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Abstract

Accurate identification of protein-coding regions (exons) in DNA sequences has been a challenging task in bioin-
formatics. Particularly the coding regions have a 3-base periodicity, which forms the basis of all exon identifica-
tion methods. Many signal processing tools and techniques have been applied successfully for the identification 
task but still improvement in this direction is needed. In this paper, we have introduced a new promising 
model-independent time-frequency filtering technique based on S-transform for accurate identification of the 
coding regions. The S-transform is a powerful linear time-frequency representation useful for filtering in 
time-frequency domain. The potential of the proposed technique has been assessed through simulation study and 
the results obtained have been compared with the existing methods using standard datasets. The comparative 
study demonstrates that the proposed method outperforms its counterparts in identifying the coding regions. 
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Introduction

A major goal of genomic research is to understand the 
nature of the information and its role in determining 
the particular function encoded by the gene. A key 
step in achieving this goal is the identification of the 
gene locations and in deeper sense the protein-coding 
regions in the DNA strand. A DNA sequence is a long 
molecule that carries genetic information. It is com-
posed of four types of different nucleotides, namely 
adenine (A), cytosine (C), guanine (G) and thymine 
(T). However, only some particular segments of the 
DNA molecule named as genes carry the coding in-
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formation for protein synthesis. The complete ge-
nomes provide essential information for understand-
ing gene functions and evolution. The determination 
of patterns in DNA and protein sequences is also use-
ful for many important biological problems, such as 
identifying new genes, pathogenic islands and phy-
logenetic relationships among organisms. Hence ac-
curate prediction of genes has always been a chal-
lenging task for computational biologists especially in 
eukaryote genomes.  

The eukaryotic DNA is divided into genes and in-
tergenic spaces. Genes are further divided into exons 
and introns. The exons carry the code for the produc-
tion of proteins, hence they are called as pro-
tein-coding regions (1-3). It has been found that the 
bases in the protein-coding regions exhibit period-3 
property due to the codon bias involved in the transla-



Sahu and Panda / Protein-Coding Region Identification 

Genomics Proteomics Bioinformatics 2011 Apr; 9(1-2): 45-55 46 

tion process (4-7). This periodic behavior relates to 
the short term correlation in the coding regions. In 
addition, a long-range correlation (the so called 1/f 
spectrum) also presents in the genome sequence, 
which is considered as the background noise (8, 9). 
The presence of this noise makes the task of gene 
finding problem more complex. However, the 3-base 
periodicity (TBP) property has been used by many 
researchers as a good indicator of gene location. 
Rapid and accurate determination of the exon loca-
tions is important for genome sequence analysis. 
Computational approach is the fastest way to find ex-
ons in the genomic DNA sequences. Many techniques 
have been proposed and proved successfully in locat-
ing the protein-coding regions present inside the gene.  

Several model-dependent methods like hidden 
Markov model (10), neural network (11, 12) and pat-
tern recognition (13) have been successfully used to 
detect exons in genes. These models are supervised 
methods that are based on some prior information 
collected from the available databases. These methods 
are quite useful in the identification of coding regions, 
but not always. There may be a chance that the se-
quenced organism have coding regions that are not 
represented in the available databases. In addition, 
many model-independent methods have been pro-
posed to identify the coding regions in DNA se-
quences. Basically these studies are based on the Fou-
rier spectral content (4, 14, 15), spectral characteris-
tics (16) and correlation of structure of DNA se-
quences (8, 9). Chakravarthy et al (17) and Akhatar 
(18) have proposed a parametric method of spectrum 
estimation based on autoregressive modeling. These 
methods require defining a prior analyzing window, 
within which the spectrum of DNA sequence is to be 
computed. As a result, it directly affects the efficiency 
and computational complexity of the predictor.  

Hence there is a need for the development of alter-
native methods that reduce the window length de-
pendency and should be efficient. Recently, Vaid-
yanathan and Yoon (19, 20) have proposed to use 
digital filters to identify the coding regions. In addi-
tion, Tuqan and Rushdi (21) have suggested a multi-
rate DSP model for the same purpose. These 
model-independent methods do not require the prior 
window length and have shown to be effective in 
exon identification, but could not attain satisfactory 

accuracy level. Keeping these facts in mind, we have 
introduced a novel time-frequency filtering approach 
to this problem. This method is independent of the 
window length constraint and employs a time-band 
filter to extract the period-3 component in the DNA 
sequence and thereby identify the coding regions in it. 
It is also robust to the background noise present in 
DNA sequence. Case studies on genes from different 
organisms have demonstrated that this method can be 
an effective approach for exon prediction. 

Materials and Methods 

Data resources 

In this work we focused on the analysis of eukaryotic 
DNA sequences that have been widely studied in the 
context of coding region identification. For demon-
stration purpose, we have used the DNA sequence of 
gene F56F11.4a (GenBank No. AF099922) on chro-
mosome III of Caenorhabditis elegans. C. elegans is a 
free living nematode (roundworm), about 1 mm in 
length, which lives in temperate soil environment. It 
has been used as a benchmark problem for different 
gene detection techniques and known to have five 
distinct exons, relative to nucleotide position 7021 
according to the NCBI database. The relative posi-
tions of the coding regions are 928-1039, 2528-2857, 
4114-4377, 5465-5644 and 7265-7605. For the de-
tailed analysis, we have also used the HMR195 
benchmark dataset, which consists of 195 single gene 
sequences of human, mouse and rat (22). 

Numerical mapping of DNA sequence 

To apply suitable signal processing methods for the 
identification of protein-coding regions, the character 
string of the DNA sequence is converted to a suitable 
numerical sequence. This is achieved by assigning a 
numeral to each nucleotide that forms the DNA se-
quence. Hence, different techniques have been sug-
gested to achieve this particular conversion. The aim 
of each coding method is to enhance the hidden in-
formation for further analysis. One of the most widely 
used mappings is the Voss mapping (8), where the 
character string of DNA is converted to four binary 
indicator sequences for each base (A, T, C and G). It 
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assigns a numeral “1” when a particular symbol is 
found in the sequence, otherwise a “0”. Anastassiou 
(14) has proposed a complex number mapping by as-
signing a particular complex number to each base. 
Silverman and Linsker (23) have used a tetrahedron 
mapping, in which each nucleotide is assigned to one 
of the four corners of a regular tetrahedron. Chak-
ravarthy et al (17) have proposed a real number map-
ping of the DNA sequence. Zhang et al (24, 25) pre-
sented a Z-curve mapping, which is a 
three-dimensional curve representation for the DNA 
sequence. Recently, Nair et al (26, 27) have used an 
EIIP indicator sequence to map the character string of 
DNA to numeric form. The EIIP is defined as the av-
erage energy of delocalized electrons of the nucleo-
tide. Assigning the EIIP values to the nucleotides, a 
numerical sequence is obtained to represent the dis-
tribution of the free electrons’ energies along the DNA 
sequence. This has been successfully used to identify 
hot spots in proteins, for peptide design and also for 
identification of coding regions (26, 28). The EIIP 
sequence is a better choice for numerically represent-
ing DNA when compared to indicator sequences for 
the following reasons. First, it involves only a single 
sequence instead of four in the case of binary indica-
tor sequences, thereby reduces the computational ef-
fort. Second, it is biologically more meaningful as it 
represents a physical property when compared to the 
indicator values, which represent just the presence or 
absence of a nucleotide. Hence in this paper, we have 
also used the EIIP representation method of numerical 
mapping of DNA sequence. The DNA sequence can 
be converted to the numerical sequence by replacing 
each nucleotide with the corresponding EIIP value. 
The EIIP values for the nucleotides are given in Table 
1. For example, if x[n]=AATGCATCA, then using the 
values from Table 1, the corresponding EIIP numeri-
cal sequence is given as: x[n]=[0.1260 0.1260 0.1335 
0.0806 0.1340 0.1260 0.1335 0.1340 0.1260]. 

Table 1  The EIIP values of nucleotides 

Nucleotide EIIP value 

A 0.1260 

T 0.1335 

G 0.0806 

C 0.1340 

Spectral content measure method 

In this frequency domain method, the discrete Fourier 
transform (DFT) of the EIIP indicator sequence is 
employed to exploit the TBP (4, 14). Let U[k] repre-
sents the DFT of the corresponding EIIP numerical 
sequence and is given by:
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for k = 0, 1, …, N 1. Then the spectral content at kth 
instant is: 

 S [k] = |U [k]|2 (2) 
S[k] acts as a preliminary indicator of a coding re-

gion giving a peak at the N/3 frequency. This proce-
dure is used to detect the probable coding regions in 
the DNA sequence. Hence the coding regions are 
identified by evaluating S[N/3] over a window of N 
samples, then sliding the window by one or more 
samples and recalculating S[N/3]. This process is car-
ried out over the entire DNA sequence. The peaks in 
the spectra obtained by the sliding window DFT cor-
respond to the protein-coding regions. It is necessary 
that the window length N be sufficiently large (typical 
sizes are a few hundred to a few thousand), so that the 
periodicity effect dominates the background noise 
spectrum. This approach increases the computational 
complexity as it computes the spectrum within a 
window and is also constrained by the frequency 
resolution and spectral leakage effects of the win-
dowed data record. 

Digital filtering method 

The Fourier-based spectral estimation method of exon 
identification can be viewed as a digital filtering per-
spective (19). The period-3 behavior of the coding 
regions is extracted by filtering the DNA sequence 
through a band pass filter H(z) with pass band cen-
tered at frequency 2 /3. The EIIP indicator sequence 
x(n) of the DNA sequence is passed through the filter 
H(z) to obtain the output sequence y(n), which con-
tains the period-3 frequency. In the coding regions as 
it is expected to have period-3 component, a high en-
ergy particularly in these locations is produced. Thus 
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to enhance this feature, the power of the filtered se-
quence is computed as: 

 2( ) ( )Y n y n  (3) 

Hence the plot of Y(n) against “n” produces peaks in 
the coding regions and no peak in non-coding regions. 
The design and implementation of H(z) as an 
anti-notch filter and its modifications have been dis-
cussed in many papers (15, 20). An overview of the 
implementation is presented as follows: 

Consider a second-order all-pass filter 
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and a filter bank with two filters G(z) and H(z) de-
fined as: 
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Then G(z) is defined as: 
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where G(z) is a notch filter with a zero at frequency 
w0, when the radius R is less than and close to unity. 
Also the H(z) and G(z) are power complementary. 
Hence H(z) can be a good anti-notch filter defined as: 
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The DNA sequence can be viewed as a 
non-stationary signal, where the spectral components 
change along the sequence. Also it contains the back-
ground noise that comes due to the long-range corre-
lations among the bases on the DNA stretch. Under 
such situation, the conventional Fourier domain fil-
tering methods cannot extract properly the occurrence 
of period-3 component in the DNA sequence. Hence 
the joint time-frequency analysis (TFA) is needed for 
analyzing such spectral content in the sequence. 

The proposed TFA method 

TFA is of great interest when the signal models are 
unavailable. In such cases, the time or the frequency 
domain descriptions of a signal alone cannot provide 
comprehensive information for feature extraction and 
classification. Therefore, the time-frequency repre-

sentation (TFR) (29) has evolved as a powerful tech-
nique to visualize signals in both the time and fre-
quency domains simultaneously. Several techniques 
have been proposed for this purpose. Among them the 
short-time Fourier transform (STFT) (30) and the 
continuous wavelet transform (CWT) (31) are the 
most well known and widely used techniques. The 
major drawback in them is that STFT has a fixed 
resolution and CWT has a progressive resolution, but 
does not contain phase information (31). Recently in 
DSP literature, one efficient TFR tool, the S-transform 
(32, 33), has been proposed to possess superior 
time-frequency resolution as well as frequency detec-
tion capability. 

S-transform: a TFR 

S-transform is a TFA technique proposed by Stock-
well et al (32), combining both properties of STFT 
and CWT. It provides frequency-dependent resolution 
while maintaining a direct relationship with the Fou-
rier spectrum. The S-transform of a signal x(t) is de-
fined as: 

 2( , ) ( ) ( , ) j ftS f x t w t f e dt  (8) 

where the window function is a scalable Gaussian 
window: 
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and the width of the window varies inversely with 
frequency as: 

 1( )
f
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Combining Formula (9) and (10) gives 
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The advantage of S-transform over STFT is that the 
window width  is a function of f rather than a fixed 
one as in STFT and thereby provides multi-resolution 
analysis. In contrast to wavelet analysis, the 
S-transform wavelet has a slowly varying envelope 
(the Gaussian window), which localizes the time and 
an oscillatory exponential kernel that selects the fre-
quency being localized. It is the time localizing Gaus-
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sian that is translated while keeping the oscillatory 
exponential kernel stationary, which is different from 
the wavelet kernel. As the oscillatory exponential 
kernel is not translating, it localizes the real and the 
imaginary components of the spectrum independently, 
localizing the phase as well as amplitude spectrum. 
Thus it retains absolute phase of the signal, which is not 
provided by wavelet transform. Thus it better localizes 
the spectral content in the signal. 

S-transform-based filtering approach 

The standard Fourier-domain filtering techniques are 
constrained to stationary pass bands and reject bands 
that are fixed for the entire duration of the signal. 
These methods may be adequate for the stationary 
signals where the signal component of the data is 
time-independent and the noise is also 
time-independent. However, many signals are 
non-stationary in nature where the frequency response 
of the signal varies in time, or time-dependent noise 
exists. Hence there is a need for developing filters 
with time-varying pass bands and reject bands (34, 
35). One of the most practical solutions to this prob-
lem is the joint time-frequency filter. In 
time-frequency filtering, the time frequency spectrum 
of a signal is first estimated, and portions that are part 
of the noise are removed using band-limited filters in 
those regions having the corresponding signal. In 
Formula (8), the S-transform window satisfies the 
condition: 

 ( , ) 1w t f dt  (12) 

Therefore averaging the S( , f) over all values of t 
yields X(f), the Fourier transform of x(t): 

 ( , ) ( )S f d X f  (13) 

The original signal can be recovered by using the in-
verse Fourier transform of X(f): 

 
2( ) ( , ) j ftx t S f d e df  (14) 

Thus it provides a direct link between S-transform 
and Fourier transform. Due to the invertibility prop-
erty of S-transform, it can be suitably used for 
time-frequency filtering. Let the signal x(t) be a sum 

of main signal component d(t) and noise component 
n(t): 
 x(t) = d(t) + n(t) (15) 
Due to the linearity property of S-transform, it is 
written as: 

 ( , ) ( , ) ( , )S f D f N f  (16) 

where D and N are the S-transform of the main signal 
and the noise, respectively. Therefore the filtering 
function A( , f) is to be such that: 

 ( , ) ( , ) ( , )D f A f S f  (17) 

Using the inversion Formula (14), the denoised sig-
nal ( )x t  is recovered as: 

2( ) ( , ) j ftx t D f e dtdf 2( ) j ftX f e df  (18) 

Hence multiplying S( , f) with the filtering function 
A( , f) gives the S-transform of the denoised signal. In 
the present case, the period-3 signal in the genomic 
sequence is considered as the signal of interest and the 
rest is treated as noise. Hence the time-frequency fil-
tering technique is used as a potential candidate to 
extract the protein-coding regions in the DNA seg-
ment. 

Identification of protein-coding regions in 
DNA sequence using S-transform-based fil-
tering approach 

Nucleotides are assigned by the corresponding EIIP 
value as given in Table 1, which provides a numerical 
form of the DNA sequence. Then the spectrum of the 
DNA sequence under consideration is computed to 
observe the distribution of the energy of the frequency 
components throughout the sequence. In the spectro-
gram the bright regions correspond to the high energy 
areas relevant to the frequencies present. It has been 
observed that the period-3 frequency is the dominant 
frequency present in the coding regions of the DNA 
sequence along with some insignificant frequencies. 
For illustration purpose, the spectral distribution ob-
tained by the proposed method for the gene 
F56F11.4a of C. elegans chromosome III is shown in 
Figure 1. The distinct energy-concentrated areas 
(bright areas) corresponding to the period-3 frequency 
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Figure 1  Spectrogram of the DNA sequence of F56F11.4a. 
The high spectrum values corresponding to period-3 frequency 
relevant to the coding regions are indicated by the rectangular 
boxes in the time-frequency plane. 
 

in the time-frequency plane are indicated by the 
rectangular boxes. Then a specific band-limited 
time-frequency filter (mask) is designed to separate 
the period-3 frequency of interest.  

The complete step-by-step procedure of the pro-
posed S-transform-based filtering for identification of 
the coding regions is outlined in sequence: 

1. Convert the DNA sequence of interest into a 
numerical sequence using the EIIP values (Table 1). 

2. Compute the spectrum of the DNA sequence us-
ing the S-transform as defined in Formula (11). 

3. Design the band-limited filter (mask) in 

time-frequency domain, which selects the period-3 
frequency and activates during the specific regions in 
the time-frequency plane. 

4. Filter the DNA numerical sequence of interest by 
using the time-frequency filter. 

The peaks in the energy of the filtered output signal 
identify the locations of the protein-coding regions. If 
the output signal is denoted as y(n), then its energy is 
given as: 

 2( )( ) y nE n  (19) 

This energy is referred to as the energy sequence 
corresponding to TBP of the DNA sequence. Then the 
coding regions are predicted by the threshold of the 
energy sequence. The whole process of the proposed 
filtering approach for hot spot identification is pre-
sented in a flow graph in Figure 2. 

Evaluation 

To demonstrate the performance of the proposed 
method, the DNA sequence of the gene F56F11.4a of 
C. elegans chromosome III is analyzed. In this paper 
the existing model-independent methods, such as 
conventional sliding window DFT and the IIR anti- 
notch filter, are also simulated, and the results ob-
tained are compared with those obtained by the pro-
posed method. The simulation results of this particular 
gene are presented in Figure 3 for comparison purpose.  

 

Figure 2  The flow graph of S-transform-based filtering approach for protein-coding region identification. 
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Figure 3  Comparison of the power spectra of the gene 
F56F11.4a obtained by DFT (A), anti-notch filter (B) and 
S-transform filter (C).  
 

In the DFT spectrum analysis, a rectangular window 
of length 351 bp and step size of 1 is used. The peaks 
in the spectrum correspond to regions where TBP is 
present. Hence the coding regions are identified by 
putting a threshold to the spectrum or filtered energy 

sequence. The regions having energy above the 
threshold are considered as the protein-coding regions. 
Since the non-coding regions do not have a period-3 
property, the energy in that region is low as demon-
strated in Figure 3. It is interesting to note that the 
first coding region of 112 bp along positions 
929-1039 has a weak TBP and the remaining four 
coding regions present high TBP. The spectral content 
method and anti-notch filter fail to detect properly 
that region, but the S-transform filtering approach 
catches up that region better than those two methods. 
  In order to have a comparison of the efficiency of 
these methods, the threshold percentiles from 1 to 99 
are used on the measures of the individual methods 
for the identification of probable coding regions. 
Hence the statistical parameters, such as sensitivity, 
specificity and average accuracy, are calculated under 
the same conditions at different threshold values. The 
best result achieved in each method with the corre-
sponding threshold value is listed in Table 2. The 
proposed method provides the best performance at a 
threshold of 85% with sensitivity 0.88, specificity 
0.98 and average accuracy of 0.96. A comparative 
analysis of the average accuracy against the threshold 
values is shown in Figure 4. Furthermore, a com-
parison of the exon locations obtained from these 
three methods with those reported in NCBI database 
is listed in Table 3. It shows that the proposed method 
provides better discrimination between the exons and 
the introns compared to those offered by others. Again 
to assess the performance of the three methods, the 
receiver operating characteristic (ROC) curves are 
obtained. It is a representation of the prediction accu-
racy of separation of exons and introns in the gene. 
The ROC curve relates the true positive rate as a 
function of false positive rate for varying threshold 
values. The ROC curves for all the three methods are 
shown in Figure 5. The closer the ROC curve to a 
diagonal, the lesser effective the method at discrimi-  

Table 2  Summary of the best performance (accuracy) of identification of coding regions in F56F11.4a using different methods 

Method Sensitivity Specificity Average accuracy Threshold (%) 

S-transform filter 0.88 0.98 0.96 85 

DFT-based approach 0.82 0.86 0.85 81 

Anti-notch filter 0.81 0.82 0.82 82 
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nating between exon and intron. The steeper the curve 
towards the vertical axis and then across, the better 
the method. A more precise way of evaluating the 
performance is to calculate the area under the ROC 
curve. The closer the area to 0.5, the poorer the 
method, and the closer to 1.0, the better the method. 
The area under the ROC curve for the S-transform 
filtering method is found to be 0.9288, and the same 
for the DFT and anti-notch filter methods are 0.8615 
and 0.8369, respectively. Hence the proposed 
S-transform filtering method of exon prediction out-
performs other methods as it offers the highest area 
under the curve. 

We have also analyzed several DNA sequences 
from the benchmark dataset HMR195. The gene 
AF009614 has taken for demonstration and the power 
spectrum obtained from all the three methods is 
shown in Figure 6. The gene AF009614 has two exon 
regions at positions 1267-1639 and 3888-4513 in the 
sequence. From this figure, it is clearly elucidated that 
the proposed S-transform-based filtering method of-
fers improved performance compared to its counter-
parts. We have also carried a classification experiment 
to compare the efficiency of the proposed method. 
From the HMR195 dataset, 50 sequences whose av-
erage exon length is greater than 200 bases are chosen 
for the experiment. Totally 222 coding sequences and 
237 non-coding sequences are used in the study. The 
threshold percentile of 1-99 is used to discriminate the 
coding regions from the non-coding regions. Accord-
ingly, the ROC curves by the three methods are 
shown in Figure 7. The areas under the ROC curve 
are also calculated. They are 0.8602, 0.8316 and 
0.8094 for S-transform, DFT and anti-notch filter 
methods, respectively. Hence the S-transform based 

filtering method presents a better performance on the 
classification, thereby the superiority of the proposed 
method is assessed. 

 

Figure 4  Average accuracy vs. threshold values of gene 
F56F11.4a. 

 

Figure 5  ROC curves obtained by DFT, anti-notch filter and 
S-transform filter from the gene F56F11.4a.

Table 3  Position comparison of the exons of F56F11.4a by different methods 

Position in GenBank (NCBI) DFT-based approach Anti-notch filtering approach S-transform filtering approach 

929-1039 (110) 936-1169 (233) 942-1164 (222) 947-1037 (63) 

2528-2857 (330) 2573-3005 (432) 2538-2956 (418) 2539-2908 (369) 

4114-4377 (264) 4073-4432 (359) 4132-4462 (330) 4076-4409 (333) 

5465-5644 (180) 5467-5658 (191) 5497-5672 (175) 5454-5644 (190) 

7255-7605 (351) 7396-7806 (410) 7406-7728 (322) 7305-7597 (292) 

Note: The length of the exons is shown in the braces. 
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Figure 6  Comparison of the power spectra of the gene 
AF0099614 obtained by DFT (A), anti-notch filter (B) and 
S-transform filter (C). 

Discussion
The existing exon identification methods employ a 
variety of biological information and coding tech-
niques in association with many computational meth-
ods to predict the exon regions in DNA. Still the TBP 
pattern has been used as a basis to identify the coding 
regions. In this paper, we have introduced a new 
time-frequency filtering scheme based on the TBP for 
the identification of protein-coding regions. The 
S-transform method provides a pictorial view of the 

 

Figure 7  ROC curves obtained by three different methods 
(from 50 sequences of HRM195 dataset). 
 
energy distribution of the frequencies with time, 
which helps in the analysis of the spectral varying 
signal. It gives a multi-resolution view of the signal so 
that distinct patches of periodic signal can be ana-
lyzed easily. It is a model-independent method that 
does not require any training sample to predict and is 
also independent of the window length constraint for 
proper computation of the spectra of coding regions. 
The multi-resolution analysis of the signal enables the 
proposed method to be effective for both small and 
large coding regions. Another aspect of the study is 
that the EIIP can be used as an efficient coding 
scheme for DNA sequence analysis. The proposed 
method is found to be robust against the background 
noise, which occurs due to long-range correlation of 
bases in the DNA sequence. Thus the coding regions 
can be better discriminated from the non-coding re-
gions and thereby the accuracy of identification in-
creases considerably. However, although the proposed 
method achieves better accuracy in the identification 
of the coding regions, it necessitates more computa-
tional effort. Another limitation of the S-transform 
method is that it provides low frequency resolution at 
higher frequencies and low time resolution at lower 
frequencies. This basically occurs due to the scaling 
nature of the Gaussian window during spectrum 
computation, which may affect the time-frequency 
filtering operation and also the accuracy. Hence im-
provement of the resolution of the spectrum can fur-
ther improve the prediction accuracy. 
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Conclusion

In this paper, an efficient time-frequency filtering ap-
proach is suggested for the identification of coding 
regions in the DNA sequence. The proposed method 
employs a multi-resolution approach to analyze both 
the small and large coding regions, and it does not 
depend on a prior window length as in case of Fourier 
methods. The performance of the proposed method is 
compared with the existing methods and the results 
show its superiority in identification of the coding 
regions. Thus it can be effectively used in DNA se-
quence analysis, such as promoter region identifica-
tion and splice site detection. 
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