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Abstract Protein structure determination is a very important topic in structural genomics, which

helps people to understand varieties of biological functions such as protein-protein interactions,

protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often

been used to determine the three-dimensional structures of protein in vivo. This study aims to auto-

mate the peak picking step, the most important and tricky step in NMR structure determination.

We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use

the stochastic approximation Monte Carlo algorithm as the computational tool to solve the prob-

lem. Under the Bayesian framework, the peak picking problem is casted as a variable selection

problem. The proposed method can automatically distinguish true peaks from false ones without

preprocessing the data. To the best of our knowledge, this is the first effort in the literature that

tackles the peak picking problem for NMR spectrum data using Bayesian method.
Introduction

Determination of structure-function relationships has been a

long-standing research topic in structural genomics. Nowa-
days, nuclear magnetic resonance (NMR) has often been used
to determine the three-dimensional structures of proteins,
especially for the small proteins that are partially disordered,

exist in multiple stable conformations in solution, show weak
interactions with ligands, or do not crystallize readily. The
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NMR protein structure determination commonly involves a
series of steps, such as peak picking, chemical shift assignment,
nuclear Overhauser effect (NOE) assignment and structural

calculation [1]. Among them, peak picking is the most impor-
tant and tricky step and it is also the prerequisite for all the fol-
lowed steps (see e.g., [2,3]). As shown in Figure 1 using protein
TM1112 as an example, a typical NMR spectrum contains

many peaks. We show 3D plot of protein TM1112 in panel
A and show contour plot in panel B for the same protein.
Here, H dimension corresponds to chemical shift in hydrogen

dimension and N dimension corresponds to chemical shift in
nitrogen dimension. Each peak, which is often referred to as
a signal, represents a group of nuclei that can be coupled

through bonds (scalar coupling) or space (spin–spin coupling).
Peak picking step extracts the frequencies of each peak, which
correspond to the chemical shift values of the corresponding

nuclei. Such chemical shift values are then assigned to the cor-
responding atoms of the protein by considering the inter- and
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intra-residue information that different spectra contain. The
assignment is used to interpret NOE peaks, which provide
distance constraints for the structural calculation step. How-

ever, the peak picking step is usually very time-consuming.
Typically, it costs an experienced spectroscopist weeks or even
months to accomplish the task. To automate this step, a vari-

ety of methods have been proposed, including neural networks
[4], singular value decomposition [5,6], wavelet-based smooth-
ing [7], among others.

The existing methods select peaks based on the intensities
or the volumes of the peaks, and often fail for complex spectra.
For example, they often fail to identify peaks with low inten-
sity and overlapping peaks, and fail to distinguish false peaks

with high intensities/volumes from true ones. In addition, they
require a preprocessing step of data smoothing to remove
noise. In this paper, we propose a Bayesian method to tackle

this problem. We model the spectrum by a mixture of bivariate
Gaussian densities and use the stochastic approximation
Monte Carlo (SAMC) algorithm to estimate the positions

and intensities of the peaks. Under the Bayesian framework,
we cast the peak picking problem as a variable selection
problem. Therefore, sophisticated Bayesian variable selection

methods can be applied to seek for high-quality solutions to
this problem.

The rest of this paper is structured as follows. We will first
introduce the Bayesian model for NMR spectrum data. Next,

we describe in detail the SAMC algorithm for peak picking.
Following that, we give the results for both simulation studies
and real NMR data, which show the benefit of the proposed

method. We then conclude the paper with a brief discussion.

A Bayesian model for NMR spectra

For simplicity, this section describes only the model for the
NMR spectra in two-dimensional (2D) space. The 2D NMR
experiments, such as 15N-HSQC, are among the most fre-

quently used spectra for protein structure determination.
Extension of the proposed method to higher-dimensional
spaces is straightforward.

Suppose that the NMR spectrum consists of a total of n
(= L · W) grid points. Let g(i, j) denote the intensity of the
Figure 1 Illustration of 2D NMR spectrum data using protein TM11

A. A 3D plot of 2D NMR spectrum data for protein TM1112. The Z

same spectrum data. Here, H dimension corresponds to chemical shift

shift in nitrogen dimension. One unit in H dimension represents 0.014
spectrum at the grid point (i, j) for i= 1, . . . ,L and
j= 1, . . . ,W. Then we model g(i, j) as a mixture of bivariate
Gaussian densities:

gði; jÞ¼
Xm
k¼1

ak/k i; jjlk1;lk2;s
2
k1;s

2
k2

� �
þ �ij; i¼ 1; . . . ;L and j¼ 1; . . . ;W;

ð1Þ

where /k(Æ) is the kth component of the mixture density func-
tion with mean (lk1, lk2)0 and covariance matrix diag

s2k1; s
2
k2

� �
; ak is the volume (or amplitude) of the kth component,

and �ij is the error term, which is assumed to be normally dis-
tributed with mean 0 and variance r2. We use M to denote a

model and use m = ŒM Œ to denote its size, i.e., the number
of components included in the mixture density function.

By lining up all the n grid points, the model (1) can be writ-
ten in the matrix–vector form as follows:

Y ¼ Uaþ �; ð2Þ

where

Y¼

gð1;1Þ

..

.

gð1;WÞ

..

.

gðL;1Þ

..

.

gðL;WÞ

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

; U¼

/1ð1;1Þ � � � /mð1;1Þ

..

.

/1ð1;WÞ � � � /mð1;WÞ

..

.

/1ðL;1Þ � � � /mðL;1Þ

..

.

/1ðL;WÞ � � � /mðL;WÞ

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

;a¼

a1

..

.

am

0BBB@
1CCCA; �¼

�11

..

.

�1W

..

.

�L1

..

.

�LW

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

:

Here Y is an n-vector representing the spectrum intensity for
each grid point; U is an n · m matrix that carries the informa-
tion of m Gaussian density functions, each column of U corre-

sponds to one Gaussian density component, and /k (i, j) is
defined as in (1) but with parameters omitted; a is a m-vector
consisting of the volumes of each component; and � is an n-vec-

tor representing the random error.
Let #= (#1, . . . ,#n), where #i¼ li1;li2; log s2i1

� �
; log s2i2

� �� �
.

Then the likelihood function of the model (1) is given by
12 as an example

axis is for the intensity of the spectrum. B. A contour plot of the

in hydrogen dimension and N dimension corresponds to chemical

8 ppm and one unit in D dimension represents 0.0873 ppm.
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fðYj#;a;r2;mÞ¼ 1

ð2pÞn=2jr2Imjn=2
exp �1

2
ðY�UaÞTðr2InÞ

�1ðY�UaÞ
� �

;

where Im denotes an m · m identity matrix.
To conduct Bayesian analysis for the model (1), we consider

the following prior distributions for the unknown parameters:

a � Nð0; r2VÞ;
li1 � Uð0;LÞ; li2 � Uð0;WÞ;
s2i1 � IGða; bÞ; s2i2 � IGða; bÞ;
m
r2 � v2

m ;

where IG (Æ, Æ) denotes an inverse gamma distribution, U (Æ, Æ)
denotes a uniform distribution, and m, V are hyperparameters
to be specified by the user. In this paper, we set V= (U0U)�1;
that is, we specify a Zellner’s g-prior for the regression coeffi-

cients a with g = 1. Following [8], we set m = 1 and
a = b = 0.05. The latter leads to vague priors for si1’s and
si2’s. Since, for a given spectrum, the peak positions are always

bounded, we let lij’s be subject to the uniform priors.
Furthermore, we assume the prior distribution of m follows

a truncated Poisson distribution with mean k; that is,

PðjMj ¼ mÞ ¼ 1

C

km

m!
e�k; m 2 f1; . . . ;mmaxg;

where C ¼
Pmmax

i¼1
km

m!
e�k, and k and mmax are hyperparameters

to be specified by the user. In practice, one may set k to a small

number to avoid finding too many false peaks. In this paper,
we set k = 1 in all computations which yield good results.
Our numerical results indicate that the choice of mmax is not

crucial for peak picking, as long as it is not too small, e.g.,
smaller than the number of true peaks. In this paper, we set
mmax to 10 for the simulation studies, and a relatively small

number, e.g., two times of the number of amino acids, for a
given protein.

Integrating out a and r2 gives us the posterior

fð#; jMj ¼mjYÞ/ km

m!

1

LmWm

Ym
i¼1

ba

CðaÞ s2i1
� ��a�1

�
exp � b

s2i1

� ��
�
Ym
i¼1

ba

CðaÞ s2i2
� ��a�1

exp � b
s2i2

� �� �
PðYj#;mÞ; ð3Þ

where

PðYj#;mÞ¼
C vþn

2

� �
ðvÞv=2

pn=2C v
2

� �
jInþUVUTj1=2

�fvþY TðIþUVUTÞ�1Yg
�ðvþnÞ=2

:

Note that the intensity for a true peak should be positive for
the 2D NMR spectrum considered here. However, in our mod-
el, no any constraints are imposed concerning the value of a.

This allows us to integrate out a from the posterior and, as a
consequence, this accelerates the convergence of the simulation
of the posterior. The marginal posterior distribution of a is

normal with mean ðUTUþ V�1Þ�1UTY and covariance matrix
r2ðUTUþ V�1Þ�1. Hence, a can be estimated based on its
expectation ðUTUþ V�1Þ�1UTY conditional on the samples

of # and m obtained at each iteration.

Bayesian peak picking

The Bayesian peak picking problem is to determine the
number of peaks, m, and the peak positions (l11, l12), . . . ,
(lm1, lm2) through simulating from the posterior (Eq. (3)).
However, it is not known how many peaks there are for a gi-
ven NMR spectrum, although the intensities at the grid points

around the peaks are relatively high. Based on this observa-
tion, we propose following algorithm for Bayesian peak
picking.

For an L · W grid NMR spectrum, we first select N poles
as ‘‘peak candidates’’. This can be done by selecting N poles
with the highest intensities, or, if we have the results from some

other methods, we can set them to be part of the peak candi-
dates as well. In this paper, we have tried both. Let
{(P1,1,P1,2), . . . ,(PN,1, PN,2)} denote the pool of candidate
peaks, which gives all candidate components for the model

(Eq. (1)). Then the peak picking problem is casted as a Bayes-
ian variable selection problem, selecting appropriate compo-
nents from the pool of candidate peaks.

For the solution of the Bayesian variable selection problem,
we apply the stochastic approximation Monte Carlo (SAMC)
algorithm [9] to estimate both the number and positions of the

peaks through simulating from the posterior distribution (Eq.
(3)). SAMC is an adaptive Markov chain Monte Carlo
(MCMC) algorithm which possesses the self-adjusting mecha-

nism and is immune to local trap problems. At each step,
SAMC updates the set of selected peaks by either adding a
peak (birth move), deleting a peak (death move), or refining

the position of a selected peak (position update). Let ‡t
I denote

the peaks included in the model at iteration t and let ‡t
R denote

the remaining peaks that are not included in the current sam-

ple. Hence, ‡t
I [ ‡t

R ¼ fðP1;1;P1;2Þ; . . . ; ðPN;1;PN;2Þg The birth

move creates a new peak by randomly selecting one from the

set ‡t
R and proposing a peak position based on the selected

peak. The death move removes one peak from the set ‡t
I.

The position update refines the position of a randomly-selected
peak, which does not change the dimension of the model (Eq.
(1)).

A brief review of the SAMC algorithm

Let f(x) = cw(x), x 2 v, denote a distribution that we are
working with, where c denotes a constant and X denotes the

sample space of the distribution. Let U(x) = �log(w(x))
denote the energy function of the distribution. SAMC works
on a partitioned sample space. For example, the sample space

can be partitioned into j disjoint subregions according to the
energy function: E1 = {x:U(x) < u1}, E2 = {x:u1 6 U(x) <
u2}, . . . , Ek�1 = {x:uj�2 6 U(x) < uj�1} and Ej = {x:
U(x) P uj�1}, where u1, u2, . . . ,uj�1 are prespecified numbers.

SAMC algorithm aims to sample from the following
distribution:

PhðxÞ /
Xj

i

wðxÞ
ehi

Iðx 2 EiÞ; ð4Þ

where h = (h1, . . . ,hk) and hi ¼ log
R
Ei

wðxÞdx, and I (Æ) is the
indicator function. It is easy to see that sampling from (Eq.
(4)) will lead to a ‘‘random walk’’ in the space of energy, if

the sample space is partitioned according to the energy func-
tion and each subregion is treated as a ‘‘point’’.

However, h is usually unknown. SAMC provides an auto-

matic mechanism to estimate h in simulations from f(x). As
shown in [10], SAMC is essentially a dynamic importance sam-

pling algorithm. Let hti denote the estimate of log
R
Ei

wðxÞdx at
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iteration t, and define ht = (ht1, . . . ,htk). Then one iteration of
the SAMC algorithm can be described as follows.

(1) Conditioned on the current sample x(t), simulate a sam-
ple x(t + 1) according to a Markov transition kernel,
which admits the following distribution as the invariant

distribution:

PhtðxÞ /
Xj

i

wðxÞ
ehti

Iðx 2 EiÞ ð5Þ

(2) Set ht+1 = ht + ct + 1(et+1 � 1/j), where et + 1 =

(et + 1,1, . . . ,et + 1,m), et + 1,i = 1 if x(t + 1) 2 Ei and 0
otherwise, and ct + 1 is called the gain factor.

The gain factor sequence {ct} is positive and non-decreas-
ing, and satisfies the conditions

P
ct ¼ 1 and

P
cn
t <1

for some n 2 (1,2). In this paper, we set ct ¼ dt0
maxðt0 ;tÞ ;

t0 ¼ 5000; d ¼ 0:5.
When the dimension of x is high or when the sampling

space X is too large, SAMC may take long time to converge.
For this reason, we adopt a variant of SAMC, annealing sto-

chastic approximation Monte Carlo [11], for simulating from
the posterior (Eq. (3)). Annealing SAMC shrinks the sample
space at each iteration according to the current sample. To

be precise, at each iteration, annealing SAMC draws samples
from the distribution

PhtðxÞ /
XQ
U
ðtÞ
min
þ@ð Þ

i

fðxÞ
exp ht1ð Þ

Iðx 2 EiÞ ð6Þ

where U
ðtÞ
min is the best value of U(x) obtained by iteration

t,@ > 0 is a user-defined parameter that determines the broad-
ness of the sample space at each iteration, and P(u) denotes the
index of subregions based on the energy function; if

ui�1 < u < ui, then P(u) = i. Clearly, if @ is large, say
@P 20, then it follows from the principle Occam’s razor [12]
that the samples simulated using annealing SAMC can still
be used for Bayesian inference. In this paper, we set @ ¼ 1000.

SAMC for Bayesian peak picking

In this section, we useM* to denote the proposedmodel, useM(t)

to denote the current model, use#* to denote the parameter vec-
tor proposed for themodelM*, anduse#(t) to denote the param-
eter vector of the current model. At each iteration, SAMC

randomly chooses to make one of the following moves with
equal probability: position update, birth move and death move.

Position update

In this move, we randomly choose one component from the
current model, say, the i-th component
#ðtÞ ¼ lðtÞi1 ; l

ðtÞ
i2 ; log s2i1

� �ðtÞ
; log s2i2

� �ðtÞ� 	
, then we propose to re-

place it by #� ¼ l�i1; l
�
i2; log s�2i1

� �
; log s�2i2

� �� �
, which is gener-

ated by one of the following with equal probability:

#�i;j¼#
ðtÞ
i;j þun�S; for one j randomly drawn from f1;2;3;4g

#�i ¼#
ðtÞ
i þun�S� e;

ð7Þ

where un is a random variable generated from the standard

normal distribution, S is called the step size, and e is a vector
randomly drawn from a unit sphere of dimension 4.
The proposal is accepted with probability

a ¼ min 1;
expfhJð#ðtÞÞgPð#

�; jM�kYÞTð#� ! #ðtÞÞ
expfhJð#�ÞgPð#ðtÞ; jMðtÞkYÞTð#ðtÞ ! #�Þ

( )
ð8Þ

where J(#) denotes the index of the subregion that the corre-

sponding model belongs to and Tð#ðtÞ ! #�Þ denotes the pro-
posal distribution that is determined by Eq. (7).

Birth move

This move is to randomly choose a pole from the list of unse-
lected peak candidates to add to the current model. For exam-
ple, the peak {Pi,1, Pi,2} is chosen, then the related parameters
are proposed as follows:

l�i1 ¼ Pi;1 þ un1 � S; ð9Þ

l�i2 ¼ Pi;2 þ un2 � S; ð10Þ

log s�2i1
� �

¼ UðlogðL3Þ; logðU3ÞÞ; ð11Þ

log s�2i2
� �

¼ UðlogðL4Þ; logðU4ÞÞ; ð12Þ

where un1 and un2 are random samples drawn from the stan-
dard normal distribution. The acceptance probability of the
move is given by

a ¼ min 1;
QðjM�j ! jMðtÞjÞ
QðjMðtÞj ! jM�jÞ

PðDeathjM�Þ
PðBirthjMðtÞÞ

RPU

� �
; ð13Þ

where RPU ¼
exp h

Jð#ðtÞÞ

n o
Pð#� ;jM�jjYÞTð#�!#ðtÞÞ

expfhJð#�ÞgPð#ðtÞ ;jMðtÞjjYÞTð#ðtÞ!#�Þ
is the acceptance rate

for position update move. where J(#) denotes the index of the
subregion that the corresponding model belongs to;

QðM� !MðtÞÞ=QðMðtÞ !M�Þ ¼ ‘Pt
R



 

= ‘Pt
I þ 1

� �
accounts for

the probability of adding a pole/component to the current

model; T(Æ fi Æ) denotes the proposal distribution determined
by Eqs. (9)–(12); P(Birth ŒM(t)) = 1/3 if 1 < ŒM(t)Œ < mmax,
P(Birth ŒM(t)) = 2/3 if ŒM(t)Œ = 1, and P(Birth ŒM(t)) = 0 if
ŒM(t)Œ = mmax; and P(Death ŒM*) if 1 < ŒM*Œ < mmax,

P(Death ŒM*) = 0 if ŒM*Œ = 1, and P(Death ŒM*) = 2/3 if
ŒM*Œ = mmax.

Death move

This move is to randomly delete one component from the
model (Eq. (1)). The acceptance probability of this move is gi-
ven by

a ¼ min 1;
QðjM�j ! jMðtÞjÞ
QðjMðtÞj ! jM�jÞ

PðBirthjM�Þ
PðDeathjMðtÞÞ

RPU

� �
ð14Þ

where RPU ¼
exp h

Jð#ðtÞÞ

n o
Pð#� ;jM�jjYÞTð#�!#ðtÞÞ

exp hJð#�Þf gPð#ðtÞ ;jMðtÞ jjYÞTð#ðtÞ!#�Þ is the acceptance rate
for position update move. where J(#) denotes the index of the
subregion that the corresponding model belongs to;

QðM� !MðtÞÞ=QðMðtÞ !M�Þ ¼ j‘Pt
Ij= ‘Pt

R þ 1
� �

accounts for

the probability of removing a component from the current
model; T(Æ fi Æ) denotes the proposed distribution determined

by Eqs. (9)–(12); P(Birth ŒM*) = 1/3 if 1 < ŒM*Œ < mmax,
P(Birth ŒM*) = 2/3 if ŒM*Œ = 1, and P(Birth ŒM*) = 0 if
ŒM*Œ = mmax; and P(Death ŒM(t)) = 1/3 if 1 < Œ M(t)Œ <
mmax, P(Death ŒM(t)) = 0 if ŒM(t)Œ = 1, and P(Death ŒM(t)) =
2/3 if ŒM(t)Œ = mmax.
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Peak identification

At the end of the SAMC run, the peaks can be identified

according to the marginal inclusion probability, that is, the
posterior probability of each pole. Since SAMC is essentially
a dynamic importance sampling algorithm [10], the marginal

inclusion probability for a given pole can be estimated by

bIi ¼Pt1þt2
t¼t1þ1I

t
i expðhJð#ðtÞÞÞPt1þt2

t¼t1þ1 expðhJð#ðtÞÞÞ
; i ¼ 1; 2; . . . ;N; ð15Þ

where t1 denotes the number of burn-in iterations, t2 denotes

the number of iterations used for posterior calculation, and
Iti is an indicator variable which is 1 if the i-th candidate peak
is included in the model M(t) and 0 otherwise. In this paper, we

set t1 = t2 = 50,000 for the simulation study and
t1 = t2 = 250,000 for the real data examples. Alternatively,
the peaks can be identified based on the maximum a posteriori

(MAP) model. In our examples, the peaks identified by these
two methods tend to be identical.

If a pole is identified as a peak, the related parameters can
be estimated by

#̂i;j ¼
Pt1þt2

t¼t1þ1#
ðtÞ
i;j expðhJð#ðtÞÞÞPt1þt2

t¼t1þ1 expðhJð#ðtÞÞÞ
: ð16Þ

It follows from the theory of SAMC, both bIi and #̂i;j are
consistent.

Post-processing of simulation results

When applying the proposed method to NMR spectrum
data, several issues need to be taken care for post-processing

the simulation results. (1) As aforementioned, we did not re-
strict the peak intensity parameter vector a to be positive for
the reason of computational efficiency. If the simulated mod-

el contains some components of negative intensities, we can
directly eliminate them from the model. Those components
capture the outrageous noise of the data, and removing them
corresponds to a denoising step employed by other methods.

(2) It is believed that the spreads of true peaks are relatively
small as compared to the range of the spectrum. In model
(Eq. (1)), the spreads of components are measured by si1
and si2 for i= 1, 2, . . . ,N. Hence, for a component, say com-
ponent i, if si1 or si2 is large, then it is reasonable to treat it
Figure 2 A simulated image of 5 peaks with the noise simulated as in

A. The image with noises added, for which the true peaks are hard to d

pure image without noises added.
as an overall trend rather than a peak. This suggests us to
remove it from the model. In our study, we found that it
is good enough to set the threshold for si1 and si2 to bep
L/2 and

p
W/2, respectively; that is, removing the peaks

with si1 >
p
L/2 or si2 >

p
W/2. (3) In the practice of

NMR peak picking, the tolerance limit for N dimension is

0.5 and that for H dimension is 0.05. Hence, if the simulated
model contains two components that are close to each other
in the sense that the difference between their locations is

within the tolerance range, then we will combine them into
a single peak.

Numerical results

Simulation study

In the simulation study, we generated an image of size 50 · 50
with 5 peaks. The volumes of the 5 peaks are 452293.9,

532729.6, 719234.05, 403184 and 215974.5, respectively. Their
intensities are 14353.41, 15907.05, 18044.68, 43738.34 and
23187.57, respectively. Extra noises are added to the image.

To study the sensitivity of our method to the noise, two situa-
tions are considered. (1) The noise follows a normal distribu-
tion with mean 0 and standard deviation 4000 and (2) the
noise follows a normal distribution with mean 0 and standard

deviation 4000; in addition, some extra negative spikes are put
around the point (10,20) with the volume 100,000.

Figure 2 shows the example for situation 1. The image with

noises added is shown in Figure 2A, for which the true peaks
are hard to detect using naked eyes, whereas the recovered im-
age by SAMC, and the pure image without noises added are

shown in Figure 2B and C. The comparison of the recovered
image and the pure image shows that we have successfully
denoised the image and recovered the locations and shapes
of the peaks. As shown in Figure 3, the results for situation

2 is similar.
Table 1 shows the peak position estimation by our method

for the simulated example with the noise as simulated in

situation 1. It is easy to see that the estimation is rather
accurate. In this table, we also include the marginal inclusion
probability of candidate poles. The poles corresponding to

the true peaks have a marginal inclusion probability of 1 and
situation 1

etect using naked eyes. B. The recovered image by SAMC. C. The



Table 1 Peak position estimation for the simulated example in situation 1

Peak
True position Estimated position

MIP
l1 l2 cl1 cl2

1 40 24 40.80 24.14 1

2 10 37 9.70 36.94 1

3 20 12 20.16 11.91 1

4 5 23 4.84 22.94 1

5 30 46 30.23 46.01 1

Note: (l1, l2) is the location of the peaks and ðcl1 ;cl2Þ is the estimation using Bayesian peak picking method. MIP refers to the marginal inclusion

probability of the corresponding pole.

Figure 3 A simulated image of 5 peaks with the noise simulated as in situation 2

A. The image with noises added, for which the true peaks are hard to detect using naked eyes. B. The recovered image by SAMC. C. The

pure image without noises added.
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all others have a marginal inclusion probability of 0. This im-

plies that our method has converged to true peaks.

NMR peak picking

We have applied the proposed method to six proteins along
with a comparison with an existing method. We used 2D
15N-HSQC spectra for the experiment. For the N dimension,
a peak is considered correct if its distance from the truth is less
than 0.5. For the H dimension, a peak is considered correct if
Figure 4 Results of Bayesian peak picking method for protein HACS

One unit in H dimension represents 0.0148 ppm and one unit in D di
the distance is less than 0.05. In the 2D space, a peak is consid-

ered correct if both the N and H dimensions are within the tol-
erance ranges when compared to the true peak.

Let NT denote the number of true peaks in a given spec-

trum, let NP denote the number of peaks being picked and
let TP denote the number of true peaks being picked. Then
the recall rate is defined as TP/NT, which is the identification
rate of a true peak; and the precision is defined as TP/NP,

which is the proportion of true peaks among the identified
peaks. Figure 4 shows the results of our method for protein
1

mension represents 0.0873 ppm.
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SAM domain, SH3 domain and nuclear localization signals
1(HACS1), where the asterisk (*) denotes the true peaks and
the circle denotes the identified peaks using the proposed meth-

od. The only peak that was not identified by our method is the
one around the grid point (109,200). The contour plot given in
Figure 5 shows that the intensity around the grid point

(109,200) is very low.
Figure 6 gives the peak picking results using our method for

protein coilin. Figure 7 shows the contour plot of the NMR

spectrum for coilin. It is obvious that in the region of
[240,320] · [110,140], there are lots of peaks with very high
intensities. However, there are no true peaks residing in this re-
gions. Results show that our method is able to exclude a big

portion of false peaks in that suspicious region, although not
all of them.

Table 2 summarizes the results of our method for 6 proteins

along with a comparison with PICKY [6], a newly developed
powerful peak picking method. Table 2 reports the recall
Figure 6 Results of Bayesian peak picking method for protein coilin

One unit in H dimension represents 0.0118 ppm and one unit in D dim

and the circle denotes the identified peaks using the proposed method

Figure 5 Contour plot for the 15N-HSQC spectrum of protein HACS

One unit in H dimension represents 0.0148 ppm and one unit in D di
and precision and F-score [13] values for PICKY and the pro-
posed method. On average, the proposed method is 1.0% more
accurate in recall and 3.9% more accurate in precision for

these 6 proteins.
Taking a closer look at Table 2, we can see that the pro-

posed method has made improvements over PICKY under dif-

ferent situations. Our method has made the most significant
improvements over PICKY on proteins vancomycin resistance
associated regulator (VraR) and HACS1. For these two pro-

teins, PICKY gives high recall rates but low precision values.
Compared to PICKY, our method works well in eliminating
false peaks. However, our method does not improve the results
of PICKY for Thermotoga maritima enzyme protein TM1112,

for which PICKY already did a good job. From this example,
we find that our method can fail to identify overlapping peaks
as other existing methods do. Table 2 reported the results

with the candidate poles selected according to the intensities
and according to the preliminary results of PICKY. Overall,
ension represents 0.1508 ppm. Asterisk (*) denotes the true peaks

.

1

mension represents 0.0873 ppm.



Table 2 Numerical results for the 6 proteins tested

Protein name Protein length
PICKY SAMC1 SAMC2

Recall Precision F-score Recall Precision F-score Recall Precision F-score

TM1112 89 96 89 92.4 94 89 91.4 95 85 89.7

RP3384 64 94 86 89.8 91 83 86.8 93 91 92.0

ATC1776 101 78 82 80.0 83 84 83.5 87 76 81.1

Coilin 98 97 70 81.3 94 77 84.7 94 80 86.4

VraR 72 87 93 89.9 93 98 95.4 91 98 94.4

HACS1 74 95 67 78.6 98 81 88.7 98 81 88.7

Average –– 91.2 81.2 85.3 92.2 85.3 88.4 93.0 85.2 88.7

Note: SAMC1, results of SAMC with peak candidates selected by intensities in a descending order; SAMC2, results of SAMC with peak candidates

from the results of PICKY.

Figure 7 Contour plot for the
15
N-HSQC spectrum of protein coilin

One unit in H dimension represents 0.0118 ppm and one unit in D dimension represents 0.1508 ppm. Red square box marks the true peaks

that are not detected by our method.
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our method does not perform differently under the two

aforementioned settings, since the self adjustment mechanism
of SAMC makes the simulation less dependent on the starting
point.
Discussion

In this paper, we proposed a Bayesian method to tackle the

problem of NMR peak picking. Our numerical results indicate
that the proposed method tends to produce more accurate re-
sults than the existing methods. To the best of our knowledge,

this is the first effort in the literature that tackles the NMR
peak picking problem using a Bayesian method. Our method
has a few advantages over the existing methods. (1) Through

choosing appropriate prior distributions, our method auto-
matically penalizes the models with too many or too few
peaks. (2) Our method can automatically distinguish true
peaks from false ones without preprocessing the data. While

the existing methods need to first remove the noise by setting
a threshold at a risk of signal deletion. (3) Our method has
the ability to estimate the spread and volume of each peak dur-

ing the process of peak picking. This helps to reconstruct the
denoised spectrum as compared to the existing methods which
just give the peak positions.
A drawback of our method is that it is computationally

intensive. This difficulty can be alleviated through parallel
computing. We can partition the spectrum into multiple subre-
gions and then process each of the subregions in parallel. For

instance, for TM1112, we partition the spectrum into 6 subre-
gions, and the run of SAMC takes only a few hours for each
subregion. This is acceptable to most NMR laboratories.

Our method can be improved in various ways. For example,

we can improve the fitting of the model to the spectra by replac-
ing the Gaussian density function with a skew Gaussian density
function, as the latter has a much more flexible density shape

than the former. Other different prior distributions can also
be tried for the model parameters, e.g., the mixture g-prior
[14], which can leads to the consistency of variable selection.
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