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Abstract

Nearly two decades have passed since the publication of the first study reporting the discovery of microRNAs (miRNAs). The key role of
miRNAs in post-transcriptional gene regulation led to the performance of an increasing number of studies focusing on origins, mech-
anisms of action and functionality of miRNAs. In order to associate each miRNA to a specific functionality it is essential to unveil the
rules that govern miRNA action. Despite the fact that there has been significant improvement exposing structural characteristics of the
miRNA–mRNA interaction, the entire physical mechanism is not yet fully understood. In this respect, the development of computa-
tional algorithms for miRNA target prediction becomes increasingly important. This manuscript summarizes the research done on
miRNA target prediction. It describes the experimental data currently available and used in the field and presents three lines of compu-
tational approaches for target prediction. Finally, the authors put forward a number of considerations regarding current challenges and
future directions.
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Introduction

MicroRNAs (miRNAs) are short endogenous non-coding
RNAs (ncRNAs), central actors in post-transcriptional
regulation [1]. miRNAs bind the protein complex called
RNA-induced silencing complex (RISC) and guide the
complex toward specific sites, in particular mRNAs known
as genes targets. By pairing specific sites in the mRNAs
known as miRNA recognition elements (mRE), miRNAs
direct post-transcriptional regulation, resulting in mRNA
degradation or inhibition of protein translation.

However, the rules governing the mechanism of miRNA
target regulation are not yet fully understood, making com-
putational approaches for miRNA target prediction all the
more important. In order to unveil miRNA functionality, it
is critical to identify candidate targets. In fact, several
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computational approaches have been developed and exper-
imental protocols have been proposed in order to improve
the understanding of the mechanism.

Even though the first attempts to characterize miRNAs
occurred almost twenty years ago [2], miRNAs were only
reported as a significant class of small endogenous ncR-
NAs at the beginning of the last decade [1,3,4]. In fact,
these molecules were named as miRNAs just one decade
ago and since then research on miRNAs has been a focus
of interest for numerous scientists worldwide, due to their
powerful role in gene regulation.

As a result, research on miRNAs has flourished in the
last decade. Figure 1 shows three indicators of the research
status: the number of mature miRNA sequences stored in
miRBase [5], the number of publications reported in Pub-
Med regarding miRNAs and the number of publications
in PubMed with specific reference to miRNA targets. This
figure not only evidences the timeline of this field, but also
indicates the growing number of studies regarding
cademy of Sciences and Genetics Society of China. Published by Elsevier
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Figure 1 MicroRNA research timeline

Shown in the graph is the number of mature microRNA sequences deposited in miRbase (white), PubMed-reported publications on microRNAs (gray)
and microRNA targets (black), respectively.
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miRNAs and their gene targets. It is worth noting that,
according to this figure, research on gene targets of miR-
NAs has mainly developed after the year 2003.

Several reviews on miRNAs and their targets have been
published focusing on the examination of biological princi-
ples [6,7], experimental techniques and computational pre-
diction algorithms [8–10]. Recently, various review papers
have highlighted the expansion of experimental data vali-
dating miRNA–mRNA interactions [8,9,11–14]. However,
the review of miRNA target prediction algorithms is lim-
ited to the first computational algorithms which were
developed based on ab initio strategies [7,8,10,15].

This paper attempts to present updated information, not
only regarding experimental techniques, but also prediction
algorithms. We summarize the current status on miRNA
target prediction, pointing out the most important consid-
erations that should be taken into account. It is noteworthy
that these considerations are addressed, not only to users of
prediction tools, but also to developers. We first introduce
the experimental techniques used to obtain miRNA–
mRNA interactions and then present the most relevant
identified characteristics of the structural interaction. Fur-
thermore, we introduce three lines of computational algo-
rithms for target prediction, i.e., ab initio, machine
learning and hybrid, and provide examples for each line.
Finally, current challenges and future directions are
discussed.

Experimental data

There is no “golden rule” regarding the technique to iden-
tify or validate miRNA-target interactions. In fact, several
techniques have been used to obtain experimental data that
supports miRNA-target interactions [11]. Experimental
data is critical, not only to distinguish a specific interaction,
but also to study features that characterize miRNA–
mRNA interactions and to validate the accuracy of the
computational approaches proposed. It is therefore funda-
mental to briefly introduce the experimental data currently
available regarding miRNA–mRNA interactions. In order
to understand the advantages and limitations of the data
derived with each experimental technique, comments for
each technique are presented in order.

Experimental techniques can be classified in two classes,
depending on the type of supporting information provided:
direct or indirect. In addition, the experimental data can
also be categorized, depending on the resultant size of data-
set: individual studies or high throughput.

The individual studies can provide direct support to val-
idate the identified candidates. Frequently, reporter genes
(such as luciferase and GFP) attached to the genes of inter-
est were used, and the expression of reporter gene was mea-
sured before and after the introduction of miRNA to the
cell [16]. Such procedure can provide direct support but
fails to identify the specific mRE (particularly useful to
understand the structural characteristics of the interaction).
Thus in order to obtain the specific mRE, reporter genes
can be attached to both the original and mutated sequences
of the gene of interest. Gene expression in both samples is
then measured before and after miRNA transfection
[16,17]. In this way, it is possible to identify the specific site
of interaction.

Moreover, the resultant experimental data size using
reporter gene assays is small. Therefore a different experi-
mental validation strategy was proposed and used in sev-
eral studies [18]. In particular, expression was measured
for a large number of genes through manipulating miRNA
expression, either overexpression by transfection or knock-
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down. In the former case, a decrease in expression of target
mRNAs and proteins is expected (down regulation) with
increased expression of miRNAs [18], while in the latter
case, an increase in expression of target mRNAs and pro-
teins is expected (upregulation) with the miRNA expres-
sion silenced in cells [19]. Other than that, under different
biological conditions, miRNA expression varies and conse-
quently the expression of target mRNAs and proteins var-
ies as well [20].

Experimental techniques like microarray and PCR are
commonly used to measure gene expression [18]. However,
since miRNA regulates not only mRNA expression but
also protein levels, in doing so, targets by inhibition of
mRNA translation into protein are left out. There are a
few studies that used also immunoblotting to measure pro-
tein expression [19]. Furthermore, high-throughput proteo-
mics techniques have been proposed and are used to
identify both types of targets. In particular, strategies like
stable isotope labelling by/with amino acids in cell culture
(SILAC) [21] and pSILAC (pulsed SILAC) [22] are able to
provide a high throughput dataset by using mass spectrom-
etry (MS). Ribosome profiling is another approach for
identification of both types of targets. Ribosome profiling,
which is based on deep sequencing of ribosome-protected
mRNA fragments [23], is a sensitive method to quantify
and detect the mRNAs at the ribosome.

Nevertheless, expression-based validation strategies are
indirect because the set of mRNAs/proteins with an associ-
ated microRNA induced change of expression, contains
both direct targets (structural interaction) and indirect tar-
gets (the expression of the indirect target is caused by a
direct target but not by the microRNA). In addition, fur-
ther considerations should be taken into account depend-
ing on how the miRNA expression is manipulated. In
particular, in the over-expression experiments there might
be targets that, despite being affected by miRNA over-
expression, do not show a high degree of down-regulation
due to factors such as the saturation of the microRNA
ribonucleo protein complex (miRNP) [24].

Lately, immunoprecipitation of proteins from the RISC
complex has been used to identify the mRNAs where the
miRNAs bind [25]. In addition, combination of crosslink-
ing-inmunoprecipitation and high throughput sequencing
has been used to isolate the mRNAs where miRNAs and
protein complex bind and to obtain sequences containing
the specific site of interaction [26,27]. In particular,
approaches like high-throughput sequencing of RNA iso-
lated by crosslinking immunoprecipitation (HITS-CLIP)
[26] and photoactivatable-ribonucleoside-enhanced cross-
linking and immunoprecipitation (PAR-CLIP) [27] have
been used to isolate, quantify, and sequence portions of
mRNAs that contain the sites of miRNA–mRNA interac-
tion. Although the sites of interaction are determined, these
approaches can’t identify the specific miRNA–mRNA
association experimentally, which instead is estimated by
using features commonly found in experimental samples
such as the seed complementary sequence.
Each of the aforementioned techniques provides an
important source of information for miRNAs and genes
target interaction. In particular, data with strong direct
structural support is fundamental because physical interac-
tions occur. The authors strongly advise to use data pro-
vided by direct methods to validate or train
computational tools that perform the prediction based on
structural characteristics.

However, indirect methods are also an important source
of information. The experimental data provided contains
functional targets (both direct and indirect) where the func-
tional regulation (up or down-regulation) was induced.
Evaluating the accuracy of the prediction tool (prediction
of physical interaction) based on expression data does
not indicate robust result since the dataset does not distin-
guish between indirect and direct targets. Nevertheless, a
computational prediction tool can be used to distinguish
direct and indirect targets in expression data sets.

Special attention should be given to the experimental
data selection since indirect and direct methods perform
under different assumptions. As a matter of fact, distinct
target determinants between expression-based and CLIP-
based data were observed in a recent study [28]. Thus,
the nature of the experiment characteristics should be
taken into account, in particular when the data is used to
train a computational target prediction method or for val-
idation purposes.

Databases with experimental data

The growing interest in the field has been accompanied by
the continuous evolution of experimental techniques and
an associated expansion of the experimental data obtained.
In order to provide a common benchmark for different
studies, several databases have been developed to deposit
and share experimental data. In this section, the most pop-
ular databases that deposit experimental data regarding
validated miRNA–mRNA interactions are presented.

The first version of TarBase [29] was introduced in 2005
and the five previous versions of this database lacked sev-
eral annotations. For example, no clear indication for
records containing predicted sites (not experimentally
derived) was given. However, the most recent version, Tar-
base v6 [30] released in 2011, shows a number of significant
improvements. In particular, several databases, such as
miRecords [31], have been integrated into TarBase v6. In
addition, more details are provided regarding each interac-
tion and it is now possible to select data based on the exper-
imental technique used, regulation type (up regulation,
down regulation and unknown) and type of interaction
(positive and negative). Figure 2A shows the proportions
of experimental techniques used to obtain the data depos-
ited in TarBase v6. It is worth noting that TarBase collects
data provided by both individual studies and high-through-
put studies. The largest dataset was obtained using high-
throughput methods like microarrays, which alone provide
an indirect type of validation as aforementioned.



Figure 2 Experimental techniques used to obtain data deposited in public databases

Experimental techniques used to derive human microRNA-mRNA interactions in TarBase v6–2011 (A), miRecords v3–2010 (B) and miRTarBase (C),

respectively, were shown as pie chart. D. Distribution of miRNA-target interaction (MTI) types found in miRTarBase.
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miRecords [31] was released in 2008 and each record in
this database was manually curated. To date, three versions
of miRecords have been developed with the latest release
dating back to 2010. This database contains a significant
amount of miRNA–mRNA interactions, most of the inter-
actions deposited in this database have been derived from
individual studies. In fact, as shown in Figure 2B, the larg-
est proportion of deposited experimental data is obtained
using reporter gene assays and most of the data included
in this database has a direct type of validation. Despite
the fact that the latest version was released in 2010, this
database is still an important resource of interactions with
strong experimental support.

Two additional databases, miRTarBase [32] and star-
Base [33], have been recently published. miRTarBase
collects miRNA–mRNA interactions and classifies
miRNA-target interactions (MTIs) into four classes includ-
ing functional, functional weak (indirect experimental sup-
port), non-functional and non-functional weak, depending
on the power of the experimental technique used and the
type of interaction (positive or negative). Classification of
MTIs is particularly useful to select experimental data
according to the associated support.

Finally, starBase [33] collects data provided by high-
throughput CLIP-seq, such as HITS-CLIP [26] and PAR-
CLIP [27]. This type of data consists of sites of interaction
for the mRNA-miRNA-Argonaute complex on a
transcriptome-wide scale. Although the database initially
contained data from 21 CLIP-seq experiments, the number
of studies using CLIP-seq experiments is likely to grow in
the next few years, considering its potentiality. Specifically,
91,124 interactions for the human are currently deposited
in starBase.

Features of miRNA–mRNA interactions

The identification of common characteristics for targets
and specific sites with strong experimental support is fun-
damental in order to unveil the rules that govern
miRNA–mRNA interactions. Therefore, common
characteristics found in experimental data have been
extracted.

In particular, characteristics associated with the duplex
miRNA-site interactions are still being explored [34].
Among the duplex features, great importance has been
conferred to a region in the miRNA sequence named seed
[35]. A strong complementarity to the seed region was
found in a significant number of experimentally-derived
sites. The seed is located in the 50 section of the miRNA
and different types of seeds sites were identified based on
the length and complementarity (7mer-A1, 7mer-m8 and
8mer). Considering the importance of the seed region of
interaction between miRNA and mRNA is commonly clas-
sified as the seed region and out-seed region. The out-seed
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region also plays an important role in the duplex interac-
tion, either to reinforce the affinity (supplementary pairing)
or to compensate for incomplete seed pairing (complemen-
tary pairing) [36]. In addition, within the out-seed region
there was a preferential pairing from the 13th to the 16th
nucleotide in the miRNA sequence [37]. Furthermore,
additional characteristics regarding the duplex have been
commonly found in sites of interaction [38,39]. In particu-
lar, the duplex minimum free energy associated with the
interaction stability represents a determinant characteristic
[38]. Frequently the conservation of the mRNA site is also
an important discriminant [39].

Recently, a characteristic from the duplex was extracted
from a CLIP-seq data set and investigated in a few miR-
NAs, such as the miR124. The feature consists of the pres-
ence of a G bulge in the 6th nucleotide of the miRNA that
acts as a pivot [34]. Nevertheless, further examinations on
additional datasets are needed to assess this consideration.

Not only the characteristics of the duplex delineate the
interaction, characteristics associated with the environment
that encloses the site in the mRNA are also significant indi-
cators. Since the mRNA has a complex structure itself, the
surrounding conditions favour/disfavour the accessibility
of the miRNA to the mRE and therefore influence the inter-
action. A number of characteristics indicate the accessibil-
ity, such as: (1) AU content in the upstream and
downstream neighbourhood and (2) AU motifs in the entire
mRNA (such as AUUUA pentamer). The first characteris-
tic promotes the miRNA access to the site [40,41], while the
presence of motif signatures for RNA-binding-proteins
may attenuate or enhance the regulation executed by the
miRNA [42]. The presence of a GC motif downstream of
the site was also extracted from sites derived experimentally
[43]. In addition, features that reflect the amount of energy
that must be spent in order to introduce changes from the
original mRNA structure to the resulting structure after
the interaction appear as important determinants [38]. In
particular, the feature called DDG reflects the difference in
free energy between the duplex and the neighbourhood of
the site initial structure [44,45]. The specific position of
the site is also an important consideration. Even though
the majority of the sites have been found in the untranslated
regions (UTR) of mRNAs, some mREs have also been
found in the coding region [26]. However, the regulation
appears to be more effective when the site of interaction is
in the UTR [26]. In particular, sites in the UTR are most
likely accessible if are located near the start codon or the
stop codon [37]. The majority of mRE located in the
UTR are found in long UTRs [46]; therefore the UTR
length would seem to be another element that should be
considered.

Nevertheless, none of these aforementioned characteris-
tics are present in all the sites that have been derived exper-
imentally [28]. One of the most commonly found
characteristics is the seed, but there is a subset of sites that
do not contain the seed complementarity. In fact, in the
dataset derived in [26] around 27% of the identified sites
did not possess seed complementary to the expressed miR-
NAs; such sites may bind to other miRNAs or follow dif-
ferent rules.

In the section Experimental Data, differences between
the experimental strategies used to obtain data for
miRNA–mRNA interactions were presented. Different
considerations should be taken for datasets obtained from
expression-based experiments and for those obtained using
CLIP-seq protocols. Recently, a study [25] compared the
characteristics of the interactions derived with these high-
throughput strategies and noted some discrepancies. In
particular, accessibility features are strongly present in data
obtained with CLIP-seq techniques while duplex-related
features, specifically the seed, are strong determinants for
expression-based experiments. Even though there is a great
overlap between the data provided by both experimental
techniques, the discrepancies can be attributed to increased
miRNA concentrations (overexpression) typical of expres-
sion-based experiments.

Computational algorithms

Computational algorithms for miRNA target prediction
have been essential in order to identify the candidate tar-
gets and therefore the targets. Since 2003, almost one dec-
ade of development of computational miRNA target
prediction algorithms has passed. Current prediction algo-
rithms based on structural characteristics (such as the ones
presented in the Features of miRNA–mRNA interactions
section) can be grouped into three lines: ab initio, machine
learning and hybrid approaches.

The first algorithms proposed are in the ab initio line.
These algorithms perform the prediction based on the
structural features extracted from data with experimental
support [47–55]. They are based on computational models
that do not use the experimental data directly. Machine
learning (ML) approaches, on the other hand, use compu-
tational algorithms that rely directly on experimental data
to train a classifier [56–67]. In this way, the classifier is able
to identify a candidate target site based on similarity to the
experimental training set. Machine learning algorithms
started to appear when the number of interactions with
experimental support increased significantly.

Each line has an associated pitfall. For ab initio algo-
rithms it is the high number of false positives [26] and for
machine learning approaches it is the reduced number of
negative interactions with experimental support (negative
interactions are often not published and not recorded in dat-
abases). The set of predictions generated by ab initio algo-
rithms contains a notable number of false positives. In
order to overcome this problem, ab initio algorithms use sev-
eral restrictions to retain candidates that have a high proba-
bility of being targets and filter out false positives. However
with filtering, several true positives may also be discarded.

Machine learning approaches identify the probable can-
didates (positives) from the unlikely candidates based on
the experimental data that represents positive and negative



Reyes�Herrera PH and Ficarra E / MicroRNA Target Prediction Status after One Decade 259
interactions. However, negative experimentally-identified
interactions are usually discarded and therefore the cur-
rently available negative set (negative interactions with
experimental support) is quite poor compared to the posi-
tive set.

The drawbacks of ab initio and machine learning algo-
rithms, have led to the development of hybrid algorithms
with characteristics from both lines incorporated. These
hybrid algorithms integrate merits from each line in order
to meet the current challenges of prediction algorithms.

The most popular ab initio, machine learning and hybrid
algorithms are briefly discussed below. In addition, a sum-
marizing table of the algorithms with several consider-
ations can be found in the supplementary material
(Table S1).

Ab initio algorithms

� miRanda [47,48] uses a weighted dynamic programming
algorithm to obtain the candidate sequences. This algo-
rithm uses a score to rank the predictions that consists
of a weighted sum based on matches, mismatches and
G:U wobbles. Initially, miRanda [47] used features such
as seed complementarity and duplex free energy; the
most recent version also takes into account a conserva-
tion measure based on the PhastCons conservation
score. The algorithm and the set of target predictions
are available online (http://www.microrna.org).
� TargetScan [35,37,49]: this algorithm requires the seed

complementary at least for 6 nt and considers the differ-
ent seed types that have been defined, with a certain
hierarchy (6mer offset < 6mer < 7mer-A1 < 7mer-
m8 < 8mer) [36]. Moreover, TargetScan ranks the sites
using a context score based on seed complementarity,
conservation and AU content in the site vicinity. In
the recent release of the latest version of TargetScan
[50], a number of additional determinants have been
integrated while retaining the previous considerations.
In particular, a multiple linear regression trained on 74
filtered datasets was used to integrate determinants such
as seed-pairing stability (SPS) and target-site abundance
(TA). TargetScan is available online (http://www.target-
scan.org/).
� PicTar [51]: this algorithm has strict requirements

regarding the seed and also takes into account the over-
all duplex stability based on the minimum free energy.
Once the sites are aligned, the targets are ranked based
on a score derived using a hidden Markov model that
considers the site conservation. Predictions obtained
with PicTar are available online (http://pictar.mdc-ber-
lin.de/).
� RNA22 [52] is a pattern-based discovery strategy to

identify the candidate targets. First, a Markov chain is
used for pattern discovery, but only the most statisti-
cally significant patterns are retained to identify target
islands (areas where many statistically significant
patterns map). Consequently, the target islands are
paired with miRNAs. The target islands that represent
candidate binding sites for miRNAs are selected based
on user-imposed parameters (minimum number of base
pairs, maximum number of unpaired bases and maxi-
mum allowed free energy). RNA22 is available online
(http://cbcsrv.watson.ibm.com/rna22.html).
� RNAhybrid [53] is an algorithm that finds the minimum

free energy not only for short sequences (miRNA-mRE)
as most of the previously-reported algorithms, but also
for the entire miRNA–mRNA. The user can impose sev-
eral restrictions, such as the number of unpaired bases
and free energy allowed, to reduce the set of resulting
predictions. RNAhybrid is available online (http://bibi-
serv.techfak.uni-bielefeld.de/rnahybrid/).
� PITA [44] is a proposal that considers not only the spe-

cific duplex interaction information, but also takes into
account the accessibility to the site in the mRNA. Acces-
sibility is considered as the difference between the mini-
mum free energy of the entire complex and the energy
that originally had a short region of the mRNA near
the site, DDG. The user can impose different restrictions
to reduce the resultant set of candidates (minimum seed
size, G:U bobbles and unpaired bases). PITA is avail-
able online (http://genie.weizmann.ac.il/pubs/mir07/).
� EiMMo [54] is an algorithm that scores the sites based

on the conservation score and uses a Bayesian method.
It infers the phylogenetic distribution for the functional
sites. To characterize miRNA function, associations
between the predicted targets and biochemical pathways
(KEGG) are searched. EiMMo is available online
(http://www.mirz.unibas.ch/ElMMo2/).
� DIANA [55]: this algorithm measures the goodness of

an interaction based on its specific characteristics. Each
gene is weighted taking into consideration conserved as
well as non-conserved sites. Moreover, a signal to noise
ratio (SNR) is obtained for each interaction to estimate
the number of false positives. DIANA is available online
(http://diana.cslab.ece.ntua.gr/microT/).

An interesting performance comparison of the nine most
popular ab initio algorithms was carried out [8] on the data-
set obtained in [22]. The results evidence the usage of strict
restrictions by these algorithms to reduce the number of
false positives. In particular, algorithms such as PicTar,
TargetScan and DIANA, have significantly-compromised
sensitivity (�10%) in order to achieve a remarkable preci-
sion (�50%). However, the test used an expression-based
dataset in which a set of miRNAs was overexpressed. As
previously mentioned, when evaluating the performance
on an indirect dataset, further considerations, such as the
presence of indirect targets in both the positive and nega-
tive sets, and the effects caused by the overexpression like
the miRNP saturation, must be taken into account.

It is also important to highlight a test performed in [68]
using four ab initio algorithms (PITA, TargetScan, PicTar

http://www.microrna.org
http://www.targetscan.org/
http://www.targetscan.org/
http://www.pictar.mdc-berlin.de/
http://www.pictar.mdc-berlin.de/
http://www.cbcsrv.watson.ibm.com/rna22.html
http://www.bibiserv.techfak.uni-bielefeld.de/rnahybrid/
http://www.bibiserv.techfak.uni-bielefeld.de/rnahybrid/
http://www.genie.weizmann.ac.il/pubs/mir07/
http://www.mirz.unibas.ch/ElMMo2/
http://www.diana.cslab.ece.ntua.gr/microT/
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and miRanda) on CLIP-seq datasets obtained from Star-
base. The intention of the test was to present the coverage
obtained by these algorithms on CLIP-seq data. miRanda
demonstrated the best sensitivity overall (66%), while Tar-
getScan and PicTar were characterized by the lowest sensi-
tivities (20%). This result validates (1) differences in the
target determinants provided by expression-based and
CLIP-based data and (2) strict restrictions imposed by ab

initio algorithms like PicTar and TargetScan.

Machine learning and hybrid algorithms

Machine learning approaches appeared later than ab initio

approaches. Nevertheless, the importance of these methods
has grown since the data with experimental support started
to grow significantly. Representatives from this line are
briefly described as follows. Since machine learning algo-
rithms strongly rely on experimental data, we also specify
the size of the respective training dataset.

� TargetBoost [56] consists of a boosting algorithm that
assigns weights to sequence patterns of 30 nucleotides.
The negative dataset used for training consists of 300
randomly-generated sequences, and the positive data
set consists of 36 interactions with experimental support.
The set of predictions obtained with the algorithm for
the Caenorhabditis elegans can be found online, but
the algorithm itself is not currently available.
� miTarget [57] is an algorithm that uses a support vector

machine (SVM) with an radial basis function (RBF) as
kernel, to predict the candidate targets. It is based on
structural, thermodynamic and positional features. The
negative set used for training consists of 83 interactions
with experimental support plus 163 negative interactions
inferred from experimental data. The positive dataset
consists of 152 interactions with experimental support.
miTarget is available online (http://cbit.snu.ac.kr/xmi-
Target/introduction.html).
� Ensemble Algorithm [58], a post-processing step for

miRanda, consists of 10 SVM (polynomial kernels).
The prediction is based on features from the miRNA-
mRE interactions, and features from the mRNA targets.
The negative and positive datasets used for training con-
sist of 16 and 48 experimentally-verified interactions,
respectively.
� NBmiRTar [59] consists of a post-processing step to

miRanda. First a filter based on the folding energy is
applied, followed by a filter based on the score obtained
by miRanda and score obtained by a Naı̈ve Bayes clas-
sifier. The prediction is based on structural features from
the miRNA-mRE duplex features and observed
sequence features. The negative dataset was composed
of 38 negative interactions with experimental support
and 133,316 generated target sites for artificial miRNA
sequences, while the positive dataset consists of 225
interactions with experimental support.
� MirTarget2 [60] uses an SVM classifier to obtain set of
predictions. The features used include characteristics
from the miRNA-mRE duplex and from the mRNA.
The positive and negative datasets for training consists
of 1017 negative interactions and 454 positive interac-
tions with experimental support, respectively. The pre-
dicted interactions are available online (http://
mirdb.org).
� MiRTif [61] starts from the combination of the sets pre-

dicted by miRanda, PicTar and TargetScan. It then uses
an SVM classifier (RBF kernel) based on features from
the miRNA-mRE interaction. The positive and negative
datasets contain 195 and 21 interactions with experi-
mental support, respectively. In addition, the negative
dataset contains 17 interactions inferred from experi-
mental data. MiRTif is available online (http://mir-
tif.bii.a-star.edu.sg/).
� TargetMiner [62] first selects a set of sites based on the

seed complementarity. It then uses an SVM classifier
(RBF kernel) based on mRNA and miRNA-mRE
duplex features. The positive dataset is composed of
476 positive interactions and the negative data set con-
tains 59 experimental interactions plus 289 inferred neg-
ative interactions. TargetMiner is available online
(http://www.isical.ac.in/~bioinfo_miu/targetminer20.
html).
� MTar [63] first selects 3 classes of sites (50 seed only, 50

dominant and 30 canonical). It then uses an artificial
neural network to classify targets and non-targets based
on features from the miRNA–mRNA interaction. The
dataset used for training contains 340 positive
miRNA–mRNA interactions and 400 negative ones.
MTar is available online (http://www.rgcb.res.in/
downloads/Mtar.rar).
� TargetSpy [64] generates candidate zones, which are

merged and a ranking of the zones is performed. This
algorithm uses an automatic feature selection based on
compositional, structural and base pairing features.
The positive and negative dataset contains 3872 positive
and 4540 negative instances, respectively, derived using
the HITS-CLIP [9] protocol. TargetSpy is available
online (http://www.targetspy.org/).
� mirSVR, an algorithm proposed by the developers of

miRanda, is a hybrid approach that uses miRanda fol-
lowed by a support vector regression (SVR). In practice,
miRanda is used to obtain set of predictions, which are
then ranked using a machine learning approach called
mirSVR [65]. mirSVR is trained based on expression
changes caused by miRNA overexpression, to obtain a
score for each prediction that represents an empirical
probability of down regulation. Sets of predictions pro-
vided by this algorithm are available online (http://
www.microrna.org).
� miRror [66] is a tool based on the notion of miRNA

combinatorial mode of action. The algorithm combines
several ab initio predictors into a unified platform

http://www.cbit.snu.ac.kr/xmiTarget/introduction.html
http://www.cbit.snu.ac.kr/xmiTarget/introduction.html
http://www.mirdb.org
http://www.mirdb.org
http://www.mirtif.bii.a-star.edu.sg/
http://www.mirtif.bii.a-star.edu.sg/
http://www.isical.ac.in/~bioinfo_miu/targetminer20.html
http://www.isical.ac.in/~bioinfo_miu/targetminer20.html
http://www.rgcb.res.in/downloads/Mtar.rar
http://www.rgcb.res.in/downloads/Mtar.rar
http://www.targetspy.org/
http://www.microrna.org
http://www.microrna.org
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by incorporating a statistical measure. miRror is avail-
able online (http://www.proto.cs.huji.ac.il/mirror/search.
php).
� miREE [67] is a hybrid algorithm composed of two

parts. The first part uses a genetic algorithm to generate
a set of sequences that represent an optimal diverse pop-
ulation for binding sites. These binding sites are then
mapped to mRNAs and classified as targets and non-
targets using SVM (RBF Kernel), a machine learning
technique. The positive and negative datasets contain
324 and 351 interactions, respectively. This algorithm
is available online (http://didattica-online.polito.it/eda/
miREE/).

The negative dataset is one of the principal limitations
for machine learning approaches, since negative interac-
tions are not commonly published. Several strategies have
been used to overcome this drawback. In particular, the
negative dataset has been expanded by using (1) random
sequences, (2) predictions for artificial miRNA sequences
and (3) sequences of genes that were not regulated by the
miRNAs, from which the negative interaction sites were
not extracted. For the first two solutions, the generated
interactions do not have experimental support. Therefore,
the third alternative is strongly recommended due to the
presence of experimental support.

A recent comparison of the performance for five
machine learning and hybrid algorithms was carried out
in [67]. The comparison test was performed on a direct
dataset in which each record had strong experimental sup-
port and was obtained from public databases. This com-
parison evidences that most of the algorithms are
characterized by an unbalanced performance (sensitivity
and specificity). In particular, the machine learning predic-
tion algorithms were designed to reduce the number of
false positives (principal limitation of ab initio proposals),
which has significant impact on the sensitivity and the over-
all accuracy.

Further considerations

There has been a significant advance on development of
microRNA target prediction algorithms. However, there
is still room for further improvement. In particular, it is
worth to integrate data derived using the lately-developed
protocols (CLIP-seq), which show remarkable potential.
A few approaches [64,67] used CLIP-seq datasets to train
machine learning algorithms and for validation purposes.
Nevertheless, the nature of the data (high-throughput
and direct validation) will most likely lead to unveil addi-
tional rules and take prediction algorithms to a different
stage.

Moreover, expression-based data is also an important
source of information. In fact, the use of expression-based
data together with computational prediction algorithms
shows significant potential, if with the right assumptions.
When integrating expression data with prediction tools, it
is important to associate different rules with the mecha-
nisms of regulation [50] (mRNA abundance and mRNA
stability) and distinguish between direct and indirect tar-
gets. In addition, by using expression-based data, it is pos-
sible to correlate the structural interaction with the degree
of regulation exerted by the miRNA–mRNA interactions
[65].

Furthermore, the interest in miRNA target prediction
tools is not limited only to obtaining a set of candidate tar-
gets. Day by day, it is becoming more important to under-
stand the miRNA functionality (functional correlation
between the multiple targets both direct and indirect). In
order to unveil the miRNA functionality, it is important
to integrate set of predicted candidates with a different
source of information and the degree of miRNA-exerted
regulation in expression-based experiments is a feasible
alternative. Moreover, information available in databases
that contain pathways with experimental support and Gene
Ontology is helpful.

Another important direction in the field is to understand
the joint action mechanisms involved in transcriptional and
post-transcriptional regulation, cooperative action of tran-
scription factors and miRNAs, and also the collective
action of miRNAs and RNA-binding proteins.

Finally, exploring the interactions of miRNAs not only
with coding RNA but also with the entire transcriptome
might be helpful in order to understand not only the miR-
NA functionality but also the role of other RNAs such as
long ncRNAs.

Conclusion

Significant progress has been made in computational algo-
rithms for miRNA target prediction during the last decade.
In particular, this evolution has been influenced by the
development of experimental protocols that expanded the
datasets available with experimental support. Albeit the
ab initio algorithms were first proposed, with the expansion
of experimental data, the use of machine learning and
hybrid proposals is very promising.

Candidate target genes for prediction algorithms built
under structural assumptions should be validated with
experimental data with strong structural support (direct
validation). The use of expression data to validate the pre-
diction results for algorithms based on structural assump-
tions is susceptible to misunderstandings.
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