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Abstract Understanding the mechanism of complex human diseases is a major scientific challenge.

Towards this end, we developed a web-based network tool named iBIG (stands for integrative BIol-

oGy), which incorporates a variety of information on gene interaction and regulation. The gener-

ated network can be annotated with various types of information and visualized directly online. In

addition to the gene networks based on physical and pathway interactions, networks at a functional

level can also be constructed. Furthermore, a supplementary R package is provided to process

microarray data and generate a list of important genes to be used as input for iBIG. To demonstrate

its usefulness, we collected 54 microarrays on common human diseases including cancer, neurolog-

ical disorders, infectious diseases and other common diseases. We processed the microarray data

with our R package and constructed a network of functional modules perturbed in common human

diseases. Networks at the functional level in combination with gene networks may provide new

insight into the mechanism of human diseases. iBIG is freely available at http://lei.big.ac.cn/ibig.
Introduction

Among many great challenges in the field of biological sci-

ences, disease mechanism is of imminent relevance to every sin-
gle person in the whole world. From the perspective of cellular
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networks, complex diseases are progressive transformations of
the cellular network. For heritable diseases, the network is
flawed at the very beginning. For chronic complex diseases,

lifelong gene and environment interaction results in dynamic
adjustment and, at certain points, breakdown of the network.
Understanding the specific destruction of the network in spe-
cific diseases and at specific stages is the key starting point

for subsequent design of rescue or remedial strategies.
Network analysis has been increasingly utilized in interpret-

ing high throughput data. Networks can be constructed purely

based on gene expression information, including transcrip-
tional regulatory networks [1] and co-expression networks
[2]. Networks can also be built upon prior knowledge of pro-

tein–protein interactions [3]. Several network tools have been
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implemented as Cytoscape plugins, including BisoGenet [3],
MIMI [4] and APID2NET [5], which mainly focus on protein
interactomes. Network building is also provided by web ser-

vices such as STRING (http://string-db.org/). Since cellular
networks consist of various types of interaction and regula-
tion, networks reflecting this complex scenario will provide

better insight into the problem in hand.
In this work, we developed a network tool iBIG (stands for

integrative BIoloGy), which incorporates information on both

interaction and regulation. The main architecture consists of a
client interface by HTML and JavaScript, a server-side script
written in CakePHP and a MySQL database. The network
visualization is implemented based on the Cytoscape Web

application programming interface (API). An important R
package ArrayPro (http://lei.big.ac.cn/download/open_down-
load_page) is also provided for processing of microarray data

and construction of networks based on functional gene sets.
To illustrate this unique feature, an example of network per-
turbation in common human diseases is provided.

Design and implementation

iBIG architecture

iBIG is a client-server based application following the Cake-

PHP framework, a popular MVC model. In MVC models,
model (M) is used to access database and pass the result to
control (C), which responds to client request and view (V) is

set according to the result from control. The three main units
in MVC models include client, server and database (Figure 1).
When constructing networks of functional gene sets, ArrayPro

can remotely access our database. Visualization can be used
for networks generated by iBIG or other network tools. iBIG
has been extensively tested on IE8 and Firefox.

Database design

A unique internal gene ID is used to represent every gene and
its product. The IDs from public databases are converted to

the internal gene IDs. Our integrated database mainly consists
of two parts: gene interaction and gene annotation. The
Figure 1 iBIG architecture

The client, server and database correspond to view, control and

model in the MVC model, respectively. ArrayPro can access the

database by RMySQL. Visualization is developed based on

Cytoscape Web API.
interaction data are further classified into primary interaction,
secondary interaction and network regulation. Primary inter-
actions include pathway interaction, protein complex interac-

tion and general protein–protein interactions. Secondary
interactions include gene-gene interaction, chromosome posi-
tion interaction, transcription factor-target gene interaction

and kinase-target interaction. To facilitate the understanding
of regulatory relationships, the latter two together with micr-
oRNA-target gene interactions form the network regulation

category.

Sources of the integrated database

Pathway interactions were collected from Kyoto Encyclopedia
of Genes and Genomes (KEGG) (http://www.genome.jp/
kegg/) by R package ‘KEGGSOAP’ (available for download-
ing pathway gene information), WikiPathway (http://www.

wikipathways.org/), NCI-Nature (http://pid.nci.nih.gov/),
PathwayCommons [6] (this composite pathway database can
be selected independently or further merged with other dat-

abases), Reactome (http://www.reactome.org/) and EHMN
[7]. Protein complex interactions were collected from MIPS
(http://mips.helmholtz-muenchen.de/genre/proj/corum). Pro-

tein–protein interactions were collected from HPRD [8], Bio-
Grid (http://thebiogrid.org/), DIP [9], MINT [10], IntAct [11]
and BIND [12]. Gene-gene interactions were downloaded from
BioGrid. Chromosome position interactions were collected

from the Molecular Signatures Database (MSigDB) of GSEA
(http://www.broadinstitute.org/gsea/msigdb/index.jsp). Tran-
scription factor-target gene interactions were collected from

a recent paper [13]. Kinase-target interactions were collected
from PhosphoSitePlus (http://www.phosphosite.org/). Micr-
oRNA-target gene interactions were collected from TarBase

[14], miRecords [15] and MicroCosm [15].
The network annotation includes the following informa-

tion: pathway, protein complex, chromosome position, tran-

scription factor, microRNA, kinase, epigenetics-related gene,
housekeeping gene, tissue-specific gene, gene ontology (GO)
biological process, GO molecular function and GO cellular
component. We used the same data as in the interactions for

pathway, protein complex, chromosome position, transcrip-
tion factor, microRNA and kinase. Epigenetics-related genes
were collected from GO and NCBI Entrez Gene. Housekeep-

ing genes were collected from three papers [16–18]. Tissue-spe-
cific genes were collected from a recent paper [17]. Data for
GO biological process, molecular function and cellular compo-

nent were collected from MSigDB of GSEA.

Construction of gene networks

Construction of a gene network consists of several steps: (1)
submit a gene list with one gene per line (gene symbol and En-
trez gene ID are supported); (2) select databases for primary or
secondary interaction (selection of primary interactions is

mandatory while second interactions are optional); (3) set
the network filtering strategy to reduce network complexity;
(4) select databases for network regulation (optional) if the

user wants to know about the upstream regulators and down-
stream targets; and (5) choose preferred network annotation to
illustrate the functions of genes in the network. The generated

network can be visualized online directly or downloaded in
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XGMML format. The online visualization facilitates the inter-
active refinement of the network by modifying the selections.

Construction of networks with functional gene sets

ArrayPro is a supplementary R package mainly for microarray
data processing, including data preprocessing, identification of

differentially expressed genes (DEGs), functional enrichment
analysis and construction of networks with functional gene
sets. Networks with functional gene sets can be built by calcu-

lating the correlation among selected functional gene sets. In
our recent work, ArrayPro has been applied to the investiga-
tion of network perturbation in Alzheimer’s disease [19].

Calculation of relationship among functional gene sets

ArrayPro is an independent R package which can be
downloaded from http://lei.big.ac.cn/download/open_down

load_page. One of the functions of ArrayPro is to build net-
works with functional gene sets instead of individual genes.
The detailed procedures are described as follows. (1) Genes

belonging to the relevant gene sets are selected. (2) A gene
interaction network is constructed based on selected types of
interactions. (3) For any pair of gene sets, such as gene sets

A and B, the significance of node overlap Pnode_overlap is calcu-
lated. (4) The significance of direct interaction between the two
gene sets Pdirect is also calculated (for two gene sets, genes from
one gene set may interact with genes from the other gene set.

This type of interaction is called direct interaction). (5) The
combined probability of Pnode_overlap and Pdirect is calculated
Figure 2 Visualization interface

A. The numbers of nodes and edges of the network. B. The visual style

style. C. The window used to show the global visual style. D. The visua

filter nodes and edges according to specified attributes. E. The menus

network. F. The main window to display the network. G. The four but

new attribute’’, ‘‘delete attribute’’ and ‘‘export selected attributes’’. H
using Fisher’s method [20]. In formula (1), Pnode_overlap is the
P-value of node overlap between gene sets A and B, Pdirect is
the P-value of direct interaction between gene sets A and B,

and S is the score transformed from the combined probability.
The P-value of S, which follows chi-square distribution with 2k
degrees of freedom (k is the total number of variables to be

combined, 2 in this case), is calculated by formula (2). If the
P-value of S (PS) between gene sets A and B is less than a
given threshold such as 0.05, we consider the two gene sets

functionally related and the Score, calculated by formula (3),
is taken as the final score for the relationship between the
two gene sets.

S ¼ �2ðlogðPnode overlapÞ þ logðPdirectÞÞ ð1Þ

S � v2
2k ð2Þ

Score ¼ �logðPsÞ ð3Þ
Network visualization

Standalone network tools such as Cytoscape [21] and VisANT

[22] have been developed for the visualization of biological net-
works. Recently, a web-based visualization tool Cytoscape
Web [23] has been developed, which uses flash technologies

and provides a javascript API for developers. Implementation
of our visualization tool is based on Cytoscape Web 0.7.4 re-
lease with the goal of mimicking the standalone Cytoscape.

This convenient visualization tool (Figure 2) can be indepen-
dently accessed at http://lei.big.ac.cn/visualization/start_
container where users can create, rename and delete selected visual

l mapper panel and filter panel, where users can set visual style or

to import network, export network, import attribute and lay out

tons from left to right, including ‘‘show selected attribute’’, ‘‘create

. The window used to show attributes of nodes and edges.

http://lei.big.ac.cn/download/open_download_page
http://lei.big.ac.cn/download/open_download_page
http://lei.big.ac.cn/visualization/start_visualization
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visualization, with which construction and operation of net-
works based on web browser can be easily achieved with the
tactics from standalone Cytoscape.

Case study

Construction of a network for common human diseases

Microarray datasets were downloaded from NCBI gene
expression omnibus (GEO) and EBI ArrayExpress. Fifty-four
microarray datasets were used in this study, including 12 for
cancer, 7 for neurological disorders, 29 for infectious and

inflammatory diseases and 6 for metabolic diseases. Micro-
array data preprocessing, differential expression identification,
enrichment analysis and construction of functional networks

were all performed with ArrayPro. The microarray raw data
(CEL files) was preprocessed with the GCRMA algorithm to
get the expression values for every probe. Any probe sets with

a call value of less than 10% returned by mas5calls function in
affy package were removed. Then, probe sets were mapped to
Entrez Gene ID. Any probe sets not mapped to known genes

were also removed from further analysis. If there are multiple
probe sets mapped to the same gene, we averaged their expres-
sion values as the expression of the gene. Differential expres-
sional genes were identified by the FC-based RankProd

algorithm. Enrichment analysis was based on gene sets includ-
ing EHMN, KEGG, NCI and GO from GSEA. For every dis-
ease group, 60 functional terms (gene sets) were selected

according to the enrichment score. A total of 240 functional
terms from the four disease groups were merged together,
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Figure 3 Network perturbation in common human diseases

The most significantly perturbed functional modules in four disease

perturbed in common human diseases, including cancer, infectious dise

for biological process and molecular function in gene ontology (GO), w

for curated pathways in KEGG and NCI pathway databases.
which resulted in 117 nodes (functional terms) for the func-
tional network. The functional network was constructed by
ArrayPro based on the HPRD database. Interactions with

P < 0.01 were considered significant.
Network perturbation in common human diseases

One of the unique features of iBIG is the construction of net-
works with functional modules. This feature can facilitate the
understanding of the investigated biological problem at a high-

er level compared to gene networks. In our recent work, we
have used this functionality in the investigation of pathogene-
sis of Alzheimer’s disease [19]. Here we demonstrate this func-

tionality by constructing a functional network perturbed in
common human diseases. The most significantly perturbed
functional modules in each of the four classes of diseases were
selected and merged together. The connectivity among this set

of 117 functional modules was calculated again by ArrayPro
and the network was thus constructed (Figure 3). Here we
briefly describe the relevance of this network to the mechanism

of human diseases.
Many of the uniquely-perturbed functions in a specific dis-

ease class are consistent with the current knowledge. For

example, cell cycle, DNA replication and p53 pathway
(KEGG) are perturbed only in cancer, while transmission of
nerve impulse, synaptic transmission, nervous system develop-
ment, long term potentiation, long term depression, axon guid-

ance and gap junction are perturbed only in neurologic
diseases. Therefore, other uniquely-perturbed functions may
also play important roles in the specific class of diseases. For
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cancer, lipid metabolism and protein processing in endoplas-
mic reticulum (ER) are two of the less-known factors. Lipid
metabolism is involved in membrane formation and energy

production which are both critical for cell proliferation [24].
Cell proliferation will also have a different demand on the pro-
tein folding and recycling in ER. For neurologic diseases, more

attention may be paid to calcium signaling, insulin signaling
and HIF1alpha transcriptional regulation. Calcium signaling
is of great importance to the maintenance of normal neuro-

logic activities. Insulin signaling is involved in nutrient sensing
and adjustment of cellular activity [25,26]. HIF1alpha tran-
scriptional regulation is involved in oxygen sensing and cell
fate decisions. In our recent work, we have proposed that

the cause of Alzheimer’s disease is the prolonged low supply
of oxygen and nutrients in the brain [19]. For infectious dis-
eases, the unique perturbation of ribonucleoprotein complexes

is of particular interest. The significant perturbation of this
functional module likely reflects the enhanced translational
activity in the ribosome.

On the other hand, some functional modules are per-
turbed in three classes of diseases but not in the fourth class.
For example, the extracellular region and cell adhesion mol-

ecules are not significantly perturbed in infectious diseases,
consistent with the transcriptome measurement on blood
for this class of disease which lacks tight cellular connection
as in other tissues [27]. The non-significant perturbation of

the complement and coagulation cascade is a little surpris-
ing. The complement and coagulation cascade is involved
in immune response and blood clotting [28]. Up-regulation

of this functional module is only observed in Tuberculosis
(data not shown), leading to overall non-significant pertur-
bation in this disease class. The non-significant perturbation

of the AP1 transcriptional network in infectious disease may
also deserve further investigation. AP1 functions in many
cellular activities including cell cycle proliferation and apop-

tosis [29]. The dysregulation of the AP1 transcriptional net-
work has been reported in cancer and neurological diseases,
while its connection with infectious diseases has rarely been
reported. For cancer, the ribosome is not significantly per-

turbed. This may indicate non-significant overall perturba-
tion of translational activity in cancer despite the
significant dysregulation of cell cycle. For neurologic dis-

eases, CMYC pathway and antigen processing and present-
ing are not significantly perturbed. CMYC is involved in
apoptosis under certain conditions, but this may not be rel-

evant to neurologic disorders. Antigen processing and pre-
senting is involved in the immune response process. The
lack of significant perturbation of this functional module
may indicate a non-significant immune response in neuro-

logic diseases. An interesting observation is the lack of func-
tional modules significantly perturbed in three disease classes
but not in metabolic diseases, likely due to the less consis-

tent and specific perturbation among metabolic diseases.
In addition, hidden links between a pair of disease classes

can be revealed on this network. Cancer and neurological

diseases shared significant perturbation of the integrin family
cell surface interaction and focal adhesion. This integrin-fo-
cal adhesion axis is involved in cell proliferation and apop-

tosis, which are prominent features of the two disease classes
[30]. Cancer and infectious diseases shared significant pertur-
bation of endocytosis. Endocytosis is an important defense
mechanism against pathogens. It has also been found that

endocytosis is involved in other functions including a variety
of signaling events [31]. Neurological diseases and infectious
diseases shared significant perturbation on energy metabo-

lism related functional modules including mitochondria and
TCA cycle. This may reflect the special energy requirement
in these two disease classes. In addition, cancer and meta-

bolic diseases shared significant perturbation of receptor
activity and receptor binding. Neurologic diseases and meta-
bolic diseases shared significant perturbation of hormone
mediated signaling pathways including glucocorticoid recep-

tor signaling pathway and androgen mediated signaling.
Infectious diseases and metabolic diseases shared significant
perturbation of translation related functional modules. Due

to the heterogeneous nature of metabolic diseases, it is not
immediately clear how those intersections are related to
the disease mechanism.

Network analysis has been widely applied to the investiga-
tion of human disease mechanisms. In most of the studies, the
major focus is on the gene network. Here we provide the func-

tional network as a complementary view of the studied biolog-
ical problem. Gene networks can provide detailed information
on gene–gene interaction and regulation, while functional net-
works can provide a global view of the cellular transformation.

The combination of these two types of networks will provide
more comprehensive understanding of the studied problem
including the disease mechanism. Currently we are applying

this strategy to the in-depth investigation of cancer and Alzhei-
mer’s disease.

Conclusion

In summary, iBIG is a new tool for network construction
and visualization. Distinct features include classification of

interactions, web-based visualization and networks of func-
tional gene sets. The web-based visualization provides a con-
venient way to refine networks interactively. Future

development of iBIG will include integrating more func-
tional data and further improvement the network visualiza-
tion. Because our remote database is based on several

external databases, we plan to update it manually and peri-
odically (twice a year).
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