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Abstract

Immortality and tumorigenicity are two distinct characteristics of cancers. Immortalization has been suggested to precede tumorigenesis.
To understand the molecular mechanisms of tumorigenicity and cancer progression in mammary epithelium, we established a tumori-
genic cell model by means of heavy-ion radiation of an immortal cell model, which was created by overexpressing the human telomerase
reverse transcriptase (hTERT) in normal human mammary epithelial cells. We examined the expression profile of this tumorigenic cell
line (T_hMEC) using the hTERT-overexpressing immortal cell line (I_hMEC) as a control. In-depth RNA-seq data was generated by
using the next-generation sequencing (NGS) platform (Life Technologies SOLiD3). We found that house-keeping (HK) and tissue-spe-
cific (TS) genes were differentially regulated during the tumorigenic process. HK genes tended to be activated while TS genes tended to be
repressed. In addition, the HK genes and TS genes tended to contribute differentially to the variation of gene expression at different
RPKM (gene expression in reads per exon kilobase per million mapped sequence reads) levels. Based on transcriptome analysis of
the two cell lines, we defined 7053 differentially-expressed genes (DEGs) between immortality and tumorigenicity. Differential expression
of 20 manually-selected genes was further validated using qRT-PCR. Our observations may help to further our understanding of cellular
mechanism(s) in the transition from immortalization to tumorigenesis.
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Introduction

Cancers are life-threatening diseases with enormous com-
plexities, which involve dynamic changes in the genome
at both genetic and epigenetic levels [1,2]. Although numer-
ous types and grades of cancers have been defined on the
basis of their origin, ample studies suggest that they may
share certain routes to malignant transformation, such as
chromosome instability, self-sufficiency, insensitivity to
antigrowth signals, unlimited replicative potential, apopto-
sis evasion, sustained angiogenesis and tissue invasion (or
metastasis) [3,4]. In addition, many lines of evidence indi-
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cate that tumorigenesis in human cancers is a multistep
process. Genetic and epigenetic alterations accumulate at
each step, which drive progressive transformation of nor-
mal human cells into highly malignant derivatives [2,5,6].
Among these steps, there are two distinct phenomena:
immortality and tumorigenicity. Immortalization occurs
early during tumor progression [7], and tumorigenic cells
are always transformed from immortal cells [5,6,8]. There
are substantial differences between immortality and tumor-
igenicity, and many genes are differentially expressed when
comparing immortal and tumorigenic cells [9–12].

Immortalization does not necessarily confer tumorigenic-
ity but tumorigenicity is the prerequisite to cancer
development and remains the prime problem in cancer treat-
ment. Therefore, elucidation of the mechanisms underlying
cademy of Sciences and Genetics Society of China. Published by Elsevier
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Figure 1 Mapping summary of the two cell models for breast cancer

Left panels show percentages of tags mapped to multiple loci and to
unique loci and unmapped tags. Panels on the right show detailed
mapping results of uniquely-mapped tags. Exon: tags mapped to exonic
region; Intron: tags mapped to intronic region; Exon–intron: tags mapped
to exon–intron junctions; Gene-reverse: tags reversely mapped to gene;
Intergenic: tags mapped to intergenic region; Jun-reverse: tags reversely
mapped to exon-exon junctions. I_hMEC represents immortalized human
mammary epithelial cells and T_hMEC represents tumorigenic human
mammary epithelial cells.
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tumorigenicity, especially identification of tumorigenicity-
associated genes, is essential for facilitating early diagnosis
and effective therapy. Previous studies indicated that the
expression of human telomerase reverse transcriptase
(hTERT) is significantly higher in certain cancerous tissues
than in non-cancerous tissues [13,14]. Moreover, overex-
pression of hTERT in normal and telomerase-negative cells
often induces immortalization [8,15]. We therefore took
advantage of hTERT-induced immortalization to examine
a specific tumorigenic effect: radiation-induced tumorigene-
sis of hTERT-immortalized cells.

Breast cancer is the most common cancer among women
worldwide, comprising 16% of all female cancers (http://
www.who.int/cancer/detection/breastcancer/en/index1.html).
Development of appropriate model systems is therefore
critical for understanding the molecular mechanisms of
breast cancer. In this study, we induced normal human
mammary epithelial cells (hMEC) to become immortal by
overexpressing the hTERT gene (I_hMEC), and then per-
formed heavy ion radiation on the immortal cell model
to produce tumorigenic cells (T_hMEC). Given the sensi-
tivity and accuracy of the next-generation sequencing
(NGS) platforms [16,17], we performed transcriptome
analysis of I-hMEC and T-hMEC using RNA-seq based
on NGS to identify genes and the possible molecular mech-
anisms involved in breast cancer tumorigenicity.

Results

RNA-seq and sequence tag mapping

We used poly-A purified mRNAs for this study from the
two human mammary epithelial cell lines: the hTERT-
induced immortal cell line (I_hMEC) and tumorigenic cell
line (T_hMEC). After quality filtering, we obtained
51,895,024 (92.47%) out of 56,121,440 tags from I_hMEC
and 47,177,391 (93.33%) out of 50,549,359 tags from
T_hMEC. We then mapped these tags to the human gen-
ome and a database of unique exon-junction sequences
generated in this study (see Materials and methods), using
the SOLiD sequencing system (Life Technologies, Foster
City, CA). Among the high-quality tags, majority of the
reads (about 80%) were mapped to the genome assembly,
and about 50% of the tags in each library (about 25 million
tags) were mapped to unique locations (unique tags), which
are sufficient for quantitative analysis of genes covering all
biologically-relevant abundance classes [18,19]. For com-
parison of gene expression, we focused on the tags that
are uniquely mapped to exons. In each library, about
70% of the uniquely mapped tags are confined to exons,
with the remaining mapped to intronic, reverse, and inter-
genic sequences (Figure 1).

RPKM (gene expression in reads per exon kilobase per
million mapped sequence reads) value was used to repre-
sent the expression level for each gene [18]. Comparison
of RPKM and tag coverage (the normalized number of
mapped tags in each genomic region based on the total
tag count in each library) showed that RPKM exhibited
results consistent with tag coverage in both libraries. Tak-
ing the gene ddx39 as an example, number of mapped
tags increased greatly from I_hMEC to T_hMEC for
almost all exons although tag coverage varied drastically
between exons (Figure 2A). Similarly, the RPKM values
of this gene increased from 42.11 (I_hMEC) to 61.85
(T_hMEC). Fragmentation of the oligo-dT primed cDNA
is suggested to be more biased towards the 30 end of the
transcript [20]. We therefore fragmented oligo-dT primed
RNA instead of cDNA during library construction. As
shown in Figure 2A, tag coverage for exons is not obvi-
ously biased towards the 30 end. Therefore, the improve-
ment of experimental methods may contribute to
improved accuracy of the RPKM measurement that helps
to provide more reliable results.

We then evaluated the expression profile of each library.
In I_hMEC, 27,198 and 17,548 transcripts are verified by at
least one and at least five tags, respectively, and similar
numbers are mapped in T_hMEC, which are 26,474 and
16,881. To avoid background noise and sequencing errors,
we limited our analysis to genes with expression verified by
five or more tags. According to this criterion, 18,523 tran-
scripts were included, among which, 15,906 (85.87%) are
shared by both libraries and 2617 (14.13%) are unique.
Notably, more genes are uniquely expressed in I_hMEC
than in T_hMEC (Figure 2B).
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Figure 2 Overview of gene expression in immortal and tumorigenic cells

A. Sequencing tag distribution in two cell models I_hMEC and T_hMEC using ddx39 as an example. Genes are annotated based on information from
UCSC, Refseq and Ensembl. B. Venn diagram of genes expressed in I-hMEC and T_hMEC. C. RPKM distribution and variation between I-hMEC and
T_hMEC. I_hMEC is an immortalized human mammary epithelial cell line and T_hMEC is a tumorigenic human mammary epithelial cell line.
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We also examined the expression abundance in each library
(Figure 2C) and found that genes were often expressed at two
obvious RPKM intervals: 0–0.25 and 1.0–50. The RPKM
value of 10 appears to be a critical point because T_hMEC
expresses more genes whose RPKM value is greater than 10,
while I_hMEC expresses more genes whose RPKM value is
smaller than 10. As house-keeping (HK) genes and tissue-spe-
cific (TS) genes are expressed at different levels and may both
contribute to cancer development [21,22], we therefore exam-
ined gene expression for these two groups separately. We iden-
tified 6003 HK and 7982 TS genes (see Materials and methods,
and Table S1). Consistent with the results of the analysis on all
expressed genes, RPKM value of 10 appears as a turning point
for both HK genes and TS genes (Figure 2C). These results
indicate that both HK genes and TS genes are expressed at
different levels between immortal cell and tumorigenic cell.

Expression modulation during the tumorigenic process

We first investigated the expression correlation between the
two libraries (I_hMEC and T_hMEC), using genes
detected by at least one tag. It is clearly shown that the
expression of transcripts with RPKM values greater than
1.0 in both libraries is well-correlated (r2 = 0.91), while
genes with RPKM values smaller than 1.0 exhibit weak
correlation (r2 = 0.24) (Figure 3A). The weak correlation
for poorly-expressed genes may be attributed to sampling
bias.

We identified 7053 DEGs using the software DEGseq
with P < 0.001 (Figure 3A). In particular, expression of
3804 (53.93%) genes was repressed or down-regulated,
while expression of the remaining 3249 (46.07%) genes
was activated or up-regulated in T_hMEC (Table S2). In
I_hMEC, more genes with RPKM >10.0 are up-regulated,
while more genes with RPKM <5.0 are down-regulated
during tumorigenic process. As a result, more genes are
expressed at RPKM <0.25 and >10 in T_hMEC (Fig-

ure 3B). This may help to explain the previous observation
that RPKM 10 acts as a turning point between I_hMEC
and T_hMEC (Figure 2C). Therefore, the turning point,
RPKM 10, is mostly due to different regulation of genes
at different RPKM intervals.

To further investigate whether HK genes and TS genes
influence the transcription landscape between the two cell



Figure 3 DEGs between immortal cell and tumorigenic cell

A. Scatter-plot of gene expression abundance. DEGs are highlighted in red to differentiate from the background (black). Genes that are mapped by at least
one tag in its exonic region were evaluated. Genes with different RPKM values exhibit different correlations between I_hMEC and T_hMEC. The
coefficient – r2 is 0.91 (P < 0.001) for genes with RPKM >1.0 but only 0.24 (P < 0.001) for genes with RPKM <1.0 in both libraries. B. Gene expression
abundance for different DEGs in each library. Up-regulated DEGs during the tumorigenic process are referred as Up_I_hMEC in I-hMEC and
Up_T_hMEC in T_hMEC; Down-regulated DEGs during the tumorigenic process are referred as Down_I_hMEC in I-hMEC and Down_T_hMEC in
T_hMEC, respectively. C. DEG distribution in human chromosomes. Black bars above the horizontal line represent all DEGs; red and blue bars represent
up-regulated and down-regulated DEGs, respectively.
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lines, we compared DEGs among different RPKM inter-
vals and found that HK genes and TS genes contributed
differently to the transcriptome landscape variation during
the tumorigenic process. For example, 55.02% of HK genes
are up-regulated, while only 40.52% TS genes are up-regu-
lated. Moreover, expression of more HK genes with
RPKM >5.0 was up-regulated such that there are more
HK genes with RPKM >10 in T_hMEC. However, expres-
sion of more TS genes was repressed at all RPKM intervals
indicated, and in particular, we found that the 0–0.25
RPKM interval in T_hMEC contains mostly down-regu-
lated TS genes in the tumorigenic process (Figure 3B). This
result indicates that HK genes and TS genes are differen-
tially regulated in tumorigenesis: HK genes contribute
more to the pool of up-regulated genes, whereas TS genes
contribute more to the pool of down-regulated genes. Such
different tendency between HK genes and TS genes may
have significant impact on the transcription landscape
and is also help to explain the turning point of RPKM 10.

As genes from different chromosomes may contribute
differentially to tumorigenesis, we further examined the dis-
tribution of DEGs in each chromosome (Figure 3C and
Table S3). For instance, chromosome 18 contains the
highest percentage of down-regulated genes. Conversely,
chromosome 17 contains the highest percentage of up-reg-
ulated genes and all DEGs, respectively. High percentage
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of all DEGs was also observed on chromosomes 12, 19, 18,
16, 5, 11, and 8 (range from high to low). Further examina-
tion revealed that the three breast cancer-associated
genes—BRCA1 [23], ERBB2 [24] and P53 [25]—are all
located on chromosome 17, and another important gene
BRCA2 is on chromosome 13 [26]. According to our data,
these genes are differentially regulated during tumorigene-
sis: BRCA1 is up-regulated, as opposed to ERBB2 and
P53, which are down-regulated. However, we did not find
a significant difference in BRCA2 expression between
I_hMEC and T_hMEC. Additionally, we found many
other cancer-associated genes among DEGs on chromo-
some 17 (Table S4). Our results agree with previous studies
that genetic alterations of chromosome 17 are the most fre-
quent changes identified in breast cancers and more tumor-
associated genes may reside on this chromosome [25,27,28].
Therefore, genes on chromosome 17 may play an impor-
tant role in tumorigenesis.

To validate the RNA-seq results, we manually selected
20 significantly-varied DEGs according to fold change
and expression level and performed quantitative real-time
PCR on these genes (Figure 4). In particular, we selected
6 lowly-expressed genes with a fold change of more than
5 (RPKM <2) (the higher RPKM in the two libraries
was used to represent the expression level of a particular
gene) such as ESR1 and POU3F1, 6 genes expressed in
the medium range with a fold change of more than 3 (2<
RPKM <10) such as TNFRSF14 and WNT7B, and 8
highly-expressed genes with a fold change of more than 2
(RPKM >10) such as NOTCH1 and SOX15. Our qRT-
PCR results indicated that expression of most genes (19
Figure 4 qPCR validation of up-regulated and down-regulated DEGs

Relative expression was validated for up-regulated DEGs (A) and down-
regulated DEGs (B), respectively, using qPCR. Expression of selected
genes was normalized using GSK3A as the internal control. Data was
shown as mean ± SD of three independent experiments.
out of 20) was consistent with that shown by RNA-seq.
Therefore, significantly-varied DEGs can be validated even
at relatively low expression levels. However, a single gene
(SPRR1A) failed the test, although the expression of
SPRR1A is not very low (RPKM is 0.31 for I_hMEC
and 3.48 for T_hMEC). It has been reported that a large
number of both non-protein-coding regions and protein-
coding sequences are transcribed into long non-coding
RNAs [29], which may affect our mapping results and the
way differentially expressed genes are defined. However,
long non-coding RNAs are supposed to be mostly
expressed at low levels [30], implying that significant influ-
ences may only be confined to limited number of genes.

Function categorization of DEGs

We further compared gene function categories between up-
regulated and down-regulated genes using enrichment
analysis of GO through WebGestalt [31]. The GO enrich-
ment analysis helps to find which GO terms are overrepre-
sented in a large gene list. According to the results, DNA
replication, RNA transcription, and translation are signif-
icantly and also specifically enriched in up-regulated genes,
together with nucleotide metabolism and ribonucleo pro-
tein biogenesis, all of which are characteristic of cell prolif-
eration. In contrast, the down-regulated genes are
significantly and specifically enriched in cell communica-
tion, signal transduction, cell adhesion and migration. In
addition, most cell cycle arrest genes and positive regula-
tors of apoptosis are down-regulated (Table 1). These
results indicate that tumorigenic cells are heavily tuned into
a proliferating mode, ignoring cell communication and
adhesion.

Many DEGs identified in this study are involved in the
important processes in cancer development such as cell
cycle, apoptosis, and p53 signaling pathway (Figures S1–
S3). Deterministic mechanisms between immortality and
tumorigenicity may lie in the significantly-regulated genes
and these genes would have great potential as useful bio-
markers. We thus further investigated the significantly-
regulated DEGs (fold change P2, and the sum of RPKM
values of the two libraries is greater than 1.5). Accordingly,
364 genes were selected, including 270 down-regulated and
94 up-regulated genes (Table S5). KEGG enrichment anal-
ysis showed that 12 significantly-regulated genes are
involved in “pathways in cancer” (Table S6). Since our cell
models are established to simulate the progression of breast
cancer, these data suggest that these 364 genes may play an
important function in tumorigenicity. In addition, we per-
formed gene interaction network analysis using Ingenuity
Pathways Analysis (Ingenuity� Systems, www.ingenu-
ity.com) on the 364 significantly regulated genes (Figure 5).
We placed genes that always interact with other genes in
the core modules of the network, and found that 16 signif-
icantly-regulated genes are in the core modules. In particu-
lar, expression of ESR1, GPX3, PTGE3, MMP9, and
APLN was significantly up-regulated, while expression of

http://www.ingenuity.com
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Table 1 Enriched biological processes in GO terms involving up- and down-regulated genes during tumorigenesis

Category GO ID Statistics

Up-regulated

DNA replication GO:0006260 C = 226; O = 85; E = 38.56; R = 2.20; rawP = 8.67e�14; adjP = 6.42e�12
Gene expression GO:0010467 C = 3672; O = 867; E = 626.57; R = 1.38; rawP = 8.43e�33; adjP = 1.62e�30
RNA processing GO:0006396 C = 556; O = 261; E = 94.87; R = 2.75; rawP = 1.12e�62; adjP = 3.23e�59
RNA splicing GO:0008380 C = 292; O = 144; E = 49.82; R = 2.89; rawP = 1.20e�37; adjP = 5.78e�35
Translation GO:0006412 C = 410; O = 152; E = 69.96; R = 2.17; rawP = 5.81e�23; adjP = 7.30e�21
Ribonucleoprotein complex biogenesis GO:0022613 C = 180; O = 113; E = 30.71; R = 3.68; rawP = 3.13e�43; adjP = 2.26e�40
Macromolecule metabolic process GO:0043170 C = 6304; O = 1368; E = 1075.67; R = 1.27; rawP = 6.80e�39; adjP = 3.93e�36
Ribosome biogenesis GO:0042254 C = 122; O = 80; E = 20.82; R = 3.84; rawP = 6.58e�33; adjP = 1.36e�30
Ribonucleoprotein complex assembly GO:0022618 C = 69; O = 40; E = 11.77; R = 3.40; rawP = 1.93e�14; adjP = 1.80e�12
Cellular metabolic process GO:0044237 C = 7309; O = 1566; E = 1247.16; R = 1.26; rawP = 4.22e�46; adjP = 4.77e�43
Nitrogen compound metabolic process GO:0006807 C = 4378; O = 971; E = 747.03; R = 1.30; rawP = 2.03e�26; adjP = 2.79e�24
DNA metabolic process GO:0006259 C = 552; O = 169; E = 94.19; R = 1.79; rawP = 9.52e�16; adjP = 9.16e�14
RNA metabolic process GO:0016070 C = 2486; O = 580; E = 424.19; R = 1.37; rawP = 6.05e�19; adjP = 6.99e�17
Cell cycle GO:0007049 C = 909; O = 268; E = 155.11; R = 1.73; rawP = 6.14e�22; adjP = 7.39e�20
Regulation of ligase activity GO:0051340 C = 78; O = 42; E = 13.31; R = 3.16; rawP = 1.42e�13; adjP = 1.00e�11

Down-regulated

Regulation of cell communication GO:0010646 C = 1003; O = 250; E = 185.59; R = 1.35; rawP = 9.74e�08; adjP = 4.77e�05
Intracellular signaling cascade GO:0007242 C = 1565; O = 365; E = 289.58; R = 1.26; rawP = 2.37e�07; adjP = 9.03e�05
Small GTPase mediated signal transduction GO:0007264 C = 502; O = 138; E = 92.89; R = 1.49; rawP = 3.27e�07; adjP = 0.0001
Anatomical structure morphogenesis GO:0009653 C = 1223; O = 285; E = 226.30; R = 1.26; rawP = 6.31e�06; adjP = 0.0006
Cellular response to chemical stimulus GO:0070887 C = 285; O = 83; E = 52.74; R = 1.57; rawP = 7.13e�06; adjP = 0.0006
Cell migration GO:0016477 C = 371; O = 104; E = 68.65; R = 1.51; rawP = 3.58e�06; adjP = 0.0004
Cell-matrix adhesion GO:0007160 C = 108; O = 43; E = 19.98; R = 2.15; rawP = 1.83e�07; adjP = 7.84e�05
Positive regulation of apoptosis GO:0043065 C = 420; O = 118; E = 77.72; R = 1.52; rawP = 7.11e�07; adjP = 0.0001
Protein localization GO:0008104 C = 962; O = 232; E = 178.01; R = 1.30; rawP = 4.09e�06; adjP = 0.0004
Protein modification process GO:0006464 C = 1529; O = 380; E = 282.92; R = 1.34; rawP = 3.78e�11; adjP = 1.30e�07
Phosphate metabolic process GO:0006796 C = 1225; O = 289; E = 226.67; R = 1.27; rawP = 1.84e�06; adjP = 0.0002
Cell cycle arrest GO:0007050 C = 104; O = 40; E = 19.24; R = 2.08; rawP = 1.39e�06; adjP = 0.0002
Positive regulation of biological process GO:0048518 C = 1865; O = 417; E = 345.10; R = 1.21; rawP = 3.82e�06; adjP = 0.0004

Note: C, the number of reference genes in the category; O, the number of genes in the gene set and also in the category; E, the expected number in the
category; R, ratio of enrichment; rawP, the P value from hypergeometric test; and adjP, the P value adjusted by multiple test adjustment.
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CXCL5, CSF2, VEGFA, PTGS2, TLR4, NOTCH1,
PTGER4, TLR2, MDM2, IGFBP2, and GDF15 was signif-
icantly down-regulated. Although ESR1 is expressed at a
low level, its differential expression has been verified using
qRT-PCR experiments (Figure 4).

Discussion

Here we describe a cell model for identification of tumori-
genicity-associated genes in breast cancers in terms of
immortalization by using a combined action of over-
expression of hTERT and heavy-ion radiation. Radiation
of immortal cells can induce phenotypical alterations—
the abilities to grow in soft agar and to form fast-growing
carcinomas in nude mice [5,6]. Therefore, this cell model
becomes instrumental in studying cancer development at
different molecular levels and in greater depth, and our
RNA-seq-based transcriptomics analysis is the first step
to a systematic study.

The RNA-seq sequencing method and the improvement
in experimental technologies both facilitate to obtain more
accurate results. The RNA-seq sequencing method corre-
lates well with the microarray method and can detect more
genes when compared with microarray data [16,20]. Addi-
tionally, low background noise enables people to obtain
relatively accurate results without performing replicates
[16,32]. Also, oligo-dT primed RNA instead of oligo-dT
primed cDNA was fragmented to avoid sequencing bias
in the 30 end of the transcript [20]. In this study, we identi-
fied 7053 DEGs with DEGseq at a P value of <0.001, and
validated the reliability of SOLiD-based RNA-seq results
using quantitative real-time PCR (19 out of 20 candidate
genes were validated for their differential expression,
Figure 4).

In general, differential expression between TS genes and
HK genes and the gene location on chromosomes, both
contribute to the progression of breast cancer. According
to our results, more TS genes are repressed (although most
TS genes are already lowly expressed) while more HK
genes are activated (especially for those that are highly
expressed) during the tumorigenic process. Previous study
suggested that molecular signature of disease across tissues
is overall more prominent than the signature of tissue
expression across diseases [33]. During cancer progression,
specialization in cancerous tissues dropped due to a
decrease in expression of genes that are highly specific to
the normal organ [21]. In addition, we found that certain
human chromosomes (or genes residing therein) may play
critical roles, compared to other chromosomes during
tumorigenic transformation. For example, chromosome



Figure 5 Gene interaction networks of the highly-regulated DEGs

We chose the top five networks based on their scores (generated using the software of Ingenuity Pathways Analysis) and merged the networks into one figure.
The degree of DEG modulation (we calculated fold changes based on RPKM values) is indicated with color intensity. Solid lines indicate direct regulations
and dashed lines indicate indirect regulations. Arrows point to downstream genes.
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17 is the most frequently changed chromosome in breast
cancers and more tumor-associated genes are found in this
chromosome [25,27,28]. Consistently, we found chromo-
some 17 contains the highest number of DEGs during
tumorigenic process.

As knowledge of mechanisms underlying breast cancer
is quite limited, the search for new molecular markers is
currently ongoing. Our results are consistent with previ-
ously detected markers, such as thrombospondin 1 (TSP-

1, down-regulated during tumorigenicity process) [9,10]
and keratin 5 (K5, up-regulated during tumorigenicity pro-
cess) [9]. Therefore, the modulation pattern of TSP-1 and
K5 may be used as more reliable biomarkers for tumorige-
nicity. Nonetheless, there are exceptions too. For example,
FN1 (fibronectin) is down-regulated in our cell model
instead of up-regulated [9]. According to the existing evi-
dence, carcinogenesis is a multistep process [2,5,6], how-
ever, the whole process may be constantly changing and
it may be impossible to ensure that all the tumorigenicity
associated genes change synchronously. On the other hand,
different DEGs in tumorigenic process may be identified
due to different origins of tumorigenic cell systems. In addi-
tion, we identified 145 cancer-related DEGs (Table S4) and
364 highly regulated genes (Table S5). Although more val-
idation experiments are required for these genes, the cur-
rent study may help to facilitate further investigations
and provide new insights into breast cancer progression
mechanisms. Future studies will address how these genes
are up-regulated or down-regulated through regulatory
pathways and the possible epigenetic mechanisms involved.
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Materials and methods

Sample preparation and sequencing

Normal human mammary epithelial cells (hMECs) were
purchased from Clonetics BioWhittaker (Walkersville,
MD) and maintained in serum-free mammary epithelial
basal medium supplemented with growth factors. hMEC
were immortalized as described in our previous study [8].
Briefly, we shuffled hTERT cDNA from pZeoSV2-hTERT
construct into pLNCX2-neo retroviral vector (BD Biosci-
ences Clontech) at HindIII and NotI sites. Afterwards,
hMECs were transduced with retroviral vector containing
hTERT cDNA at the second passage, and the resultant
cells were cultured for over 100 population doublings
(PDs) to establish hTERT immortalized hMEC cell line
(I_hMEC). We subsequently irradiated the I_hMEC cells
with a single dose of 60 cGy heavy ions, which were pro-
duced at Brook Heaven National Laboratory, USA. After
passaged continuously for 3–4 months, the irradiated cells
were injected subcutaneously into the left flank of 4–6 week
old male Nu/Nu mice (Harlan Sprague–Dawley, Indianap-
olis, IN) at 5 � 106 cells/site. Non-irradiated I_hMEC cells
with the same number of passages were used as control. We
found that only heavy ion-irradiated cells can form pro-
gressively growing tumors at four weeks post injection in
nude mice. We then established tumorigenic cell lines
(T_hMEC) from the above tumor nodules.

Total RNA was extracted using Trizol reagent (Invitro-
gen) and 1 lg total RNA from each pool was used to isolate
poly(A)+ mRNA by using Oligotex (QIAGEN). We pre-
pared cDNA libraries for RNA-seq as instructed by the
manufacturer (updated 4/29/09; http://solid.appliedbiosys-
tems.com; Life Technologies, Foster City, CA). The
acquired sequence tags from SOLiD-3 were 50 bp in length.
Our data were submitted to Gene Expression Omnibus
Database (Accession number: GSE31310; http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?token=nrsnvioqscecszk
&acc=GSE31310).

Sequence alignment to the human genome

We aligned the sequence tags using the software of Coro-
na_lite_v4.0r2.0 (SOLiDe System Analysis Pipeline Tool;
http://solidsoftwaretools.com/gf/project/corona/). Since
some mature mRNAs consists of diverse exons due to
alternative splicing, we established a database containing
splice junctions for tag mapping, where the 30 50 bp of each
exon is joined to 50 50 bp of its 30 adjacent exon for each
gene locus according to Ensembl database.

We mapped the sequencing tags in full-length (50 bp) to
the human genome assembly, allowing for five color base
mismatches. Unmapped tags were further mapped to splice
junctions with the same criterion. After the first round of
mapping, we trimmed tags that do not match to 45 bp
for the second round of mapping with 4 mismatches
allowed. We performed a series of stringency-reducing
recursive mapping for salvaging more data: 40 bp with 4
mismatches, 35 bp with 3 mismatches, 30 bp with 3 mis-
matches, and 25 bp with 3 mismatches, respectively. We
sorted matched tags into multiple and unique hits and
annotated uniquely-mapped tags to genes in Ensembl data-
base (Homo sapiens. DNA. GRCh37).

To test the accuracy of the sequencing results, we com-
pared our RNA-seq results with a published microarray
dataset [34], and our cell models are most similar to the
basal-like group according to the cluster results (Figure S4).
As the hMECs we used in this study are of basal epithelial
origin, this result suggests that our RNA-seq data show
excellent correlation with those of the microarray platform.

Analysis of DEGs

We used DEGseq (an R-based package) for DEG identifi-
cation from RNA-seq data at a P value of 0.001 [32]. We
performed enrichment analysis of GO terms and KEGG
pathways using WebGestalt2 (http://bioinfo.vander-
bilt.edu/webgestalt/) with significance at a P value of
0.001, and performed network analyses using Ingenuity
Pathways Analysis (Ingenuity� Systems, www.ingenu-
ity.com). We used different colors to represent different
modulation patterns of DEGs in each KEGG pathway
based on software package GenMAPP 2.0 (http://
www.genmapp.org/).
Annotation of HK genes and TS genes

TS genes were defined as those that are preferentially
expressed in a particular tissue. To annotate TS genes, we
obtained two sets of TS genes with one based on EST data
[35] and the other based on microarray data [22]. The com-
bined datasets includes 7982 genes, which were named as
TS genes in this study (Table S1). We defined HK genes
according to the result of Ramskold et al., who determined
and annotated 7882 ubiquitously expressed (UB) genes
based on RNA-seq data [36]. After excluding genes that
may be preferentially expressed in a particular tissue (also
named as TS genes) from UB genes, we obtained 6003
genes, which were named as HK genes (Table S1).
Quantitative real-time PCR analysis

Some DEGs were selected for validation using qRT-PCR.
Total RNA was extracted using Trizol (Invitrogen, Carls-
bad, CA). After treated with DNAase I (Promega, Madi-
son, WI), total RNA was reversely transcribed into
cDNA (random priming) according to a standard protocol
(SuperScript II reverse-transcriptase, Invitrogen, Carlsbad,
CA). We performed PCR in AB7500 quantitative Real-
Time PCR System with SYBR Green PCR Master Mix
(Applied Biosystems, Foster City, CA). We analyzed each
sample in duplicate, using GSK3A gene as internal
reference.

http://solid.appliedbiosystems.com
http://solid.appliedbiosystems.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=nrsnvioqscecszk&amp;acc=GSE31310
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=nrsnvioqscecszk&amp;acc=GSE31310
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=nrsnvioqscecszk&amp;acc=GSE31310
http://solidsoftwaretools.com/gf/project/corona/
http://bioinfo.vanderbilt.edu/webgestalt/
http://bioinfo.vanderbilt.edu/webgestalt/
http://www.genmapp.org/
http://www.genmapp.org/
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