
Genomics Proteomics Bioinformatics 12 (2014) 31–38
Genomics Proteomics Bioinformatics

www.elsevier.com/locate/gpb
www.sciencedirect.com
ORIGINAL RESEARCH
Pathway-based Analysis of the Hidden

Genetic Heterogeneities in Cancers
Xiaolei Zhao 1,#, Shouqiang Zhong 2,#, Xiaoyu Zuo 3, Meihua Lin 1, Jiheng Qin 1,

Yizhao Luan 1, Naizun Zhang 2, Yan Liang 2,*, Shaoqi Rao 1,3,*
1 Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, School of Public Health,
Guangdong Medical College, Dongguan 523808, China

2 Maoming People’s Hospital, Maoming 525000, China
3 Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
Received 10 October 2013; revised 6 December 2013; accepted 9 December 2013

Available online 22 January 2014

Handled by Arndt G. Benecke
*

(R
#

Pe

C

16
by
ht
KEYWORDS

Genetic heterogeneity;

Pathway-based approach;

Sample partitioning;

Enrichment analysis;

Survival analysis;

Cancer
Corresponding authors.

E-mail: lye30668@aliyun.co

ao S).

Equal contribution.

er review under responsibil

hinese Academy of Sciences a

Production an

72-0229/$ - see front matter ª
Elsevier B.V. All rights reserv

tp://dx.doi.org/10.1016/j.gpb.20
m (Lian

ity of B

nd Gene

d hostin

2014 Beij
ed.
13.12.001
Abstract Many cancers apparently showing similar phenotypes are actually distinct at the molecu-

lar level, leading to very different responses to the same treatment. It has been recently demonstrated

that pathway-based approaches are robust and reliable for genetic analysis of cancers. Nevertheless,

it remains unclear whether such function-based approaches are useful in deciphering molecular

heterogeneities in cancers. Therefore, we aimed to test this possibility in the present study. First,

we used a NCI60 dataset to validate the ability of pathways to correctly partition samples. Next,

we applied the proposed method to identify the hidden subtypes in diffuse large B-cell lymphoma

(DLBCL). Finally, the clinical significance of the identified subtypes was verified using survival anal-

ysis. For the NCI60 dataset, we achieved highly accurate partitions that best fit the clinical cancer

phenotypes. Subsequently, for a DLBCL dataset, we identified three hidden subtypes that showed

very different 10-year overall survival rates (90%, 46% and 20%) and were highly significantly

(P = 0.008) correlated with the clinical survival rate. This study demonstrated that the pathway-

based approach is promising for unveiling genetic heterogeneities in complex human diseases.
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Introduction

Genetic heterogeneity has attracted increasing attention in the
study of genetic mechanisms of complex diseases. It describes
the biological complexities that apparently similar characters

may result from different genes or different genetic mecha-
nisms [1]. In the clinical setting, patients with diseases
displaying a similar phenotype but resulting from different
genetic causes frequently respond very differently to the same
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treatment and thus receive a markedly different prognosis.
Therefore, elucidation of the genetic heterogeneities underlying
complex diseases has profound influences on both modern

clinical practice and basic biomedical research.
Rapidly accumulated genomic-scale molecular data provide

good opportunities to unveil the genetic heterogeneities in

complex diseases at the molecular level. Significant improve-
ments in methods and applications for analysis of the genetic
heterogeneity have been achieved in the past decades. The use-

fulness of large-scale gene expression data, as measured by
microarrays, has noticeably been indicated by the successful
stratification of diffuse large B-cell lymphoma (DLBCL)
[2–5]. In these pioneering studies, an unsupervised clustering

algorithm was used to partition both gene expression data
and patients with an aim to define genetically homogeneous
novel cancer subgroups among cancer patients based on the

principle that patients within the same cluster probably involve
the similar molecular pathogenesis and hence could be
grouped into the same molecular subphenotype [6]. Although

the traditional clustering analysis based on individual gene
expression profiles has achieved great success in unveiling the
genetic heterogeneity, it seldom considered the combined ac-

tions of multiple functionally dependent genes. It is increas-
ingly recognized that complex diseases such as cancers are a
consequence of alterations in a complicated cascade of events
involving multiple biological processes and pathways. Thus,

subtypes identified by individual genes often lack good biolog-
ical interpretations. In this sense, the development of function-
based methods for cancer subtyping is warranted.

Gene Ontology (GO) [7] and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [8] are the two most common
databases currently used for gene functional annotation. GO

terms are used primarily for the annotation of individual gene
products, whereas KEGG pathway terms are used for the
annotation of classes of gene products, thus providing a more

precise delineation of functionalities for a group of genes that
act together to some extent. KEGG pathway is a collection of
manually drawn pathway maps that represent the knowledge
on molecular interactions and reaction networks for human

diseases, environmental information processing, genetic infor-
mation processing, etc., thus possibly providing biological
interpretations of higher-level systemic functions [9]. Hence,

a pathway-based approach can integrate the effects of genetic
factors and biological networks [10] and has been used for dis-
ease classification [11]. In our previous work [1], we proposed a

GO-based approach to unveil the hidden heterogeneities in
cancers, and demonstrated that it can successfully integrate
the cellular function and the gene expression profile, and the
approach showed the greater advantage of GO in classifying

the cancer types. In principle, a similar pathway-based ap-
proach should have comparable performance in the genetic
analysis of molecular heterogeneities in cancers. Numerous

studies have shown that the cancer subtypes are, in essence,
related to multiple pathways [12–14]. For example, recent
evidence has shown that molecular subtypes of DLBCL arise

from distinct genetic pathways [15]. Therefore, this study
aimed to verify whether a pathway-based approach is useful
in deciphering molecular heterogeneities in complex diseases

such as cancer.
In this study, we proposed a pathway-based clustering

approach to unveil disease heterogeneities based on multiple
pathways. First, we selected differentially expressed genes that
are associated with specific disease conditions. It should be
noted that algorithms such as the t test or F test are not proper
for selecting differentially expressed genes due to the presence

of genetic heterogeneity, because the validity of these tests re-
lies on accurately and unambiguously defining phenotype
characteristics. Hence, we took a robust metric, the overall

variability of gene expression, to guide gene selection. Firstly,
genes with top-ranked expression variations across samples,
which explain most of the total variance potentially contrib-

uted by known or unknown factors (for example, the hidden
cancer subtypes), were selected as ‘‘feature genes’’ in the initial
gene selection as implemented in several previous studies
[16,17]. Then, we identified KEGG pathways enriched with

feature genes as ‘‘putative signature pathways’’ (here, ‘‘en-
riched’’ means that a pathway has saliently more feature genes
(with large variance) than a random gene set of the same size

does). Finally, we classified samples to identify the hidden dis-
ease subtypes using the expression profiles of genes annotated
to these well-characterized pathways. In the numerical analy-

sis, we first validated the proposed approach in accurately
partitioning cancer phenotypes using a publicly-available large
cancer dataset. Subsequently, we used the approach to identify

the hidden subtypes of a notoriously heterogeneous pheno-
type, DLBCL. Our results demonstrated that three new
subtypes identified using signature pathways had very different
10-year overall survival rates, and the partitions were highly

significantly correlated with the clinical survival rates.
Results

Validation of the proposed pathway-based approach using a

large microarray dataset

We selected the signature pathways that were significantly
(FDR 6 0.01, see the Materials and methods section for the

details) enriched with the 10% top-ranked genes with largest
expression variances based on the NCI60 dataset [18]. As a re-
sult, three pathways were identified, which were used for the

subsequent analyses. These include the small cell lung cancer
pathway (hsa05222), the extracellular matrix (ECM)–receptor
interaction pathway (hsa04512) and the focal adhesion path-

way (hsa04510) (Table 1). First, we evaluated the ability of
each signature pathway to accurately partition the samples
into the known cancer types using the clustering analysis based

on only the expression profiles of genes within the pathway.
Our results based on each of the three pathways agreed well
with the original clinical labels. The observed values for the
adjusted Rand index (ARI) [19] (to measure the agreement

between the identified clusters and the original partitions,
ranging from 0 to 1, see the Materials and methods section
for the details) were 0.83, 0.69 and 0.78, respectively. Subse-

quently, to determine the empirical significance of each
pathway, we randomly selected 1000 gene subsets of the same
pathway size from the null distribution as described in the

Materials and methods section. No random subset achieved
an ARI value higher than that of the corresponding pathway
such that all identified signature pathways showed significantly
better performance (P < 0.001) in correctly partitioning the

samples (that is, more likely relevant to the phenotypic parti-
tions). Furthermore, after applying the majority rule voting
for integrating results from the three signature pathways, we



Table 1 Signature pathways for NCI60

Signature pathway Number of

annotated genes

Nominal P

(pathway)
a

FDR

(pathway)
b

ARI Number of misallocated

samples

P

(ARI)
c

hsa05222: small cell lung

cancer

19 7.83E�06 9.82E�03 0.83 2 <0.001

hsa04512: ECM–receptor

interaction

21 3.03E�07 3.81E�04 0.69 8 <0.001

hsa04510: focal adhesion 36 1.54E�10 1.93E�07 0.78 3 <0.001

Note: Signature pathways for NCI60 were identified by using FDR for multiple tests correction (adjusted a = 0.01). Details of the NCI60 dataset

were described previously [18]. a Modified Fisher Exact P value. b FDR stands for false positive rate, which is used for adjustment of multiple tests

for 201 pathways. c Statistical significance of ARI for the selected pathway. ARI stands for adjusted Rand index.
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achieved a ARI value of 0.83, with only two tumor samples

misallocated. Alternatively, four samples were misclassified
with construction of a decision tree (Figure 1).

We also assessed the robustness of the proposed pathway-

based approach to the methods for feature gene selection.
With the feature genes selected as the top 10%, 15% and
20% ranked genes with the largest variances, we found that

the identified signature pathways largely overlapped. Com-
pared to using the top 10% ranked genes as feature genes,
no additional pathways were identified when using the top
15% genes, and only one more pathway was identified when

using the top 20% genes. These data suggest the robustness
of such pathways to the differences of the thresholds for select-
ing feature genes. Numerous biological experiments provided

ample evidence to support the involvement of the three path-
ways in the molecular mechanisms underlying the various can-
cer types. For example, the focal adhesion pathway and the

ECM–receptor interaction pathway were identified to be the
functional gene sets that were significantly differentially ex-
pressed in leukemia [20]. In addition, by searching for the
oncogenes in the KEGG database, one can easily find that

the three pathways, particularly the small cell lung cancer
pathway and the focal adhesion pathway, were enriched with
≤ 0.385

> 0.573 ≤ 0.573

≤ 0.374> 0.374

> 0.385 ≤ 1.053> 1.053

hsa04512

hsa05222

hsa04510

hsa05222

Renal cancer
(9/2)

Central nervous 
system cancer

(4/0)

Melanoma
(8/1)

Colon cancer
(7/0)

Leukemia
(7/1)

Figure 1 Decision tree based on three signature pathways for five

cancer types

The internal nodes of the tree are the signature pathways. The leaf

nodes represent the classification for five types of cancer (renal

cancer, central nervous system cancer, melanoma, colon cancer

and leukemia). Included in the leaf nodes are the total number of

samples over the number of the incorrectly predicted samples for

the specific type of cancer indicated.
various oncogenes. All evidence supports that these three path-

ways are truly linked to cancer(s).

Unveiling the hidden genetic heterogeneities in DLBCL

The genetic heterogeneities in DLBCL have been extensively
investigated previously [2,21,22]. Inspired by its success in clas-
sifying the known NCI60 cancer types, we then applied the

proposed pathway-based approach to discover the hidden
molecular types of DLBCL.

Based on the DLBCL dataset [2], we identified three sub-
types using two signature pathways, i.e., the hematopoietic cell

lineage pathway (has04640) and the cytokine receptor interac-
tion pathway (has04060) (Table 2). These two pathways might
be substantially responsible for the incidence and progression

of DLBCL. The former pathway was associated with the im-
mune system, and latter pathway was associated with various
signaling molecules and their corresponding interactions. The

abnormalities in either the immune function and/or the signal-
ing molecules and their interactions were considered to be the
major causes of DLBCL [23]. The sensitivity analysis based on

different criteria for feature gene selection (top 10%, 15% and
20% ranked genes with the largest variances) revealed that the
identified signature pathways largely overlapped. Compared to
using the top 10% ranked genes as feature genes, two addi-

tional pathways were identified when using the top 15% genes,
and only one more pathway was identified when using the top
20% genes. Thus, only the results for the criterion of the top

10% ranked genes were presented in this study.
The survival results for these subtypes are shown in

Figure 2. The 10-year overall survival rates for three newly

defined molecular subtypes were 90%, 46% and 20%, respec-
tively. The log-rank statistic showed that the survival time of
the three subtypes was significantly different (P = 0.008),
which had a markedly higher caliber compared to the original

partitions (the clinic labels, P = 0.010, see [2]) to map their dif-
ferential survival profiles. Compared with the partitioning re-
sults from a GO module (P = 0.007) obtained previously by

our group [1], the pathway-based approach performed equally
well, and identified one more molecular subtype.

To further explore a compact model for clinical use, we ana-

lyzed genes included in the two signature pathways using Cox
proportional-hazards models. In the univariate analysis, nine
genes were found at the liberal significance level of 0.1. Subse-

quently, using the stepwise variable selection option (with the
same inclusion and exclusion P values of 0.05) for the multivar-
iate Cox proportional-hazards regression model, we identified
three genes, CD10, CD21 and IL2RB, as predictors (Table 3).



Table 2 Signature pathways for DLBCL

Signature pathway Number of annotated genes Nominal P (pathway)a FDR (pathway)b

hsa04640: hematopoietic cell lineage 22 3.80E�10 4.76E�07
hsa04060: cytokine receptor interaction 24 1.00E�06 1.26E�03
Note: Signature pathways for DLBCL were identified by using FDR for multiple tests correction (adjusted a = 0.01). a Modified Fisher Exact P

value. b FDR stands for false positive rate, which is used for adjustment of multiple tests for 201 pathways. DLBCL stands for diffuse large B-cell

lymphoma.

Figure 2 Clinically distinct DLBCL subtypes defined by gene

expression profiling of two signature pathways

Kaplan–Meier plot of the overall survival of the three molecular

subtypes of DLBCL, partitioned using the expression profiles of

the genes contained in two signature pathways, hsa04640 and

hsa04060.
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CD10 encodes a common acute lymphocytic leukemia (ALL)
antigen that serves as an important cell surface marker in the

diagnosis of ALL [24]. CD21 encodes a membrane protein that
functions as a receptor for Epstein–Barr virus (EBV) binding on
B and T lymphocytes. A previous study [25] reported that the

prognosis of CD21-positive DLBCLwas significantly favorable
to that of CD21-negative DLBCL and then a later in vivo exper-
iment [26] showed that CD21 was closely related to LFA-1

expression in B-cell lymphoma (BCL), and the absence of
CD21/LFA-1 expression was associated with pleural/peritoneal
fluid involvement caused by BCL, which is a potential indicator
of BCL progression. It is interesting to note that interleukin-2

receptor beta (IL2RB) was significant in the Cox propor-
tional-hazards model. Although no study has directly shown
that IL2RB is a predictor for DLBCL, IL2RB has been reported

to be a potential prognostic biomarker for chronic lymphocytic
leukemia (CLL) [27].

Discussion

From a biological perspective, compared to GO that reflects
the functional similarities of genes, KEGG pathway reflects

an integration of several specific functions. It is more
Table 3 Multivariate Cox proportional-hazard model built using the g

Variable Estimated coefficient Wa

CD10 �0.762 10.6

CD21 �0.735 6.21

IL2RB �0.630 6.37

Note: CI stands for confidence interval.
systematic in revealing and elucidating the sophisticated
molecular mechanisms underlying complex diseases such as

cancer. Several studies have suggested the link between
cancer subtypes and pathways. Therefore, the proposed
pathway-based clustering approach for unveiling genetic het-

erogeneities of complex diseases would facilitate better
understanding of the mechanisms underlying these phenom-
ena. In this study, we evaluated this approach using a public

benchmark dataset. Our results demonstrated that the gene
expression profiles of pathways effectively distinguished
well-characterized clinical types of cancers. Hence, there
was sufficient reason to believe that the putative signature

pathways for a heterogeneous disease could depict the
underlying molecular mechanism(s) leading to the molecular
subtypes. Further application of this proposed pathway-

based approach to DLBCL demonstrated its effectiveness
in dissecting genetic heterogeneities in complex diseases.
Similar to the GO-based approach, the proposed pathway-

based approach is also an efficient unsupervised feature
selection method, which yields multiple feature gene sets
(i.e., genes annotated to identified signature pathways) of
functional compactness. The genes with top-rank expression

variations across samples were selected as the initial feature
genes [16,17]. Subsequently, the feature genes were further
filtered or organized by significant KEGG pathways. Similar

to the GO-based approach, this approach is not only useful
in identifying both the gene expression signatures and the
functional signatures of disease subtypes but can also

provide guidance for functional studies on the molecular
pathogenesis of the diseases investigated.

Although some previous studies [2] that clustered disease

subtypes based on expression profiles of the genes achieved
great success in dissecting genetic heterogeneities involved in
DLBCL, such a clustering algorithm itself does not provide
proof of the best grouping of genes in terms of biological func-

tions [28]. Thus, biological interpretation of the grouping
requires expert knowledge, which is often subjective [29]. In
this study, we proposed to directly use an external annotation

database such as the KEGG pathway to extract multiple
functionally compact and coherent gene sets. Three hidden
subtypes were identified by applying the proposed pathway-

based approach in unraveling DLBCL. In terms of the survival
analysis and the implications of the signature pathways, the
proposed pathway-based approach provided a novel and
enes in the two signature pathways

ld v2 P value Hazard ratio (95% CI)

35 0.001 0.530 (0.295–0.738)

0 0.013 0.467 (0.269–0.855)

7 0.012 0.479 (0.327–0.869)
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feasible avenue to the genetic analysis of the hidden subtypes
of complex human diseases such as cancer.

In this study, we took the known cluster number suggested

by the preassigned clinic labels to validate the proposed ap-
proach, assuming the lack of heterogeneities in the NCI60 data
for several well-characterized cancers. Although the clustering

results provided good fits to the known phenotypic partitions,
this assumption might not be true [1]. Meanwhile, the problem
of estimating the correct number of clusters to unveil hidden

cancer subtypes has largely remained unresolved. In addition,
although the proposed pathway-based approach has achieved
some success in the genetic analysis of the underlying molecu-
lar stratifications in cancer, we should recognize the limitations

of this study. First, only one dataset for DLBCL was analyzed,
it is thus very likely that only a small proportion of the relevant
pathways were identified due to the limited information pro-

vided by a single dataset. Second, the current knowledge about
pathways is largely fragmented and far from complete; hence,
this limitation would compromise the aspect of this analysis

that relies on pathway knowledge. Finally, although we tried
our best to control type I errors (incorrect rejections of true
null hypotheses) in various steps toward the identification of

either pathways or hidden cancer subtypes, whether the overall
type I error was well-controlled remains unclear. In this sense,
we considered our analysis as exploratory in nature. Further
studies using large-scale datasets and refined pathway knowl-

edge are highly demanded, which could increase the effective-
ness in detecting pathways with modest effects. Finally,
although in principle the proposed pathway-based method

for the analysis of genetic heterogeneities could be extended
to other types of data such as that of genome-wide SNPs
and next generation sequencing data, such an approach has

to be carefully assessed. This assessment will be the next focus
of our research group.
Materials and methods

Description of datasets

A large classical multiple-class dataset NCI60 [18] was used as
the benchmark dataset to validate the efficiency of the pro-

posed pathway-based approach, which consists of 9703
cDNAs measured in 60 cell lines of nine cancers. The data
for prostate cancer were excluded because these consisted of

only two samples. Samples of breast tumors, ovarian cancer
and non-small cell lung carcinoma were also excluded for
the possible existence of heterogeneous hidden subtypes or
misassigned labeling of samples [21,30]. Thus, a subset of the

NCI60 data (35 samples of five cancer types) was used in
the study, including eight samples of renal cancer (RE), six
samples of central nervous system cancer (CNS), eight samples

of melanoma (ME), seven samples of colon cancer (CO) and
six samples of leukemia (LE). After evaluating its ability for
accurately partitioning this diverse data structure, we used

the proposed pathway-based approach to analyze the hidden
subtypes of DLBCL, which has been demonstrated to be noto-
riously heterogeneous [21,22,30]. The independent dataset for
DLBCL consists of 4026 cDNAs measured in 42 samples [2].

We verified the identified hidden partitions by survival analy-
sis of the clinical profiles of patients in each molecular-based
partition.
A detailed procedure chart for the pathway-based ap-
proach is shown in Figure 3 and described below. The corre-
sponding source code is freely available upon written

request. For data preprocessing, we adopted a unified criterion
for the initial selection of genes from the previously described
cDNA microarray datasets. First, we discarded clones with

missing data in more than 5% of the arrays and applied a
base-2 logarithmic transformation to the expression data. Sec-
ond, similar to our previous paper [2], we imputed remaining

missing data with zeros. Third, the data for genes were cen-
tered by subtracting the observed median value. The final
datasets of NCI60 and DLBCL finally comprised 5124 and
3148 genes, respectively.

Selecting putative signature pathways from KEGG

For the NCI60 and DLBCL datasets, the top x percent of

genes with largest expression variances were selected as fea-
ture genes. Subsequently, we loaded these feature genes into
the Database for Annotation, Visualization and Integrated

Discovery (DAVID) [31] software to test their enrichment
in pathways based on a modified Fisher Exact test. Finally,
we identified the significantly enriched pathways at a false

discovery rate (FDR) of 0.01 to adjust for multiple tests of
201 pathways in the DAVID database. To demonstrate the
robustness of the pathways, we compared the pathways iden-
tified at different top percentage levels (x = 10, 15 and 20) of

the feature genes with the largest variances for NCI60 or
DLBCL.

Clustering samples based on individual pathways

For each signature pathway, we extracted the expression pro-
files of the measured genes that were annotated to it. By

agglomerative hierarchical clustering algorithm, each sample
was initially assigned to one cluster, then the distances between
clusters were computed, and the two clusters with the smallest

distance value were merged. Distance computation and merg-
ing were repeated until there was only one cluster left. In this
work, correlation (uncentered) was used as the distance metric
and the average linkage method was used for merging. The

software can be downloaded from the website of the Eisen
Lab (http://rana.lbl.gov/EisenSoftware.html). We pruned off
the hierarchical tree to allocate the samples into clusters. To

evaluate the performance of the proposed approach, the num-
ber of clusters in the validation dataset was determined by the
number of predefined clusters from the original data source.

Additionally, we assessed the classification performance of
these signature pathways using a decision-tree based approach
[32]. Finally, the adjusted ARI [19] was calculated to measure

the agreement between the identified clusters and the original
partitions, which ranged from 0 to 1. The expected value of
the ARI is 0 when the partitions are randomly drawn, and
the ARI is 1 when two partitions perfectly agree. A larger

ARI dictates a higher correspondence between two types of
partitions.

To assess the significance of the ARI, we compared the

observed ARI value with that of the same-sized gene subsets
randomly selected from the whole microarray. The aim of
this statistical test was to empirically verify whether the

profiles of the genes in the signature pathways performed

http://rana.lbl.gov/EisenSoftware.html


Data pre-processing
• Discard genes with missing rate > 5%
• Apply a base-2 logarithmic transformation 
• Impute the missing data with 0
• Center each gene with 0 median across samples

Signature pathway selection
• Select the top 10% of genes with largest expression 
variance as feature genes

• Identify signature pathways by enrichment analysis

Sample clustering
• Cluster samples using hierarchical clustering algorithm 
based on individual pathways

• Determine the sample label by multiple pathways

Approach validation

• Calculate ARI

• Build a decision tree

Survival analysis
• Estimate survival curves by Kaplan–Meier
product-limit

• Assess the difference by log-rank test
• Explore clinical predictors by Cox 
proportional-hazards model

Validation dataset
• NCI60 expression data

Application dataset
• DLBCL expression data

Figure 3 A detailed procedure chart for pathway-based analysis of genetic heterogeneities
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significantly better at clustering than the gene groups ran-

domly selected from a null (or contrast) population, in which
the gene had no or less functional relationship. It is well
known that similarly expressed (co-expressed) genes tend to
share the same or similar function(s) and in fact, the gene

co-expression information is often used for predicting gene
functions [33]. Similar to our previous study [1], we con-
structed the null gene population using the silenced genes

among all the annotated genes from the original expression
profiles after excluding the genes annotated to the identified
signature pathways and the genes significantly co-expressed

with at least one gene in the signature pathways. Here, two
genes were classified as co-expressed when the absolute value
of Pearson correlation coefficient of their expression was lar-
ger than a threshold at significance level a = 0.005, as deter-

mined using 10,000 gene pairs randomly sampled from the
original expression profiles.

Subsequently, for each signature pathway, 1000 gene subsets

of the same gene set size were randomly sampled from the null
population. By applying the same clustering procedure to the
1000 random gene subsets, we defined the empirical P value

for the observed ARI of each signature pathway as the fraction
(proportion) of 1000 random subsets having ARIs larger than
that of the signature pathway. The P value was used to assess

whether an identified signature pathway had significantly better
performance at correctly partitioning the samples (i.e., more
likely relevant to the phenotypic partitions) than the random
gene subsets that were less likely to be functionally related.
Clustering based on multiple pathways

The utility of partition for a single pathway might be limited,
wherein some samples could have been misclassified through

the use of information from only one or a few pathways. To
increase the accuracy of phenotypic partition, we applied a
voting step to comprehensively integrate the partition results

drawn from each signature pathway. Specifically, for a sample
that had multiple membership labels obtained from different
pathways, we applied a simple majority rule to determine the
sample’s membership. If several classes drew the vote, we ran-

domly assigned one of the class labels to the sample.
The agreement between the clustering results based onmulti-

ple pathways and the original partitions was also evaluated by

calculating the ARI. Alternatively, assuming that the original
phenotypic labels for samples were correct, we evaluated the
signature pathways by building a decision tree [32]. We then

used the approach to unveil the hidden subtypes of DLBCL.

Survival analysis

To verify the clinical significance of the identified hidden
DLBCL subtypes, we estimated the survival curves of the
subtypes using the Kaplan–Meier product-limit method and
assessed the difference between the survival curves using the

log-rank test [34]. To explore a compact model for clinical
use, we also evaluated the potential of genes in the signature
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pathways for predicting phenotypes. First, we applied a uni-
variate Cox proportional-hazards model to identify the genes
whose marginal effects on the overall survival time were signif-

icant. Subsequently, a multivariate Cox proportional-hazards
model was used to analyze the power of the significant genes
for predicting the overall survival time. The Wald v2 test was

used to determine the significance of each predictor’s hazard
toward the patients’ survival time.
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