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Abstract

MicroRNAs (miRNAs), a class of �20–24 nt long non-coding RNAs, have critical roles in diverse biological processes including devel-
opment, proliferation, stress response, etc. With the development and availability of experimental technologies and computational
approaches, the field of miRNA biology has advanced tremendously over the last decade. By sequence complementarity, miRNAs have
been estimated to regulate certain mRNA transcripts. Although it was once thought to be simple and straightforward to find plant miR-
NA targets, this viewpoint is being challenged by genetic and biochemical studies. In this review, we summarize recent progress in plant
miRNA target recognition mechanisms, principles of target prediction, and introduce current experimental and computational tools for
plant miRNA target prediction. At the end, we also present our thinking on the outlook for future directions in the development of plant
miRNA target finding methods.
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Introduction

MicroRNAs (miRNAs) are one of three distinct types of
small RNAs (sRNAs, including small interfering RNAs,
microRNAs and Piwi-interacting RNAs) currently under-
stood in plants and animals, which are distinguished by
their biogenesis, not by their action [1]. The field of
miRNA biology emerged with the discovery that the gene
lin-4 and let-7, which control developmental timing in the
nematode Caenorhabditis elegans, surprisingly did not code
for protein, but instead acted as a �22 nt RNA transcript
which regulated gene expression post-transcriptionally
[2–4]. Since then, miRNAs have been shown to play a
variety of regulatory roles and target other regions in addi-
tion to 30 untranslated regions (UTRs) [5–8]. The field of
miRNA biology has quickly progressed through the appli-
cation of genome-wide approaches for identification of
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miRNAs [9,10] and their targets [11–14]. In this article,
we focus on plants and review these tools and their contri-
butions to our understanding of miRNAs as local and glo-
bal regulators.

The biogenesis of plant miRNAs has been documented
most in Arabidopsis thaliana (Figure 1). Mature plant
miRNAs range in size from 20 to 24 nucleotides. Primary
miRNA transcripts (pri-miRNAs) are generally
RNA polymerase II transcripts that contain imperfect,
self-complementary foldback regions [15,16]. The length
of plant pri-miRNA hairpins is heterogeneous, ranging
from approximately 70 to thousands of bases.

In animals, the pri-miRNA transcript is first processed
by the RNase III domain-containing protein Drosha in
association with the RNA-binding protein encoded by
DGCR8 [17]. Processed miRNA precursors (pre-miRNA)
are exported from the nucleus and are cleaved by 22 bp
from the Drosha processing site by the RNase III
domain-containing protein Dicer [18]. In plants, there is
no Drosha homolog present; rather, plants have Dicer
homologs. Of the four Dicer-like (DCL) enzymes in
cademy of Sciences and Genetics Society of China. Published by Elsevier
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Figure 1 Major biogenesis pathways of plant miRNAs

The figure shows two major pathways for plant miRNA biogenesis. The
pri-miRNA is a primary transcript. The stem–loops on pri-miRNA are
cleaved by DCL1 (Dicer-LIKE 1) in the nucleus giving rise to the mature
transcript. The generated duplex is shown with a red strand (the miRNA)
and a black strand (the miRNA*). Before exported into the cytosol by
HASTY (HST), it is methylated by HUA ENHANCER 1 (HEN1) to render
stability. The red strand is integrated in the miRISC and the black strand is
either degraded or acts like the red strand. Depending on the degree of
complementarity to the target site, miRISC will either cleave the mRNA
which will induce immediate degradation or suppress translation procedure.
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Arabidopsis, DCL1 is responsible for the bulk of miRNA
biogenesis [19]. There are two precursor-processing path-
ways that have been identified for plant miRNA genes.
The primary pathway involves stem-to-loop processing in
which the sequence and structure beyond the miRNA–
miRNA* site are necessary and used by the cleavage path-
way components to excise the mature sequences [20–22].
The second pathway involves loop-to-stem processing in
which only the structure between the miRNA and miRNA*

is necessary for the cleavage pathway components to excise
the mature sequences [23,24]. Most plant pri-miRNA hair-
pins produce a single miRNA/miRNA* duplex, but some
loci consistently produce multiple duplexes [25].

Unlike animals, miRNA biogenesis in plants is com-
pleted within the nucleus [26]. Several accessory factors
also contribute to the efficiency and fidelity of miRNA/
miRNA* excision in plants [27,28]. The 30 end of the initial
miRNA/miRNA* duplex is 20-O-methylated by the nuclear
HEN1 protein [29]; this modification prevents non-tem-
plated 30-polymerization that accelerates miRNA turnover
[30]. HASTY (HST), a plant homolog of Exportin-5, is
then thought to export miRNA/miRNA* duplexes for
loading into ARGONAUTE (AGO) proteins [31]. Usually,
AGO1 acts as a ‘slicer’ to direct the endonucleolytic cleav-
age of target RNAs [32], although most other plant AGOs
are also likely to possess slicing capabilities [33].

Many animal miRNAs are conserved even between
greatly-diverged species [34], especially when considering
the crucial ‘seed’ regions, which are often solely responsible
for targeting specificity [35]. In plants, a minority of anno-
tated MIR gene families are conserved between plant fam-
ilies, while the majority are family- or species-specific,
suggesting that most known MIR genes arose relatively
recently in evolutionary time [36]. Unlike highly-conserved,
ancient miRNAs, young miRNAs are often weakly
expressed and processed imprecisely, lack targets, and dis-
play patterns of neutral variation, suggesting that young
MIR loci tend to evolve neutrally (for a recent review,
see [37]). However, the evidence for any miRNAs con-
served between animals and plants is slim, which suggests
that animal and plant miRNAs may not come from a same
‘ancestor’.

After combining the AGO protein, an outstanding prob-
lem in the miRNA field is how miRNAs recognize specific
sequences of partial complementarity, complicating the
prediction of target sites [38].

The mechanism by which miRNAs regulate target gene
expression has been a controversial subject, as there is evi-
dence for target mRNA destabilization, translational repres-
sion and even activation of gene expression [39]. The
substantial differences between the biogenesis of animal
and plant miRNAs are also reflected in the differences in
their requirements for target recognition. In plants,
miRNAs can silence targets through RNA degradation as
well as translational repression pathways [40]. The perfect
[41], or near perfect pairing of miRNA and its target site sup-
ports endonucleolytic cleavage of the mRNA by AGO (Fig-
ure 1). This mechanism is common in plants but much rarer
in animals [41]. There are also cases in plants in which
miRNAs cause reduced levels of protein, but not mRNA,
suggesting that translational repression is directed by
miRNA-induced silencing complex (miRISC) [42]. The
actual mechanism that blocks protein production is not clear
and there is evidence for inhibition of translational initiation
or elongation, as well as for directed proteolysis of the pep-
tide that is being synthesized from the targeted mRNA [43].

Overall, miRNAs typically repress gene expression, and
it remains to be seen whether positive regulation of targets
extends beyond the limited cases that have been uncovered
so far [44]. Methods for discerning these different mecha-
nisms of target regulation will be discussed in the next
section.

In addition to the repression of target mRNAs, some
miRNAs have other specialized functions or confer unique
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properties to miRNA–AGO complexes. For example,
some miRNAs can trigger the production of 21-nt siRNAs.
Trans-acting siRNAs (ta-siRNAs) are RDR6- and DCL4-
dependent products of a refined RNA interference path-
way, which function as repressors on specific, co-evolved
target mRNAs [45,46]. Phasing of TAS1/TAS2, TAS3
and TAS4 ta-siRNAs is set by cleavage guided by
miR173–AGO1, miR390–AGO7 and miR828–AGO1 com-
plexes, respectively [47–49]. Thus, miR173, miR390 and
miR828 play as activators, rather than repressors, of a siR-
NA pathway. miRNAs can also direct DNA methylation.
A subset of miRNA variants preferentially associate with
AGO proteins involved in RNA-directed DNA methyla-
tion (RdDM) [50]. In rice, DCL3a also processes multiple
MIR foldbacks, yielding 24-nt siRNA-like miRNAs [51].
Unlike 21-nt miRNAs, the 24-nt siRNA-like miRNAs
preferentially associate with rice AGO4a and AGO4b
and guide the methylation of target genes.

In order to facilitate the computational study of miR-
NAs, especially the miRNA�target interactions, we sum-
marized common online sources and grouped them into
several categories (Table 1).

Generally, sequences of miRNA and transcript are
required when studying miRNA�target interactions. As
the biggest online registry, miRBase collects miRNAs of
various species that are identified by experimental or com-
putational methods [52]. Another well-known RNA data-
base, Rfam, also provides miRNA sequences based on
homology relationships [53]. Rfam is helpful both for miR-
NA identification and for target prediction, especially when
we need to filter out structural RNAs before analyzing
deep sequencing data. Besides miRBase and Rfam, there
are three plant-oriented miRNA annotation databases,
MicroPC [54], PmiRKB [55] and PMRD [56], which
greatly enhance plant miRNA studies. Several datasets
are established to maintain plant genomic and/or transcrip-
tomic data. Right now, TAIR [57] and TIGR [58] are such
data centers for two well-studied plant model species Ara-
bidopsis and rice, respectively. Additionally, Phytozome
[59], incorporating information about 31 plant genomes
and also their annotations, will be preferred when studying
the evolution of plant species.

When estimating the performance of target prediction
methods, it would be wise to use those experimentally-val-
idated targets as test data. The emergence of miRTarBase
[60] and starBase [61] satisfies such a requirement. Different
from miRTarBase, starBase further integrates plant miR-
NA�target interactions supported by Degradome-Seq.
Along with the population of next generation sequencing
[62], miRNA study is progressing rapidly. The appearance
of MPSS [63], SRA [64] and GEO [65] sheds lights on the
development of high-throughput based computational
tools to study miRNAs in both animals and plants. Two
other specific databases, ASRP [66] and CSRDB [67], are
also listed in Table 1 because they perform a series of in-
depth research related to sRNAs, including miRNAs.
Experimental methods

Target-specific validation methods

Given the challenge of matching miRNAs to specific target
sequences, several approaches have been adopted for iden-
tifying functional interactions. In order to explore the prin-
ciples of miRNA targeting mRNA, target-specific methods
were introduced first. Target-specific experimental valida-
tion with well-established techniques such as quantitative
real-time PCR (qRT-PCR) [68], western blot [69] and 50-
rapid amplification of cDNA ends (50-RACE) [70], is com-
monly used to evaluate individual miRNA:target pairs. For
a detailed review of methods for the experimental valida-
tion of specific miRNA targets, please refer to Thomson
et al. [71].

Clearly the miRNA and its target should be co-
expressed in order for the miRNA to regulate the expres-
sion of its biological target. Co-expression is typically dem-
onstrated by simply performing Northern blot analysis or
qRT-PCR using total RNA isolated from a specific cell
type and probes or primers specific for a given miRNA
and mRNA target [72].

Although the majority of miRNA targets appear to be
regulated both at the mRNA and protein level, such regu-
lation is only manifested at the protein level for some tar-
gets [73]. For a true target of a specific miRNA, the
modulation of miRNA concentration should correspond
to a predictable change in the amount of protein encoded
by the target mRNA. Therefore, a typical approach to val-
idate the functional importance of a miRNA:target pair is
a transient over-expression of a given miRNA mimic in a
cell type known to express the putative target protein and
subsequent western analysis using a specific antibody
against that protein. One limitation of monitoring protein
concentration is that it may not be selective enough to dis-
tinguish between members of the same miRNA family with
similar sequences.

Generally, the downstream effects of differential miR-
NAs can be observed at the protein level by western blot
and at the mRNA level by qRT-PCR, although these mea-
sures will not distinguish between direct and secondary
miRNA targets and it is hard to determine whether the tar-
get mRNA is regulated by one single miRNA predomi-
nantly or several miRNAs simultaneously.

In the specific situation where a miRNA target is
directly cleaved, 50 RNA ligase mediated-RACE (50

RLM-RACE) may be used to evaluate such targeting
[41]. Briefly speaking, 50-RACE is a PCR-based technique,
whereby an RNA adapter is ligated to the free 50 phosphate
of an uncapped mRNA produced from, among other
nucleolytic activities, AGO2-directed mRNA cleavage.
The ligation product can be reversely transcribed using a
forward primer directed against the linker and a gene spe-
cific reverse primer which is subsequently PCR amplified,
cloned and identified by sequencing. 50-RACE has been



Table 1 Online sources for plant miRNA study

Category Name miR Target Website Note Refs.

Que1 Pre2

miRNA databases miRBase
p

http://www.mirbase.org/ The biggest online registry for miRNAs. Target results are provided by miRCosm, but no
plant is supported.

[52]

Rfam
p

http://rfam.sanger.ac.uk/ It is a collection of RNA families. miRNA family arrangement is different from miRBase. [53]

Species-specific
sources

ASRP
p p

http://asrp.cgrb.oregonstate.edu/ Arabidopsis miRNAs and ta-siRNAs are collected, and also their targets. [66]
CSRDB

p p p
http://sundarlab.ucdavis.edu/
smrnas/

Cereal sRNAs database, sRNAs of rice and maize are identified with 454 sequencing data. [67]

miRNA annotation
databases

MicroPC
p p p

http://www3a.biotec.or.th/micropc/
index.html

A comprehensive resource for predicting and comparing plant miRNAs. [54]

PmiRKB
p p

http://bis.zju.edu.cn/pmirkb/
index.php

Four major functional modules are provided for plant miRNAs. [55]

PMRD
p p

http://bioinformatics.cau.edu.cn/
PMRD/

A plant-specific miRNA annotation database. [56]

Target databases miRTarBase
p

http://mirtarbase.mbc.nctu.edu.tw/
index.html

Provides experimentally-verified miRNA-target interactions. [60]

starBase
p p

http://starbase.sysu.edu.cn/index.php Degradome-Seq data are used and five target prediction tools are integrated. [61]

Genome &
transcriptome
databases

Phytozome http://www.phytozome.net/ It provides 31 sequenced and annotated green plant genomes, which have been clustered
into gene families at 11 evolutionarily-significant nodes.

[59]

TAIR http://www.arabidopsis.org/ TAIR maintains a database of genetic and molecular biology data for the model higher
plant Arabidopsis thaliana.

[57]

TIGR http://rice.plantbiology.msu.edu/ TIGR provides genome sequence from the Nipponbare subspecies of rice and annotation of
the 12 chromosomes.

[58]

High-throughput
data

SRA http://www.ncbi.nlm.nih.gov/sra Sequence Read Archive (SRA) is a public repository for next-generation sequence data.
sRNA sequencing data could be archived.

[64]

MPSS http://mpss.udel.edu/ Support several plant species, both sRNA and Degradome-Seq data are available. [63]
GEO http://www.ncbi.nlm.nih.gov/geo/ Gene Expression Omnibus (GEO) database is a public repository for high-throughput gene

expression data. Degradome-Seq data is also collected.
[65]

Note: 1Query, allow user to brows pre-computed targets; 2Predict, accept user submitted miRNA and/or mRNA sequences, and return predicted results.
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http://www.wmd3.weigelworld.org/
http://dx.doi.org/10.1093/bib/bbs010
http://www.srna-tools.cmp.uea.ac.uk/plant/
http://www.leonxie.com/
http://www.leonxie.com/
http://www.carringtonlab.org/resources/targetfinder
http://www.carringtonlab.org/resources/targetfinder
http://www.scbb.ihbt.res.in/new/p-taref/form1.html
http://www.scbb.ihbt.res.in/new/p-taref/form1.html
http://www.plantgrn.noble.org/psRNATarget/
http://www.plantgrn.noble.org/psRNATarget/
http://www.admis.fudan.edu.cn/projects/imiRTP.htm
http://www.admis.fudan.edu.cn/projects/imiRTP.htm
http://www.starbase.sysu.edu.cn/index.php
http://www.phytozome.net/
http://www.arabidopsis.org/
http://www.rice.plantbiology.msu.edu/
http://www.ncbi.nlm.nih.gov/sra
http://www.mpss.udel.edu/
http://www.ncbi.nlm.nih.gov/geo/
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employed extensively to validate products of RISC-medi-
ated cleavage in plants [41].

High-throughput methods

To map RNA–RNA cleavage sites more comprehensively,
Addo-Quaye et al. [74] and German et al. [75] introduced
the parallel analysis of RNA ends (PARE), also known
as Degradome-Seq or genome-wide mapping of uncapped
transcripts (GMUCT). Degradome libraries are con-
structed by ligation of polyA-enriched RNA samples to a
custom RNA adaptor containing a 30 MmeI site, followed
by reverse transcription, second-strand synthesis, Mmel
digestion, ligation of a 30 dsDNA adaptor, gel purification
and PCR amplification (Figure 2). The power of coupling
PARE and high-throughput sequencing has been demon-
strated by identifying widespread mRNA cleavage events
regulated by miRNAs in Arabidopsis [74–76], rice [77,78],
grapevine [79] and limited cleavages in mammals [80–82].
Because extensive base pairing between miRNAs and
mRNAs leading to direct RISC-mediated cleavage does
not appear to be a major mechanism of miRNA activity
Figure 2 The PARE protocol

Parallel analysis of RNA ends (PARE) is also known as genome-wide
mapping of uncapped transcripts (GMUCT) or Degradome-seq. PARE is
a modified 50-RACE with high-throughput deep sequencing methods.
After cleavage, the downstream sequence of the target site will not be
degraded. Thus, it would be possible to preserve the cleavage site by
adding a 50 adaptor. Furthermore, replacing the original long downstream
sequence with a shorter subsequence (20 nt) and a new 30 double strand
DNA adaptor will make it realistic to enhance the performance by
combining deep sequencing methods after purification and amplification.
in mammals, the use of PARE is most suited to plant sys-
tems, where it identifies the large subset of miRNA targets
that are subject to direct cleavage [83].

Degradome data can be scrutinized to find evidence of
cleaved sRNA targets without resorting to computational
predictions. Here, the current task is to develop effective
and efficient pipelines to make better use of these data.
So far, three pipelines have been proposed to process
degradome data.

CleaveLand is the first general pipeline for detecting
fragments diagnostic of sRNA-mediated cleavage from
degradome sequencing experiments [84]. To begin with,
degradome sequences will be matched to structural RNAs
using Oligomap [85] to filter out structural RNAs. The
purified dataset is then mapped to the transcriptome by
Oligomap. A 26 nt long ‘query’ mRNA subsequence is gen-
erated by extracting 13 nt long sequences upstream and
downstream of the location of the 50 end of a matching
degradome sequence. All query sequences are aligned to
sRNA sequences using the Needle program in the
EMBOSS package [86]. Alignments are then scored
according to a previously-described scheme [87] and those
with scores not exceeding a certain threshold and having
at least one degradome sequence start with the 10th nucle-
otide of complementarity are retained. In order to differen-
tiate spurious results from real targets, the pipeline re-runs
using randomly-shuffled sRNA sequences, which have
dinucleotide and trinucleotide compositions consistent
with those of the input transcriptome, to estimate signal-
to-noise ratios. This pipeline has been considered in many
subsequent studies, including the well-known web server,
starBase [61], whose contribution has been verified [7].

The second Degradome-Seq based analysis pipeline is
SeqTar [88], which allows more mismatches and critical mis-
match or G:U wobble pair at the position 10 or 11. This
method introduces two statistics; not only the alignment
between sRNA and query sequence is measured but also
the abundance of reads at the center of query sequence is
measured too. SeqTar uses a modified Smith–Waterman
algorithm to align sRNA to a query sequence, and BLASTN
to align degradome sequences to transcriptome. Because
loose rules are considered, especially at the cleavage posi-
tion, this pipeline always predicts many more miRNA:target
pairs than CleaveLand [88]. Additionally, SeqTar could pre-
dict a potential sRNA if an accumulation of reads is found at
a specific position, named as a peak, on a target when no
input sRNAs contributed to this accumulation.

Recently, Folkes et al. described a new, user-friendly,
cross-platform degradome analysis tool, PAREsnip, which
enables flexible and comprehensive high-throughput target
analysis, allowing users to identify genome-wide networks
of sRNA�target interactions resulting in transcript cleav-
age [89]. Similar to CleaveLand and SeqTar, the input
for PAREsnip includes transcriptome, degradome and
sRNAome data. In this method, another short read align-
ment method, PatMaN [90] is employed to map degradome
sequences. When searching for sRNA sequences that could
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potentially cleave a transcript accounting for the degra-
dome peak at a given position, the authors perform a
pre-defined rule-based complementarity search algorithm
[87,91], by traveling the 4-way tree [92]. sRNA�target
interactions identified by PAREsnip will be further mea-
sured by a P-value based metric, and only high quality pre-
dictions will be retained. Although the complementary
searching rules and selection score are similar, PAREsnip
runs much faster than CleaveLand by performing the 4-
way tree search. Additionally, PAREsnip employs cross-
sample conservation of both sRNA and degradome
sequences to reduce false predictions.

Another web tool, SoMART, is a collection of tools to
process sRNAs [93]. Its slicer detector tool can predict
sRNAs that could target the user-provided transcript, then
the dRNA mapper tool can be used to align degradome
sequences to the transcript. The server was recently
updated with a new function, SMART COMPARE, to
automatically compare the results from slicer detector
and dRNA mapper, and identify slicers supported by
degradome reads mapped to predicted cleavage sites.

Computational methods

As new experimental data comes to hand, the accepted
modes of miRNA�target interaction are also expanded
[94]. Although prediction programs may not incorporate
all these experimentally-derived possibilities, their ability
to provide potential targets easily and efficiently could
greatly facilitate the downstream investigation. In this sec-
tion, we will discuss the principles considered by existing
computational methods. In order to facilitate description,
we summarized popular available methods/tools in Table 2

and annotated each method/tool based on principles men-
tioned below.

Complementarity

For a miRNA, the complementarity between itself and its
target site determines the stability of miRNA:target duplex
and therefore has been utilized as a key feature for target
gene analysis by computational methods.

Early observations suggested that �6 nt (position 2–7)
cis elements that are required for post-transcriptional
repression of Drosophila melanogaster targets are perfectly
complementary to the 50 ends of specific miRNAs [95].
Subsequently, systematic mutagenesis studies highlighted
the seed regions for miRNA targeting in Arabidopsis

[91,96]. The conserved pairing of the seed region markedly
reduces the occurrence of false positive predictions. In gen-
eral, a scoring schema that requires a perfect or nearly per-
fect match within seed regions has been widely employed in
published plant miRNA prediction methods/tools. How-
ever, some exceptions have been reported. For example,
miR398a post-transcriptionally regulates its target gene
CSD2 in Arabidopsis, though the seed region contains a
bulge and GU wobble [97]. Meanwhile, a set of canonical
seed types of different length or with specific initial base
was verified by experiments [38], which puzzled the compu-
tational methods. One recent study verified the specificity
of long seeds but the majority of functional target sites
are formed by less specific seeds of only 6 nt [98]. Addition-
ally, they also found a substantial fraction of genuine tar-
get sites are non-conserved. Chi et al. identified an
alternative binding mode by which miR-124 can regulate
its target with G-bugle site (positions 5–6), which cannot
be explained by canonical seed matches [99]. All the contra-
dictory evidence seems to require existing computational
methods to review their seed region related scoring rules.

The degree of complementarity of the central region
(position 9–11) is often presented as a decisive feature that
determines whether slicing or translational repression and
mRNA decay follows from RISC recruitment [100]. Addi-
tionally, functional miRNA target sites that only pair with
the central region of the miRNA lead to translational inhi-
bition or mRNA decay in humans [80], which might be also
present in plants. Thus, many computational methods con-
sider this region when scoring a miRNA:target pair [101–
104]. The differences are the position of the central region,
and whether mismatch or wobble pair in this region is
allowed, and if it is allowed whether the functional type
of this miRNA:target pair is also predicted. As showed in
Table 2, psRNATarget [101] and imiRTP [102] predict
the functional type of miRNA based on the complemen-
tary at the central region of the miRNA:target pair.

In addition to the seed and central regions, the miRNA 30

backbone is also thought to be critical to enhance target rec-
ognition in Arabidopsis. The Tcp4-soj18 mutation at posi-
tion 19 of miR319 or position 16 of the mRNA target site
significantly affects their pairing, although these changes
cause only a small difference in the calculated interaction
free energy [105]. In another study, Zhang et al. finds that
perfect complementarity between the 30 end of miR173
and the 50 end of AT2G39675 (TAS1c) is crucial by system-
atically mutating the miR173 target site [106]. Mismatches
at 30 end of miR173 abolish trans-acting siRNA (ta-siRNA)
formation, while mismatches at the 50 end had less effect.
Unlike the seed and central region, the 30 backbone was
underrated by all existing computational methods.

The advantages and disadvantages of using different sets
of complementarity are that considering only stringent-pair
types increases specificity but might miss many potential
targets, whereas considering both stringent and moder-
ate-stringent-pair types increases sensitivity but might also
increase the number of false positives.

Target site accessibility

The secondary structure is very important for predicting
both miRNAs and miRNA targets [107,108]. An effective
miRNA�target interaction begins with the hybridization
reaction on an open structure at the target site (Figure 3).
After binding, miRISC can disrupt the secondary structure
at the site to elongate hybridization [109,110]. Kiryu et al.



Table 2 Plant miRNA target prediction tools

Name Comp1 Cons2 Hyb3/

Acc4
Mul5 Fun6 Availability7 Own sequence8 Link Refs.

miRNA mRNA

PatScan � L yes yes N/A [131]
miRNAassist � � L9 yes yes N/A [132]
miRU � � W no no N/A [133]
WMD3 � � W yes no http://wmd3.weigelworld.org/ [114]
TAPIR � � � W yes yes http://bioinformatics.psb.ugent.be/webtools/

tapir/
[115]

UEA sRNA � � W yes no http://srna-tools.cmp.uea.ac.uk/plant/ [103]
Target-align � L yes yes http://www.leonxie.com/ [104]
Targetfinder � � L yes yes http://carringtonlab.org/resources/targetfinder [19]
p-TAREF � � � W/L yes yes http://scbb.ihbt.res.in/new/p-taref/form1.html [116]
psRNATarget � � � � � W yes yes http://plantgrn.noble.org/psRNATarget/ [101]
imiRTP � � � � � L yes yes http://admis.fudan.edu.cn/projects/imiRTP.htm [102]

Note: 1 Complementary; 2 Conservation; 3 Hybridization; 4 Accessibility; 5 Multiplicity; 6 Function; 7W/Lindicate whether the tool could be accessed
online at website or installed locally; 8yes/no indicate whether users’ own miRNA and/or mRNA sequences could be used by the tool or not; 9 available
upon request.
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performed a detailed investigation of accessibility of target
sites recently [111]. They found that the efficacy of miR-
NAs depends strongly on the accessibility of both the very
50 and 30 end of their binding sites, which supports existing
bioinformatics practice that extracts a certain length subse-
quence from upstream and downstream of target sites
when computationally calculating the accessibility.

The free energy between a hybridization of miRNA and
its target is considered by some computational methods,
but it is not a good indicator, especially compared with
the accessibility [112,113]. UEA sRNA [103], WMD3
[114], TAPIR [115] and p-TAREF [116] first calculate the
hybridization energy of miRNA:target duplex, then com-
pare it with the optimal hybridization energy, and finally
use the percentage as a filter to choose potential targets.
Another two methods, psRNATarget and imiRTP, calcu-
late the accessibility by RNAup program in Vienna RNA
package [117].

However, despite being theoretically sound, calculating
accessibility could be extremely time-consuming, especially
Figure 3 Target site accessibility

Accessibility of target mRNA and miRNA is believed to increase the precision o
site will prevent miRNA and mRNA target from contacting. Many methods m
RNAup, RNAduplex, etc.) to calculate target site accessibility, which is represe
The less energy always means the more possibility that miRNA is able to con
when the mRNA sequence is long. Moreover, current ther-
modynamic models used in RNA secondary structure pre-
diction algorithms are not very accurate [118].

Evolutionary conservation of target sites

miRNA families are comprised to have the same seed site,
and are well-conserved among related species [119]. In addi-
tion, miRNA families have targets that are conserved
among related species. In early target prediction methods,
exploring conserved miRNA targets in homology sequences
within related species have been used to re-enforce the target
prediction [120,121]. Several recent methods, like Target-
finder [19], TAPIR, p-TAREF, psRNATarget and imiRTP,
still consider this principle as part of a scoring schema.

The main challenge of such a principle is that the expres-
sion pattern of miRNA targets may be time- and space-
specific, thus target sequences may not be detected due to
their low expression level in specific organisms [75], leading
to false negative predictions from conservative analysis. On
f miRNA target predictions because the secondary structure around target
entioned in this article consider this fact by employing various tools (like

nted by the energy required to open secondary structure around target site.
tact target mRNA.

http://www.wmd3.weigelworld.org/
http://dx.doi.org/10.1093/bib/bbs010
http://dx.doi.org/10.1093/bib/bbs010
http://www.srna-tools.cmp.uea.ac.uk/plant/
http://www.leonxie.com/
http://www.carringtonlab.org/resources/targetfinder
http://www.scbb.ihbt.res.in/new/p-taref/form1.html
http://www.plantgrn.noble.org/psRNATarget/
http://www.admis.fudan.edu.cn/projects/imiRTP.htm


Figure 4 Target site multiplicity

In most situations, one miRNA is enough to change the expression of target genes. A. miR173 can trigger AtTAS1A (At2g27400) to generate ta-siRNAs.
But there are some exceptions. B. Both miR390a and miR390b are crucial in the generation of ta-siRNAs from AtTAS3 (At3g17185).
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top of that, there are also species-specific miRNAs and tar-
gets. Applying a conservation filter can decrease the false
positive rate, but the side effect is also obvious, since it is
only effective for conserved miRNAs. When species-specific
miRNAs are of interest, it is important to identify targets
both with and without conservation.

Besides the aforementioned principles, considering the
number of putative miRNA sites per mRNA can signifi-
cantly enhance target prediction [7]. Unfortunately, the
importance of target site multiplicity was generally under-
estimated while highlighting the perfect match of miRNA
and its target site (Table 2). One good example is the bio-
genesis of AtTAS3 to generate ta-siRNA (Figure 4). Axtell
et al. firstly proposed the two-hit trigger model, that is,
AtTAS3 is targeted by miR390a and miR390b simulta-
neously before giving rise to ta-siRNA [47]. Later,
Montgomery et al. reported that though miRNA-guided
cleavage only occurs at one miRNA binding site, the other
miRNA binding site is still necessary for AtTAS3 process-
ing [122]. In legumes, an AP2-like gene Medtr2g093060
contains a miR172-cleaved target site and a non-cleaving
miR156 target site [123], which is another good example
supporting the importance of multiplicity. Based on our
latest work (Ding et al., in preparation), we speculate that
this phenomenon is more common in plants.
Conclusion

The recent discovery that miRNAs can both regulate and
be regulated by target interactions has profound implica-
tions for understanding their roles in gene regulation
[124]. More questions about how miRNA targeting func-
tions in vivo are raised after the identification of the inter-
twined relationship. An original and remaining challenge
in the field is the ability to find miRNA targets with high
confidence. Actually, finding true functional miRNA
targets is still challenging even though many biological
principles of miRNA targeting have been revealed
experimentally and computationally.

A perfectly-complementary region on mRNA may not
function as an effective target site due to its accessibility
in terms of secondary structure and other unknown rea-
sons, leading to false positive predictions [125]. Another
problem that has hardly been addressed is multiplicity,
since different miRNAs can cooperatively regulate individ-
ual targets, but miRNA expression signatures differ
between cell types and conditions [27]. Thus, miRNA
research will increasingly focus upon miRNA-regulated
networks [126], in addition to identifying individual miR-
NA target interactions. Furthermore, besides repressing
target gene expression, the reciprocal effect of targets on
miRNAs is not entirely clear. In some cases, target interac-
tions offer a protective influence on miRNA stability,
whereas in others the outcome is miRNA degradation.
Thus far, it seems that the degree of complementarity
between a miRNA and its target determines the fate of
the miRNA, and it seems that extensive complementarity
favors miRNA destruction [127]. Although so many ques-
tions remain to be solved, recent progress in miRNA biol-
ogy makes it clear that combining multiple strategies is
required to obtain a comprehensive high-confidence
description of miRNA targeting networks.
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Integration of various data sources

Unlike miRNAs in animals, plant miRNAs predominately
bind mRNAs at CDS, thus many researches focus on CDS
while UTRs are ignored. However, new findings indicate
that both animal and plant miRNAs can target 50UTR,
30UTR and coding regions [6,7], although the proportion
that target UTRs is small. Expression level of target
mRNAs or proteins is generally negatively associated with
that of its corresponding miRNAs. The use of transcrip-
tome data, particularly microarray and RNA-seq based
expression data, should significantly reduce false positive
predictions [128]. In addition, experimentally-verified miR-
NA: target pairs were collected by previous studies [115]
and specific databases (like miRTarBase). Instead of using
them as test data, p-TAREF originally runs over this infor-
mation and applies it in the development of machine learn-
ing based methods and thus archives better results than
other methods (more details, please see [116]).

Integration of known principles

None of the existing prediction tools has been able to
incorporate all currently-known principles (Table 2), even
those mentioned in this review. Directly building a model
with more principles incorporated might provide higher
accuracy and enhance site recognition efficacy, but its
implementation might also become more complex. The
appearance of imiRTP shed lights on further direction by
integrating existing popular computational methods to
get quality results, which is inspired by the successful expe-
rience of animal miRNA target study [102]. Prior to imi-
RTP, a series of such methods were proposed, but none
of them support plant miRNAs. With the increase of novel
target prediction methods, more species will be supported
and more accurate results will be provided by such tools.

Integration of different technologies

New high-throughput technologies have accelerated the
discovery of sequences that are bound by the miRNA com-
plex in vivo [74,75]. These datasets provide an experimental
framework for training computational algorithms to pre-
dict the likelihood of a sequence being recognized by spe-
cific miRNAs in a biologically-relevant context. Recently,
several pipelines have been proposed for analysis of these
high-throughput degradome-seq data and can scale miR-
NA targets at a genome-wide level. Remaining challenges
for these methods come from several aspects. First, the
computational cost is still high, including computation
time and hardware cost. Second, current pipelines always
generate much more candidate pairs than traditional com-
putational methods, which is hard to believe that all of
them are real predictions. Third, considering degradome-
seq uses similar principle as 50-RACE, novel experimental
methods are needed to evaluate candidates identified by
these pipelines. Fourth, with degradome-seq technology,
only cleavable targets can be identified, while non-cleavable
targets will be missed. starBase provides targets predicted
by integration of different computational methods and
high-throughput technologies. How to use these data will
be an interesting and meaningful question.

Along with the development of next-generation technol-
ogy, hundreds of thousands of nucleic acid data are pro-
duced. In order to handle this scale of data, popular
target prediction tools need to enhance their input/output
ability as well as the ability of parallel calculating. For sev-
eral tools listed in Table 2, we have tested their abilities
(more details can be found in Table 1 in [7]). Thus, there
will be a trend to involve compute unified device architec-
ture (CUDA) [129] and cloud computing [130], which are
newly-developed high-performance computing techniques,
to meet the rapidly-increasing demand.
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