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Abstract

Bacterial small RNAs (sRNAs) are an emerging class of regulatory RNAs of about 40–500 nucleotides in length and, by binding to their
target mRNAs or proteins, get involved in many biological processes such as sensing environmental changes and regulating gene expres-
sion. Thus, identification of bacterial sRNAs and their targets has become an important part of sRNA biology. Current strategies for
discovery of sRNAs and their targets usually involve bioinformatics prediction followed by experimental validation, emphasizing a key
role for bioinformatics prediction. Here, therefore, we provided an overview on prediction methods, focusing on the merits and limita-
tions of each class of models. Finally, we will present our thinking on developing related bioinformatics models in future.
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Introduction

Bacterial small RNAs (sRNAs) are an emerging class of
small regulatory RNAs of about 40–500 nucleotides in
length [1]. Originally they were called small non-coding
RNAs [2]. However, some recent studies showed that some
sRNAs, including SgrS and RNAIII [3,4], can also encode
some small proteins. Thus, this class of RNA molecules is
called small regulatory RNAs [5]. Through binding to their
target mRNAs or proteins, these sRNAs are involved in
many biological processes to regulate the expression of
outer membrane proteins [6,7], iron homeostasis [8–10],
quorum sensing [11,12] and bacterial virulence [13,14].
For example, RNAIII of Staphylococcus aureus was associ-
ated with bacterial pathogenesis [14].

The functional importance of these sRNAs in responding
to environmental changes has encouraged people to find
more and more sRNAs. According to the sRNA database
sRNAMap [1], more than 900 sRNAs have been reported,
which are mostly transcribed from the intergenic regions.
sRNAs are heterogeneous in terms of sequence length and
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secondary structure. In addition, sRNAs are not sensitive
to frame-shift or nonsense mutations. Therefore, it is still dif-
ficult to find sRNA genes directly using genetic screening
methods. The current strategies often use a combination of
bioinformatics prediction and experimental validation [15].
For example, through the combination of genome sequenc-
ing techniques and comparative genomics-based analysis, 88
sRNAs have been identified in the TIGR4 strain of the
human pathogen Streptococcus pneumonia [16]. Therefore,
developing prediction models for sRNA discovery is extre-
mely critical. Up to date, two classes of prediction methods
have been developed, i.e., comparative genomics-based [17–
22] and machine learning-based methods [23–26].

With more and more sRNAs obtained, determining their
functions will also become an important part of sRNA biol-
ogy. According to the locations of sRNA genes and their tar-
gets [27], sRNAs can be classified into cis-encoded sRNAs
and trans-encoded sRNAs. For the cis-encoded sRNAs,
sRNA genes overlap with their target genes and there exists
a perfect base pairing region between their transcripts, while
for the trans-encoded sRNAs, sRNA genes are separate
from their target genes and there is often an imperfect base
pairing region between their transcripts (Figure 1). For
example, an imperfect base pairing region is present between
cademy of Sciences and Genetics Society of China. Published by Elsevier
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the sRNA IstR and its target mRNA tisB [5] (see sRNATar-
Base for detailed information, http://ccb.bmi.ac.cn/srnatar-
base/). The imperfect base pairing results in much difficulty
in detecting target mRNAs, which renders the experimental
validation essential after computational prediction. Never-
theless, the computational methods have provided a time-
saving and less labor-intensive way for the identification of
sRNA targets. To this end, several prediction models have
been developed [28–36].

Taken together, bioinformatics prediction plays an
important role in discovering sRNAs and their targets, as
pointed by some reviews on bioinformatics prediction
and experimental discovery [37–40]. In the current review,
we focus on the merits and limitations of each class of mod-
els and provide some perspective on future development in
this field.
Prediction of bacterial sRNAs

In essence, the process of developing bioinformatics models
is to learn the rules from known samples and then to apply
the rules for new samples for experimental validation.
Therefore, understanding the characteristics of bacterial
sRNAs is vital in developing sRNA prediction models.
The available literature indicates that sRNAs possess the
following features [37–40]. First, sRNAs are widespread
and each bacterium is assumed to contain sRNA genes.
Second, sRNAs are heterogeneous in sequence length and
secondary structure as mentioned previously. The sequence
of sRNAs ranges from 40 to 500 nucleotides in length.
Figure 1 The action mechanisms of cis-encoded and trans-encoded sRNAs

For cis-encoded sRNA-target mRNA interactions, there exists a perfect base p
Here the interaction GadY:gadX was provided to demonstrate such interaction
target mRNA. However, for trans-encoded sRNA-target mRNA interactions, t
each other and therefore there is no overlap between them. The interaction Mi
information (http://ccb.bmi.ac.cn/srnatarbase/). The entry names for GadY:g
Third, unlike tRNAs with the conserved cloverleaf second-
ary structure pattern, or eukaryotic microRNAs with sim-
ilar sequence lengths and hairpin structured precursors
[41], different sRNAs often have different secondary struc-
tures. Fourth, sRNAs are involved in many biological pro-
cesses, such as posttranscriptional regulation of gene
expression, RNA processing, mRNA stability and transla-
tion, protein degradation, plasmid replication and bacterial
virulence [42–47]. The above features, on the one hand,
reflect the importance of sRNAs, and on the other hand,
bring difficulties in developing general models for sRNA
prediction. Although many empirical models have been
developed for sRNA discovery [17–26] (Table 1), there is
little overlap between the prediction results from different
models. We are still a long way from developing a perfect
model for sRNA prediction.
Comparative genomics-based models for sRNA prediction

Comparative genomics-based models are a class of com-
monly-used methods for sRNA prediction at present. The
basic assumption is that an sRNA gene should have a cer-
tain conservation of both sequence and secondary structure
among a group of closely-related genomes. Therefore, how
to choose the right set of closely-related genomes plays a
key role in the success of comparative genomics-based
models for sRNA prediction, and usually depends on the
research purposes and models employed. For example, to
find the sRNA genes in the intergenic regions of Esche-

richia coli [46], Argaman et al. applied the BLAST program
airing region and these genes overlap but are localized on different strands.
, in which the blue color represents sRNA and the red color stands for the
here exists an imperfect base pairing region. These genes are separate from
cC:ompC was shown as an example. Please see sRNATarBase for detailed
adX and MicC:ompC are SRNAT00067 and SRNAT00015, respectively.
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to compare potential sRNA regions against the genomes of
Salmonella typhi, S. paratyphi and S. typhimurium and
identified 24 putative sRNA genes. In addition, Rivas
and Eddy applied the WUBLASTN program to compare
2367 intergenic sequences of E. coli against the complete
genome of S. typhi [17]. The 11,509 generated alignments
were scanned using the QRNA model and finally, 33 out
of 115 known ncRNAs were identified. The E. coli genome
was also used to test the performance of the sRNAPredict
program. Using sequence conservation between E. coli

intergenic regions and Shigella flexneri, Livny et al. identi-
fied 50 out of 55 known sRNAs [21]. Therefore, it is very
difficult to provide a general rule for how many genomes
and which genomes should be included in studies of com-
parative genomics-based sRNA prediction.

The main steps for comparative genomics-based models
to predict sRNA genes are as follows. The first step is to
find closely-related genomes to a given bacterial genome.
The second step is to extract intergenic regions among
the selected genomes and to apply the BLAST program
to compare intergenic regions pair wisely. Then, the pair
wise BLAST hits are gathered into clusters of two or more
sequences, and these sequence clusters are aligned using
ClustalW or ncDNAlign [48]. Finally, the resulting align-
ments are scored using RNAz [18] or EvoFold [19]. The
third step is to carry out structural conservation analysis
for the intergenic regions using the above alignment. Here
structural conservation means that, for some positions in
each sequence, even though there is no perfect conservation
of nucleotides, the base pairing information is kept. The
fourth step is to predict whether the conserved intergenic
regions contain the signal of promoter, transcript factor
binding sites or Rho-independent terminator.

Based on some or all steps above, some programs,
including QRNA [17], RNAz [18], EvoFold [19], SIPHT
[20] and sRNAPredict [21], have been developed and suc-
cessfully applied to finding bacterial sRNA genes. QRNA
takes blast alignment of two sequences as the input, while
RNAz and EvoFold take multiple sequence alignment as
input, before structure analysis such as conservation and
thermodynamic stability is performed to predict potential
sRNA genes. Different from these tools, sRNAPredict
and SIPHT only use information from blast alignment
and Rho-independent terminator signal without consider-
ing structural information.

Four comparative genomics-based methods, QRNA,
RNAz, sRNAPredict/SIPHT and NAPP (nucleic acid phy-
logenetic profiling) [22] were systematically compared using
10 sets of benchmark data in a recent evaluation paper [49],
The authors found that sRNAPredict provided the best
performance by comprehensively considering multiple fac-
tors such as low false positive rates, ability to identify the
correct strand of sRNAs and speed of execution.

There are limitations for this class of methods. First, the
aforementioned models are only applicable to the discovery
of evolutionarily-conserved sRNA genes rather than the
genes unique to a given genome. Second, these models
are of no use if there are no closely-related genomes avail-
able for a given genome. Third, the conserved intergenic
regions may contain other gene structures such as tran-
scription factor binding sites or untranslated regions of
mRNAs rather than sRNA genes. Therefore, the compar-
ative genomics-based models are only applicable to identify
some sRNA genes.

Machine learning-based models for sRNA prediction

The basic assumption of this class of models is that a given
genome is composed of two parts, i.e., sRNA genes and the
remaining part of the genome. If we take sRNA genes as
signal, the remaining part of the genome will be viewed
as the background. The first step to develop machine learn-
ing-based models is to construct a training dataset includ-
ing positive and negative samples. The known sRNA
genes are often used as positive samples, while randomly-
selected DNA sequences from the given genome are taken
as negative samples. The second step is to extract features
describing the samples, which is a key step in developing
models. Only suitable features can improve the model per-
formance. In addition, feature selection is also important in
machine learning-based model construction. For example,
in Tran’s model for sRNA prediction [26], they firstly con-
structed a training dataset including 936 non-redundant
ncRNA sequences as the positive set and the shuffled
sequences of those positive samples as the negative sam-
ples. Then, they applied a t-test to find a set of features with
statistical significance (P < 0.05) for neural network-based
model construction. In fact, many feature selection meth-
ods have been applied in gene expression profile-based
sample classification studies such as the Tclass system
developed by our laboratory [50]. All those feature selec-
tion methods can be applied to select proper feature sets
for sRNA prediction. Third, the machine learning methods
such as neural networks and support vector machines are
applied to develop the models. Fourth, the models devel-
oped are applied to genome-wide discovery of sRNA genes
for experimental validation. If the number of predicted
sRNA genes is very large, the comparative genomics-based
models can be further applied to reduce the number of the
genes. The main challenge in developing machine learning-
based models lies in constructing training samples and fea-
tures. For example, in the neural network-based model pre-
sented by Carter [23], the genetic algorithm-based model
presented by Saetrom [24] and the model presented by
Wang [25], the number of positive samples was enlarged
by incorporating the tRNA and rRNA sequences into the
training dataset.

Compared to the comparative genomics-based models,
machine learning-based models for sRNA gene prediction
have some advantages. For example, these models can be
applied to find sRNA genes unique to a given genome.
However, when we apply these models to do genome-wide
discovery of sRNA genes, we often divide the genome into
fragments with a certain length for prediction separately. If
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the fragment is too short, it might not contain enough
information for sRNA genes. Conversely, if the fragment
is too large, it might contain noise information. Therefore,
it is very difficult to choose the optimal window size for
machine learning-based models due to the length heteroge-
nicity of sRNA genes. Because of this, Tran et al. con-
structed different models using different window sizes.
This might be the reason why the positive prediction value
of machine learning-based models is less than that from
comparative genomics-based models [26].
Prediction of sRNA targets

Developing predicting models for sRNA targets is very
important. The strategy, which combines bioinformatics
prediction and experimental validation for sRNA gene dis-
covery, can also be applied to sRNA target identification
[51]. To do this, understanding the features of sRNA-target
interactions is the initial key step. sRNAs exert their func-
tions through the following two ways: (1) imperfect base-
pairing with their target mRNAs; and (2) binding proteins
and altering their activity [43]. Imperfect base-pairing with
mRNAs represents the major regulatory mechanism, which
can lead to translational repression, translational activa-
tion or mRNA degradation [52]. This mechanism is the
focus of current studies on sRNA-target interactions. We
reviewed the related prediction models below. To date,
two categories of methods, prediction models for general
RNA–RNA interaction [53–65] (Table 1) and models spe-
cifically designed for sRNA-target mRNA interactions in
bacteria [28–36] (Table 1), have been utilized in sRNA tar-
get discovery.
Prediction models for general RNA–RNA interactions

In essence, the sRNA-target mRNA interactions in bacte-
ria fall into the class of RNA–RNA interactions. There-
fore, the models for general RNA–RNA interaction
prediction (RIP) can also be applied to investigate
sRNA-target mRNA interaction.

The earliest methods for RIP are to find hybridization
structure with the minimum binding free energy for two
RNA molecules, using the program RNAfold [53,54] or
Mfold [66] to fold the two concatenated RNA sequences.
Hybridization artifacts can arise from folding the concate-
nation of two RNA sequences. To prevent such artifacts,
many programs such as RNAcofold [54], RNAhybrid
[55,56] and RNAplex [57] were presented by extending
the classical RNA secondary structure prediction algo-
rithm to two sequences. For instance, RNAhybrid [55,56]
was a modification of the classic RNA secondary structure
prediction method, by neglecting intra-molecular base-
pairings and multi-loops. This method was originally pro-
posed for miRNA target prediction, but it was also applied
to sRNA target prediction by Sharma et al. [67]. Compared
to RNAhybrid, RNAplex [57] used a slightly different
energy model to reduce computational time. RNAplex per-
formed 10–27 times faster than RNAhybrid [57].

The methods mentioned above ignore the secondary
structures of two RNA molecules before they interact. To
improve the prediction performance, Muckstein et al.
applied a dynamic programming algorithm to search the
minimum extended hybridization energy, which was
defined as the sum of hybridization energy and the energy
for making the binding sites accessible [68].

Since pseudo-knots were not considered in both the clas-
sical and the extensions of RNA secondary structure pre-
diction algorithms, the aforementioned programs cannot
find loop–loop interactions (kissing complex) between
two RNA molecules. To address this problem, Alkan
et al. presented inteRNA [59] based on joint structure of
two RNA molecules. When applied in CopA-CopT and
OxyS-fhlA interactions, inteRNA detected the loop-loop
interactions successfully. Thereafter, multiple programs
such as piRNA [60], inRNA [61], rip [62], RactIP [63], rip-
align [64] and PETcofold [65] have been presented based on
joint structure of two RNA molecules.

Although many programs for general RIP have been
presented, most programs only provide the potential bind-
ing sites between two RNA molecules rather than deter-
mine whether two RNA sequences interact or not. In
fact, two randomly selected RNA sequences can present
many potential binding sites, which cannot guaranty that
two RNA sequences interact. These programs are only
suitable for searching binding sites given the interaction
between an sRNA and a target mRNA. Therefore, it is
impractical to apply these models for genome-wide predic-
tion of sRNA targets. It is necessary to develop specific
prediction models for sRNA targets.

Prediction models specifically designed for sRNA-target

mRNA interactions

The first prediction model specific to sRNA-target mRNA
interaction was presented by Zhang et al. [28]. They incor-
porated the following five features into the model: (1) Hfq-
binding sites in both sRNA and target mRNA sequences;
(2) flanking sequence �35 to +15 nt around the translation
initiation sites in target mRNA sequences; (3) Hfq-binding
sRNA structures; (4) extension alignment based on the cen-
ter of loop or bulge regions from sRNA secondary struc-
ture; and (5) conservation profiles of the sRNAs and
their targets among 8 closely-related organisms of E. coli
K-12. For a given sRNA, this model scores each potential
sRNA–mRNA interaction based on a modified Smith–
Waterman local sequence alignment algorithm (a reward
for a match and a penalty for a mismatch) and takes the
mRNAs with top 10 or 50 scores as the potential targets.
Among 10 experimentally-validated sRNA-target interac-
tions, there are 7 pairs ranked in the top 50 scores. How-
ever, this model has not been applied widely because of
the following reasons. First, this model was designed spe-
cifically for E. coli genome. For example, the conservation



Table 1 Main computational tool for prediction of bacterial sRNAs and their target mRNAs

Type Tool Availability Main features References

Comparative genomics-based
models for sRNA prediction

QRNA ftp://ftp.genetics.wustl.edu/pub/
eddy/software/qrna.tar.Z

Sequence and secondary structure; suitable for two sequence alignment [17]

RNAz http://www.tbi.univie.ac.at/~wash/
RNAz

Sequence and secondary structure; suitable for multiple sequence alignment [18]

EvoFold http://www.cbse.ucsc.edu/jsp/
EvoFold

Sequence, structure and evolution; suitable for multiple sequence alignment [19]

SIPHT http://bio.cs.wisc.edu/sRNA Sequence and Rho-independent terminators [20]
sRNAPredict http://www.tufts.edu/sackler/

waldorlab/sRNAPredict.html
Sequence and Rho-independent terminators [21]

NAPP – Phylogenetic profiling of nucleic acid fragments; cluster analysis [22]

Machine learning-based models
for sRNA prediction

Carter et al. http://rnagene.lbl.gov/ Nucleotide compositions and secondary structure; neural networks and support vector
machines

[23]

S�trom et al. – Sequence; genetic algorithm and boosting algorithm [24]
PSoL – Sequence and secondary structure; support vector machine [25]
Tran et al. http://csbl.bmb.uga.edu/

publications/materials/tran/
Sequence and secondary structure; neural network [26]

Prediction models for general
RNA–RNA interactions

RNAcofold http://www.tbi.univie.ac.at/RNA/ Extension of minimum energy folding algorithm to two sequences [54]
RNAhybrid http://bibiserv.techfak.uni-

bielefeld.de/ranhybrid/
Extension of minimum energy folding algorithm to two sequences; neglecting intra-molecular
base-pairings and multi-loops

[55,56]

RNAplex http://www.tbi.univie.ac.at/~htafer/ Extension of minimum energy folding algorithm to two sequences; running faster [57]
RNAup http://rna.tbi.univie.ac.at/cgi-bin/

RNAup.cgi
Consideration of accessibility of binding sites [53,58]

inteRNA http://www.ncrna.org/software/
ractip/

Searching the joint structure of interacting RNAs with the minimum total free energy [59]

piRNA http://compbio.cs.sfu.ca/taverna/
pirna/

Computing the partition function over joint structures formed by two interacting nucleic acids [60]

Rip http://www.combinatorics.cn/cbpc/
rip.html

Computing the full partition function over joint structures formed by two interacting RNAs
based on the combinatorial notion of ‘tight structures’

[62]

RactIP http://www.ncrna.org/software/
ractip/

Prediction based on joint structures using integer programming [63]

Ripalign http://www.combinatorics.cn/cbpc/
ripalign.html

Prediction based on joint structures with consideration of both thermodynamic stability and
sequence/structure covariation

[64]

PETcofold http://rth.dk/resources/petcofold/
submit.php

Predicting interactions and secondary structures of two multiple alignments of RNA sequences [65]

Prediction models for sRNA-
target mRNA interactions

TargetRNA http://snowwhite.wellesley.edu/
targetRNA/

Hybridization; not consider structures from sRNA or mRNA [29,30]

sRNATarget http://ccb.bmi.ac.cn/srnatarget/ Sequence and RNA secondary structure profile; naı̈ve Bayes method [33,34]
IntaRNA http://www.bioinf.uni-freiburg.de/

Software/
Accessibility of binding sites; user-specified seed [32]

RNApredator http://rna.tbi.univie.ac.at/
RNApredator

Target site accessibility; RNAup [35]

sTarpicker http://ccb.bmi.ac.cn/starpicker/ Thermodynamic stability; site accessibility of sRNA and targets; naı̈ve Bayes method [36]

Note: The main features and properties of the related models were provided in column “Main features”. For example, for QRNA, both sequence and secondary structure information were applied, and
the model was suitable for two sequence alignment.
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profile associated with E. coli was considered, which hin-
ders people from applying the model in other organisms.
Second, the model only considers secondary structures of
sRNAs rather than the joint structures of two RNA
sequences, which makes the model less competitive in com-
parison with the models presented later. Third, there is no
program provided for sRNA biologists.

The second model, termed TargetRNA, was presented
by Tjaden et al. [29,30]. TargetRNA included an individual
base pair model and a stacked base pair model for calculat-
ing hybridization score for sRNA-target interactions. The
individual base pair model was based on a modified
Smith–Waterman local sequence alignment algorithm,
and the stacked base pair model was a straightforward
extension of RNA folding approaches with intra-molecular
base-pairing prohibited, which is very similar to the statis-
tical idea from RNAhybrid [55,56]. However, TargetRNA
was optimized on a training dataset containing 12 experi-
mentally-verified sRNA-target mRNA interactions. The
optimal translational initiation region was –30 to +20 nt
and seed length was 9 nt. For each potential sRNA-target
mRNA interaction, the model calculates the hybridization
score, which was assumed to abide by extreme value distri-
bution. The extreme value distribution was obtained by
considering a large number of randomly-generated
sRNA-target mRNA interactions. Therefore, for a given
sRNA, all potential sRNA-target mRNA interactions will
be considered and the interactions with the top 10 or 50
smallest P values will be taken as the putative interactions.
As a result, TargetRNA can pick up 8 from the 12 interac-
tions with top 10 smallest P values.

Mandin et al. proposed a model for sRNA target predic-
tion by searching strong sRNA-mRNA duplexes [31]. Each
sRNA-mRNA duplex was scored as a sum of both positive
contributions and negative contributions, which correspond
to pairing nucleotides and bulges/internal loops, respec-
tively. The cost of bulges and internal loops was empirically
gauged using four validated sRNA-mRNA interactions.
The statistical significance of the duplex was used as the cri-
terion for interaction, which was assessed by comparing to
an ensemble of random sequences. During prediction, the
flanking regions,�140 to +90 nt around the translation ini-
tiation sites and �60 to +90 nt around the translation stop
sites in target mRNA sequences, were considered.

Obviously all aforementioned models only take a certain
number of top predictions (with the larger comparison
scores, small free energies or small P values) as potential tar-
gets. To determine clearly whether a given sRNA-mRNA
complex interacts or not, our group have systematically col-
lected 46 positive samples (true interactions) and 86 negative
samples (no interaction) as the training dataset. Then,
according to the positions of mRNA binding sites from
the validated sRNA-target mRNA interactions at that time,
sub-sequences located within �30 to +30 nt of the initial
start codons of targets were selected as core binding regions.
Based on the hypothesis that sequences flanking the core
binding regions are also likely to influence the interactions,
we also extracted these flanking sequences using sliding win-
dows. For each sub-sequence, 10 features were computed,
including the percent composition of bases in interior loops,
the minimum free energy (MFE) of hybridization, and the
difference in the MFE values before and after hybridization.
Each sRNA-target mRNA interaction was described by
10,000 features. Third, we applied the Tclass system [50]
and support vector machines to construct prediction models
sRNATargetNB and sRNATargetSVM, respectively
[33,34]. The main difference between sRNATargetNB and
sRNATargetSVM is that the former only takes six features,
which were selected from 10,000 initial features using the
Tclass system [50], to determine whether a given pair of
sRNA and mRNA interacts or not, whereas the latter needs
10,000 features. Therefore, sRNATargetNB runs faster.
Finally, the performance of the two models above was eval-
uated on an independent test set containing 22 positive sam-
ples and 1700 randomly-generated negative samples.
Prediction accuracies are 93.03% and 80.55%, respectively.

IntaRNA was presented by Busch et al. [32], which
incorporated accessibility of binding sites of two RNA
molecules and a user-definable seed. Similar to RNAup
[53,58], IntaRNA searched the optimal interaction with
the minimum extended hybridization energy, which was
defined as the sum of hybridization energy and the energy
to make the binding sites accessible. The difference between
IntaRNA and RNAup is that MFE values for seed regions
are also included in the calculation of the minimum
extended hybridization energy in IntaRNA. Three factors
make IntaRNA outperform other simpler programs like
RNAhybrid: (i) finding the optimal structure with the
MFE; (ii) summing the energy for opening original struc-
tures of binding sites and (iii) involving the MFE of seed
regions. IntaRNA provides the binding sites of two RNA
molecules and the energy of the hybridization, rather than
the judgment of interacting or not.

From these models, we can see that different potential
binding regions are considered in different models. So,
which regions are suitable for sRNA target prediction?
To address this problem, we continued our efforts to collect
sRNA targets in peer-reviewed papers and constructed the
database sRNATarBase [5], which contains 138 sRNA–
target interactions and 252 non-interaction entries. Using
this database, we found that binding regions of 95.79%
of the targets (91 of 95 entries containing binding regions)
are located in the region �150 to 100 nt around the initial
start codon of the targets. We therefore proposed another
method termed sTarPicker to improve the performance of
sRNA target prediction [36].

The sTarPicker method was based on a two-step model
for hybridization between an sRNA and an mRNA target.
The model first selects stable duplexes after screening all
possible duplexes between the sRNA and the potential
mRNA target. Next, hybridization between the sRNA
and the target is extended to span the entire binding site.
Finally, quantitative predictions are produced with an
ensemble classifier generated using the Tclass system,
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originally developed for gene expression profile-based sam-
ple classification by our laboratory [50]. In determining the
hybridization energies of seed regions and binding regions,
both thermodynamic stability and site accessibility of the
sRNAs and targets were considered. The major difference
between the hybridization model in sTarPicker and the
one used in IntaRNA lies in the filtering of seed regions.
IntaRNA does not filter any seed regions and instead,
searches the optimal hybridization of two RNA molecules
with the minimum extended hybridization energy in the
whole length of two RNAs. sTarPicker first finds all possi-
ble seed regions, then removes the seed regions with high
hybridization energy. Here we assume that only stable seed
hybridization results in stable hybridization between two
RNA molecules, which was verified by the real sRNA-tar-
get mRNA interactions from sRNATarBase [5].

Compared to IntaRNA, sRNATarget and TargetRNA,
sTarPicker performed best in both performance of target
prediction and accuracy of the predicted binding sites on
17 non-redundant validated sRNA-target pairs [36].

Recently, Eggenhofer et al. developed a webserver
termed RNApredator specifically for prediction of sRNA
targets [35]. RNApredator predicts sRNA targets using
RNAplex [57]. To improve the prediction specificity, RNA-
predator also takes into account the accessibility of the
target. To enable fast computation, the accessibility is
pre-computed using RNAplfold [69,70]. During prediction,
the web server considers the regions�200 to +200 nt of both
50 and 30 UTR (default) as the potential binding regions and
top 100 predictions as the potential interactions.

Future thinking in developing bioinformatics models for

bacterial sRNAs and their targets

Here we briefly present an overview of prediction models
for bacterial sRNAs and their targets, and point out the
advantage and disadvantage of each class of models.
Although these models have provided much support for
experimental discovery of sRNAs and their targets, they
are not perfect. Here we want to emphasize three future
directions in developing bioinformatics models.

The first thing is to improve the existing prediction models.
Compared to methods for open reading frame identification,
the prediction accuracy of sRNAs is still very low. For exam-
ple, sTarPicker has the highest positive prediction value on
the independent test dataset [36]; however, a large number
of false positive samples were included in the prediction
results. Therefore, developing better models for sRNAs and
their targets is still necessary. From the perspective of statis-
tics, we firstly need more samples. At present, some databases,
such as sRNAMap [1] and Rfam [71] for sRNAs and sRNA-
TarBase [5] for sRNA targets, have been developed. These
databases provide a data source for model development.
The key point is to construct suitable features to describe
the bacterial sRNA gene and sRNA-target mRNA interac-
tion. To this end, before new features are explored, it might
be better to comprehensively integrate all features currently
available to describe sRNAs or sRNA-target mRNA interac-
tions. Then, different strategies for feature selection in
machine-learning based model construction can be applied
to search suitable features or their combinations.

The considerations mentioned above can also be applied
to the second direction, i.e., developing prediction models
for sRNA target proteins. To our knowledge, there is no
prediction model specifically for sRNA target proteins.
Although the general prediction model for RNA-protein
interaction can be applied here [72], we believe that models
based on the sRNA-protein interaction in bacteria will pro-
vide better support for the discovery of sRNA target pro-
teins. To this end, we have been collecting the validated
sRNA-protein interactions in the database sRNATarBase
[5]. However, the number of samples is so low that we
are not able to develop a reliable model yet.

The third direction involves developing comprehensive
bioinformatics pipelines for the discovery of sRNAs and
sRNA-target interactions using high throughput sequenc-
ing technology (HTS). With the application of HTS, a large
number of short reads will be generated. How to efficiently
manage these short reads and to find potential sRNAs has
become an important bioinformatics topic in HTS-based
sRNA discovery. For example, in their recent paper [73],
Pellin and his colleagues presented a bioinformatics pipe-
line for sRNA discovery in Mycobacterium tuberculosis

using RNA-seq and conservation analysis, and a list of
1948 candidate sRNAs was found. Currently, HTS has
been widely applied in molecular biology, resulting in the
discovery of sRNA transcripts [74–81], identification of
human miRNA-mRNA [82] or RNA-protein interactions
[83–85] and determination of mRNA secondary structure
[86–88]. However, HTS has not been applied to investigate
the interactions of sRNA-protein and sRNA-mRNA in
bacteria. We can predict that HTS will soon have a wide-
spread application in sRNA biology.
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[9] Massé E, Salvail H, Desnoyers G, Arguin M. Small RNAs controlling
iron metabolism. Curr Opin Microbiol 2007;10:140–5.
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