the expression of OCT4 and SOX2 at the protein level, we de-
tected a 20–30% decrease in protein expression compared with
wildtype genes, which unsurprisingly leads to a considerable

decrease in reprogramming [12]. Conversely, another group re-
ported a 50% increase in gene expression of OCT4, SOX2 and
KLF4 at the protein level after codon optimization as detected

by Western blotting analysis [68]. However, careful examina-
tion of protein expression of these factors by intracellular
staining and flow cytometry revealed a 20–30% decrease in

protein expression compared to wildtype. As expected, this
leads to a considerable decrease in reprogramming efficiency
(unpublished observation). Increasing gene expression in
mammalian cells by codon optimization remains challenging;

currently this is not the best strategy for improving reprogram-
ming efficiency.

Fusion with a transactivation domain

Another strategy to increase the potency of reprogramming
factors is by fusing reprogramming factors with a transactiva-

tion domain (TAD). It is reported that reprogramming factors
that are fused with a TAD from MyoD increases the repro-
gramming of MEFs by 50-fold [69]. However, we failed to

reprogram CD34+ cells using this OCT4 fusion gene.
Similarly, TAD of the herpes simplex virus (HSV) type 1 pro-
tein VP16 also enhances reprogramming of human and mouse
fibroblasts when fused to Oct4, Sox2 and Nanog [70]. It would
be interesting to test whether OCT4-VP16 can improve the
reprogramming of blood cells.

Stoichiometry of reprogramming factors

The ratios of reprogramming factors are important for suc-

cessful reprogramming. Studies on the stoichiometry of repro-
gramming factors found that a combination of equal amounts
of Sox2, Klf4, Myc and Oct4 leads to efficient reprogramming
of fibroblasts, with an increase of Oct4 by threefold further
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improving reprogramming efficiency [71]. Another study
shows that balanced expression of 4 factors produces iPSCs
that efficiently generate ‘‘all-iPSC mice’’ by tetraploid (4n)

complementation and maintain normal imprinting at the
Dlk1-Dio3 locus, whereas decreased expression of Oct4 and
Klf4 and increased expression of Sox2 and Myc lead to the

generation of iPSCs with poor quality [36]. Similar to these re-
ports, we found that balanced expression of OCT4 and SOX2
in a single vector substantially increases reprogramming effi-

ciency and minimizes the formation of non-iPSCs [12].

Expression of multiple genes with IRES or dual promoters

One of the commonly used strategies to express multiple genes
is by an internal ribosomal entry site (IRES), which mediates
translation of the downstream gene via a Cap-independent

mechanism [72]. However, Cap-independent translation is con-
siderably less efficient than 50 Cap-directed translation, and
expression levels can vary depending on the specific cell type.
In addition to this limitation, composition and arrangement

of genes define the strength of IRES-driven translation in bicis-
tronic mRNAs, thus in most cases the expression of the gene
downstream of IRES ranges from 20% to 50% that of the first

gene [73,74]. To our surprise, a recent report showed that
expression of Myc and Sox2 downstream of IRES is consider-
ably higher than that of Oct4 and Klf4 upstream of IRES [36],

which may be explained by a growth advantage to fibroblasts
conferred by high-level Myc expression and thus is selected for.
The IRES technique does not work very well in hematopoietic

cells, with the observation of Linzhao Cheng and colleagues
that transgene expression downstream of IRES is almost unde-
tectable in hematopoietic cells [75]. Instead, the use of another
promoter leads to efficient expression of the second transgene

[75]. This dual promoter design unfortunately often leads to
low-level gene expression at an unpredictable ratio (exempli-
fied in Figure 1B), which is likely due to interference of two

promoters with each other in close vicinity.
Expression of multiple genes using 2A sequences

Self-cleaving 2A-like sequences, peptides of 18–22 amino acids,
have been used recently to yield equimolar expression of sepa-
rate proteins on translation from one multicistronic mRNA

[76,77]. Cleavage occurs through ribosomal ‘‘skipping’’ during
translation, resulting in the release of the upstream protein
while translation of the downstream mRNA continues. The

protein that is positioned first contains a 2A tag at its C-termi-
nus for all peptide 2A constructs, but these 2A tags do not ap-
pear to affect the functionality of expressed reprogramming

factors. Commonly used 2A peptides in research are from
foot-and-mouth disease virus (F2A), equine Rhinitis A virus
(E2A), porcine teschovirus-1 (P2A) and Thosea asigna virus
(T2A) [36,78,79]. There is no consensus on the cleavage effi-

ciency of each 2A, though several reports suggest that cleavage
of the F2A peptide is the least efficient [36,79,80]. Inclusion of
a GSG linker at the N-terminus of the E2A, F2A and T2A

peptides has been found to facilitate almost complete cleavage
[81–83]. Of interest, expression cassettes containing the T2A
sequence were transcribed more efficiently than those contain-

ing either F2A or E2A in mouse ESCs [83]. Resultant gene
expression has been found similar regardless of the position
of a particular gene within a 2A polycistronic construct [83],
in contrast to the previous observations of efficient iPSC
colony formation when the factors in the expression cassette
are ordered as Oct4, Klf4 and Sox2 (OKS), whereas no iPSC
colony forms when the factors are ordered as Oct4, Sox2

and Klf4 (OSK) [84]. This discrepancy may be explained by
inefficient cleavage of F2A, as our OSK vector linked with
E2A can efficiently reprogram blood cells (unpublished obser-

vation). Taken together, using 2A peptide sequences in the
construction of polycistronic vectors is currently the best de-
sign for the expression of several genes at equimolar levels.

Generation of integration-free blood iPSCs using episomal

vectors or Sendai virus vectors

iPSCs generated with integrating viral vectors have several
safety concerns. (1) The use of the integrating virus is associ-
ated with insertional mutagenesis. (2) Reactivation of repro-
gramming factors may induce tumor formation [36,42]. (3)

Residual expression of reprogramming factors interferes with
differentiation programs [85,86]. Therefore, it is imperative
to use integration-free iPSCs for clinical therapy. Integra-

tion-free iPSCs from fibroblasts can be generated by several
techniques using transposons, adenovirus vectors, plasmids,
minicircle DNAs, artificial chromosome vectors, protein trans-

duction, modified mRNA, Sendai virus vector (SeV) and oriP/
EBNA1-based episomal vectors (EV). Of these techniques,
blood-derived integration-free iPSCs have only been success-
fully generated by using the relatively efficient Sendai virus

vector and episomal vector approaches.

SeV

SeV is a negative-sense RNA virus where no integration is pos-
sible due to the lack of aDNA stage during its life cycle [87]. SeV
can infect many types of cells and has been used to generate inte-

gration-free iPSCs from fibroblasts, T cells and CD34+ cells
[22,39,88,89]. Although SeV does not integrate into the genome
and the vector copy gradually decreases, considerable amount

of vectors are still present in the cells after 5–10 passages. To
solve this problem, a temperature-sensitive SeV has been devel-
oped by introducing point mutations in the P and/or L genes of

SeV [39]. SeV in the cells decreases to undetectable levels after
treating iPSCs at 38 �C for 3–5 days. Recently, a novel replica-
tion-defective and persistent SeV (SeVdp) vector has been devel-

oped, which is able to accommodate all four Yamanaka factors
in one vector for efficient reprogramming of mouse fibroblasts
[90]. It is still unknown whether this vector can be used to gen-
erate integration-free iPSCs from human blood cells.

EV

The commonly used EV is a plasmid incorporated with 2 ele-
ments from Epstein–Barr (EB) virus, i.e., origin of viral repli-
cation (oriP) and EB nuclear antigen 1 (EBNA1). OriP allows
replication of plasmid in mammalian cells and EBNA1 binds

specifically to oriP and tethers the EV plasmid to chromosomal
DNA, allowing EBNA1 to mediate replication and partition-
ing of the episome during division of the host cell. One trans-

fection is sufficient for iPSC reprogramming due to the
maintenance of EV plasmids after nucleofection or electropor-
ation, while gradual loss of the vectors during each cell division

eventually leads to depletion of residual vectors in the iPSC
lines after 2–3 months of culture. EVs were at extremely low
efficiency when first used to generate iPSCs from fibroblasts
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[91]. Further improvements in the vector design and factor
combination led to successful generation of integration-free
iPSCs from blood cells [18,23]. However, strong oncogenes like

SV40 large T antigen (SV40LT) or knockdown of genome
guardian p53 in the factor combination were used to boost effi-
ciency in these studies. We managed to generate integration-

free iPSCs without using oncogenic factors that may one day
compromise patient safety. Our vectors were redesigned with
2 important modifications: (1) the use of the strong promoter

SFFV in hematopoietic cells instead of other relatively weak
promoters like CAG and (2) inclusion of WPRE at the down-
stream of the transgene. These changes lead to a more than 10-
fold increase in reprogramming efficiency in generating inte-

gration-free iPSCs from blood cells [12,43].

Comparison of SeV vs. EV in reprogramming blood cells

Both of these vectors have been successfully used by multiple
investigators to generate integration-free iPSCs from blood
cells. The major advantage of SeV is that it can efficiently infect

blood cells (in particular CD34+ cells), whereas nucleofection is
currently the only efficient approach to introduce EV plasmids
into blood cells, yet it induces considerable cell death. Overall,

EV is more advantageous than SeV for two reasons: (1) the im-
proved EV is approximately tenfold more efficient than SeV in
reprogramming blood cells [12,39] and (2) production of EV

plasmids is simple and affordable, whereas generation of SeV
vectors is relatively more challenging and expensive. However,
EVs are still not perfect for reprogramming, and several ap-

proaches should be considered to improve cell survival after
EV transfection, for example, by dampening the dsDNA trans-
fection-induced innate immune response with small molecules
or other agents, or by creating a helper-dependent adenovirus-

episomal hybrid vector, which transfects blood CD34+ cells at
higher efficiency without attenuating cell survival [92,93].

Two significant papers in reference to the generation of inte-

gration-free iPSCs were published during peer review of this
manuscript, and their methods may eventually be adapted for
generating integration-free iPSCs from blood. Steven Dowdy

and colleagues modified a noninfectious, self-replicating Vene-
zuelan equine encephalitis (VEE) virus RNA replicon to express
the four Yamanaka factors [94]. In the presence of B18R, a pro-

tein from Western vaccinia virus that binds to and neutralizes
type I interferons (IFNs) induced VEE virus infection, iPSCs
were generated from human newborn or adult human fibro-
blasts, while discontinuation of B18R leads to depletion of

VEE in iPSCs [94]. This technique is similar to SeV, but without
the burden of packaging virus. The second recent approach is
chemical reprogramming. Hongkui Deng and colleagues re-

ported successful reprogramming of mouse fibroblasts into iPS-
Cs with a combination of seven small-molecule compounds [95].
It takes more than one month for the first mouse iPSC colony to

appear using chemical reprogramming. However, these recent
developments are important advances in the cellular reprogram-
ming field and should be followed in the near future.

The safety concerns of using iPSCs in clinical

therapy

The generation of iPSCs followed by directed differentiation
will not only provide large quantities of patient-specific so-
matic (stem) cells for individualized therapy, but also raises
hopes of rejuvenating cells from elderly patients [96,97]. The
technological innovations in generating integration-free iPSCs
have abrogated concerns associated with the use of integrating

viral vectors. However, there are other safety issues that need
to be taken into consideration such as epigenetic memory, high
mutation rate, immunogenicity and teratoma formation.

Whole genome analysis identified epigenetic memory and
aberrant epigenomic reprogramming in initial iPSCs [98,99],
which raises a clinical concern on the safety of cells derived

from iPSCs. Long-term passage of iPSCs has been found to
be able to diminish the epigenetic signature inherited from
the parent cells [100]. Furthermore, inclusion of ascorbic acid
in the culture medium and the induction of high-level expres-

sion of Oct4 and Klf4 are able to prevent aberrant epigenetic
variation, allowing for the generation of ‘‘all-iPSC’’ mice
[36,101]. The generation of healthy animals from iPSCs dem-

onstrates that the epigenetic variations currently detected
may not pose a serious risk [102,103].

Early studies showed that the reprogramming process is

mutagenic, with a mutation rate that is 10 times higher than
background levels of cells in ex vivo culture [104–106]. How-
ever, recent studies indicate that these mutations are largely

due to a fixation on rare mutations already present in the
parental cells [14,107]. Careful examination of the literature
suggests that two potential problems confounded the interpre-
tation of the previously-published data: (1) the use of low-effi-

ciency (0.01% or lower) reprogramming approach, which may
lead to a selection for clones harboring rare mutations that en-
hance reprogramming; (2) the use of source cells that have

been cultured for several weeks or longer before reprogram-
ming, which may have introduced rare mutations that are
undetectable by current sequencing technology. To control

these parameters in our experiments, we used a high-efficiency
(2–20%) reprogramming approach and homogenous primary
human cord blood (CB) CD34+ cells with only 2 days of cul-

ture after cell purification. Our exome sequencing analysis
showed only 1.3 coding mutations in each CB iPSC clone,
which is considerably lower than previous reports. These re-
sults suggest that de novomutations during CB reprogramming

are negligible [60].
It has been surmised that the progeny of patient-specific

iPSCs will be well tolerated after transplantation. A single re-

port showed immunogenicity of iPSCs even after syngeneic
transplantation [108]. However, further investigation into this
issue by two independent labs demonstrated that differentiated

cells from iPSCs may actually be negligibly immunogenic
[109,110].

The potential for teratoma formation from residential
undifferentiated iPSCs is a major hurdle for the clinical appli-

cation of iPSC-based therapy [111,112]. Several strategies are
under development to solve this problem. One study showed
that immunodepletion with antibodies against cell surface gly-

cosphingolipid stage-specific embryonic antigen-5 (SSEA-5)
and two additional pluripotency surface markers completely
prevent teratoma formation from incompletely differentiated

ESC cultures [113]. More recently, a chemical approach has
been successfully used to prevent tumor formation by
selectively eliminating remaining undifferentiated pluripotent

cells [114]. The authors found that a single treatment of
hESC-derived mixed population with chemical inhibitors of
survivin (e.g., quercetin or YM155), a human PSC-specific
antiapoptotic factor, induces selective and complete cell death
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of undifferentiated human PSCs [114]. The use of these selec-
tive depletion approaches will considerably decrease the risk
of iPSC-based therapy.

Taken together, although early reports cast doubts on the
safety of iPSC-based therapy, many recent studies provide
hope that these potential problems can be eventually solved.
Applications of integration-free peripheral blood

iPSCs

iPSCs are currently applied in disease modeling and toxicology
testing [115]. Virus integration and residual expression of

reprogramming factors may interfere with the differentiation
program [85,86], which may obfuscate the interpretation of
the disease modeling results. The ability to efficiently generate
integration-free iPSCs from blood cells is predicted to find its

application in this category.
For regenerative medicine, iPSCs need to be differentiated

into cells of clinical value. Blood iPSCs can be readily differen-

tiated into MSCs, hepatocytes, and cardiomyocytes [43].
Peripheral blood iPSCs show a parental epigenetic memory
(as discussed earlier), which may be exploited to preferentially

differentiate into hematopoietic cells [116].
HSCs are among the most difficult cells to be differenti-

ated from iPSCs [115], yet recent progress brings us closer to

the dream of generating functional HSCs from iPSCs.
Mouse repopulating-HSCs can be differentiated from mouse
ESCs or iPSCs by overexpressing HOXB4 ectopically
[117,118], but long-term multi-lineage HSCs have not been

obtained from ESCs or iPSCs without ectopic gene expres-
sion. This strategy did not work for human iPSCs, however,
due to the differential effects of HOXB4 on cells from dif-

ferent species [64,65]. Transcription factors that specify hu-
man HSC identity and/or expand human HSCs are critical
for differentiating iPSCs into HSCs with long-term hemato-

poiesis potential, and the search for new factors deserves
special focus. Recently, Dong-Er Zhang and colleagues
found that RUNX1a facilitates the differentiation of human

iPSCs into HSCs that can engraft immunodeficient mice
[119]. Another report from Pereira et al. [120] shows that
a combination of 4 factors––Gata2, Gfi1b, c-Fos and
Ets6––leads to conversion of mouse fibroblasts to hemato-

poietic progenitor cells. These studies suggest that a combi-
nation of several factors is likely to generate human HSCs
from iPSCs. Small molecules may also help in this endeavor:

the combination of prostaglandin-E2 (PGE2) and StemRege-
nin 1 (SR1) substantially increases the efficiency of differen-
tiating iPSCs into cells with long-term repopulating HSC

phenotype [121].

Direct reprogramming of fibroblasts and blood cells

into somatic (stem) cells

Direct reprogramming of fibroblasts or blood cells into cells of
clinical value provides a promising alternative strategy for

regenerative therapy and disease modeling. Generation of iPS-
Cs from PB followed by directed differentiation is time-con-
suming and costly, and may not be the best choice for most

patients. Direct reprogramming of fibroblasts into NSCs
[34,122], cardiomyocytes [123,124] and hepatocytes [125,126]
using retroviruses that express pivotal factors in the target cells
has been reported. Another strategy takes advantage of inter-
mediate cells during the process of reprogramming to iPSCs

and diverts them to differentiate or transdifferentiate into cells
of interest by culturing them in conditions that favor the sur-
vival and proliferation of a particular cell type [127,128]. More

recently, non-integrating vectors have been used for direct
reprogramming. Duanqing Pei and associates combined an
episomal system for delivering Yamanaka factors with a chem-

ically-defined culture medium to reprogram epithelial-like cells
from human urine into neural progenitor cells [129]. Similarly,
Su-Chun Zhang and associates found that transient expression
of Yamanaka factors using Sendai virus vectors converts fibro-

blasts into neural progenitor cells [130]. Similar strategies may
also be used to turn blood into NSCs.

We recently found that OCT4 alone is sufficient for repro-

gramming of blood CD34+ cells into induced MSCs (iMSCs)
when culturing cells in MSC-conducive conditions [31]. With
the addition of CHIR99021, a GSK3b inhibitor, the repro-

gramming efficiency can be as high as 16%. Integration-free
iMSCs were also generated with an EV vector. Successful pro-
gramming depends on a vector design that promotes high-level

OCT4 expression. The underlying mechanism of high-level
OCT4 dependent reprogramming is still under investigation,
with it being likely that OCT4 functions as a pioneer transcrip-
tion factor that opens up chromatin allowing for tissue-specific

factors to access [25,26,131]. Building upon this finding, we be-
lieve that many cells of therapeutic value, in particular those in
the mesoderm lineage such as cardiomyocytes and chondro-

cytes, can be directly generated from blood by combining
OCT4 with transcription factors that specify the particular
lineage.

In vivo reprogramming of blood cells for treating

systemic disorders

In vitro reprogramming of fibroblasts or blood cells will be able
to generate large quantities of cells for replacement therapy.

Transplantation of these cells may encounter a major diffi-
culty: how do cells efficiently engraft the host? For example,
the majority of MSCs died shortly after systemic injection. Re-
cent progresses on in vivo direct reprogramming will circum-

vent this major hurdle in regenerative medicine. In vivo
reprogramming of pancreatic exocrine cells to beta cells and
of cardiac fibroblasts to cardiomyocytes has been successfully

achieved, albeit at low efficiency [132–134].
HSCs are the only known cells that constantly migrate out

of the marrow and perivascular niches, and travel into circula-

tion to be recruited to damaged tissues. Future investigation
into the possibility of in vivo reprogramming of blood stem
cells will undoubtedly yield important applications toward sys-
temic diseases. There is still no cure for many genetic disorders

such as skeletal dysplasia, Duchene muscular dystrophy and
neurodegenerative diseases like amyotrophic lateral sclerosis
(ALS) and Alzheimer’s disease (AD). In vivo reprogramming

of blood CD34+ cells or T cells into MSCs, muscle stem cells,
or NSCs may potentially cure these disorders. This is the ‘‘holy
grail’’ of blood reprogramming. Blood cells may be transduced

with lentiviral vectors that express reprogramming factors to
achieve this goal, or alternatively, transient expression of
reprogramming factors with SeV or EV can be used. Targeted
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integration technologies such as ZFN, TALEN and CRISPR
can be employed to increase safety [135]. SeV expresses multi-
ple virus-specific factors, which elicit a strong immune re-

sponse to transfected cells and may limit the utility of this
vector regarding clinical practice. Episomal vectors may be a
better choice for in vivo reprogramming, as the only intrinsic

factor expressed in EV is EBNA1, which acts to inhibit the
CD8-restricted cytotoxic T cell response and evades immune
attack [136].

Concluding remarks

The majority of reprogramming studies have been conducted

with fibroblasts. Recent success in blood reprogramming
encourages more and more investigators to shift their focus
from fibroblast reprogramming to in vitro and in vivo cell fate

conversion of blood cells. The use of lentiviral vectors for
in vivo reprogramming may be used to treat life-threatening
diseases that have no safer alternatives, while the use of EV

vectors would be preferable for treating less devastating dis-
eases. Currently, the reprogramming efficiency of adult PB
with EV plasmids is considerably lower than lentiviral vectors
but sufficient for in vitro study. Low efficiency of in vivo repro-

gramming will make it difficult to deliver significant therapeu-
tic effects. Further investigation in vectorology and resultant
technological breakthroughs in non-integrating vectors may

eventually develop blood reprogramming technology into par-
adigm-shifting therapies for the devastating diseases that cur-
rently have no cure.
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