
Article

Comparative Analysis of Protein-Protein Interactions in Cancer-
Associated Genes

Purnima Guda1, Sridar V. Chittur2, and Chittibabu Guda1*
1GenNYsis Center for Excellence in Cancer Genomics and Department of Epidemiology & Biostatistics, State
University of New York at Albany, Rensselaer, NY 12144-3456, USA; 2Center for Functional Genomics and
Department of Biomedical Sciences, State University of New York at Albany, Rensselaer, NY 12144-3456,
USA.

*Corresponding author. E-mail: cguda@albany.edu
DOI: 10.1016/S1672-0229(08)60030-3

Protein-protein interactions (PPIs) have been widely studied to understand the bi-
ological processes or molecular functions associated with different disease systems
like cancer. While focused studies on individual cancers have generated valuable in-
formation, global and comparative analysis of datasets from different cancer types
has not been done. In this work, we carried out bioinformatic analysis of PPIs
corresponding to differentially expressed genes from microarrays of various tumor
tissues (belonging to bladder, colon, kidney and thyroid cancers) and compared
their associated biological processes and molecular functions (based on Gene On-
tology terms). We identif ied a set of processes or functions that are common to all
these cancers, as well as those that are specif ic to only one or partial cancer types.
Similarly, protein interaction networks in nucleic acid metabolism were compared
to identify the common/specif ic clusters of proteins across different cancer types.
Our results provide a basis for further experimental investigations to study protein
interaction networks associated with cancer. The methodology developed in this
work can also be applied to study similar disease systems.
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Introduction

The vast majority of proteins must interact with other
proteins to perform their function. The network of
protein-protein interactions (PPIs), referred to as the
interactome, plays a vital role in the initiation and
progression of many disease pathways. Hence, un-
derstanding protein interaction networks is crucial
for identifying the key functional modulators of tu-
mor progression and metastasis in cancer. Computa-
tional approaches using PPI data have been widely
employed for the identification of important protein
networks involved in tumors (1 ) and cancer metas-
tasis (2 ). For instance, estrogen-regulated networks
in human breast cancer cells were recently identified
(3 ). Similarly, an earlier study on the interactome-
transcriptome analysis has revealed the high central-
ity of differentially expressed genes in lung cancer tis-
sues (4 ). Studies were also performed on integrated
analysis of the cancer transcriptome using microarray

data coupled with computational approaches (5 ). A
recent study introduced a systems biology approach
to improve the prognosis prediction of breast, lung
and ovarian cancer patients (6 ), where the authors
analyzed molecular interactions that are dysregulated
in specific tumor phenotypes using a large set of mi-
croarray expression data. Likewise, protein interac-
tion networks of brain metastasis were analyzed by
developing and using a bioinformatics program called
PIANA (7 ). These studies show the importance of
computational methods in deducing and understand-
ing protein interaction networks from datasets associ-
ated with cancer gene expression.

Analysis of microarray expression data to infer
protein interaction networks has been the subject of
extensive research aimed at gaining insight into the
initiation and progression of various diseases like can-
cer. Several studies have been carried out on similar
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lines using gene expression data from tumor tissues of
ovarian cancer (8 ), prostate cancer (9 ), etc. Never-
theless, these studies were primarily focused on cor-
relating gene expression data with PPIs occurring in
a specific type of cancer. While these studies provide
valuable information on the significance of a set of
PPIs in a particular type of cancer, comparing and
contrasting these interactions across various cancers
will elucidate comprehensive knowledge on the nature
of these interactions.

In the current study, we carried out global
computational analysis of protein interactions in
cancer-associated genes, using microarray expression
datasets from normal and tumor tissues of four dis-
tinct cancer types, including bladder, colon, kidney
and thyroid cancers. To the best of our knowledge,
such kind of global computational analysis to com-
pare PPIs across multiple cancer types has not been
conducted before. The goals of this study are two-
fold: firstly, to identify and characterize PPIs that
are common to all these cancers as well as those that
are specific to a particular cancer type, and secondly,
to infer the functional significance of PPIs by creat-
ing protein interaction networks using Gene Ontology
(GO) annotations.

Results and Discussion

We implemented a top-down approach to carry out
global analysis of the PPIs that are potentially in-
volved in the initiation and progression of cancer. Fig-
ure 1 depicts the workflow of our methodology. We
searched the GEO database (Gene Expression Om-
nibus) to collect datasets from gene expression stud-
ies where a tumor tissue (belonging to bladder, colon,
kidney or thyroid cancers) was compared against a
healthy tissue reference (see Materials and Methods
for more details). To maintain consistency, the data
for all cancer types analyzed in this study were col-
lected from experiments that used only Affymetrix
HG-U133 Plus 2.0 GeneChip. Due to a paucity of

tumor-grade-specific datasets on this new Affymetrix
GeneChip platform for all cancer types, we restricted
our analysis to the baseline or essential PPIs in
different cancer tumors (irrespective of the tumor
grade) compared with normal tissues.

As a result, we identified a total of 6,758 unique
proteins in the four cancer types, corresponding to
the genes that are differentially expressed by at least
two folds. Differentially expressed genes were first
mapped to corresponding proteins and then to pro-
teins involved in known PPIs. About 54% (3,656) of
these proteins were mapped to 23,619 unique PPIs
and were used for further analysis in this study.
Mapped PPIs for each cancer were annotated us-
ing GO terms that describe their biological processes
(pathways) and molecular functions. We compared
PPIs from different cancer types using the frequency
of common GO terms between two partner proteins in
an interaction. The rationale is that the common GO
terms of two partner proteins in an interaction denote
the common biological process and/or molecular func-
tion associated with that interaction. Hence, based on
the most frequent common GO terms in the PPIs of
a particular cancer type, the nature of biological pro-
cesses and/or functions associated with that cancer
can be inferred. However, the incomplete and unbal-
anced nature of the available PPI datasets resulted in
unbalanced datasets of mapped PPIs across the four
cancers used in this study (Table 1). To make a fair
comparison of GO term frequencies, we normalized
the raw frequencies against the number of PPIs, show-
ing at least one common GO term under a given GO
category in a given cancer type. Accordingly, the top
20 most frequent common GO terms were collected
from each cancer type and then were combined to ob-
tain 30 unique GO terms from all these cancers, under
the “biological process” and the “molecular function”
categories, respectively. These GO terms were then
used for comparative analysis of biological processes
and molecular functions associated with the PPIs of
different cancer types.

Table 1 Statistics on the size of datasets across four different cancer types

Cancer Total proteins Unique proteins with Unique proteins Unique PPIs*

mapped from DEGs* known interactions having PPIs*

Bladder 3,704 3,008 2,081 15,522

Colon 3,515 2,922 1,944 13,099

Kidney 1,257 1,034 728 4,978

Thyroid 1,380 1,124 715 4,599

*DEGs, differentially expressed genes; PPIs, protein-protein interactions.
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Figure 1 Flow chart showing the methodology used in this study.

Comparative analysis of biological pro-

cesses associated with cancer PPIs

The most frequent biological processes associated
with differentially expressed genes in the four can-
cers are listed in Table 2. As shown in Figure 2A,
there are 14 common regulatory processes found in
the differentially expressed genes of all these cancers.
We further analyzed the types of PPIs associated with
only one or two types of cancers (Figure 2B). Note
that a GO biological process observed in only a partic-
ular cancer does not necessarily mean that such pro-
cess is entirely lacking in other cancer types, rather
it is not found in the list of experimentally known
PPI datasets, which are incomplete and unbalanced
for various types of cancers. Our methodology found
a number of interesting biological processes that are
specific to a particular cancer type. For instance,

cell-cell signaling (CCS) and macromolecule catabolic
process (MCP) were observed only in bladder cancer,
which are linked to signaling proteins like hormones
and glycoproteins that are mostly oncogenes (10 ).
The TEK receptor tyrosine kinase, which is associated
with angiogenesis (a primary process that establishes
blood supply for the tumors), is one of the proteins in
cell signaling process (11 ). Inhibin is another signal-
ing protein whose levels have been shown to reflect
the size of cell tumors (12 ). However, experimen-
tal evidence suggesting a direct link between these
proteins and bladder cancer is not available. Protein
interactions associated with blood coagulation (BC)
and hemostasis (HE) were observed only in thyroid
cancer. Literature evidence shows that disturbance of
hemostasis is a common phenomenon in patients with
thyroid disease, usually with hyperthyroidism (13 ).
In these studies, a hyper coagulability state has been
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Table 2 Gene Ontology terms (biological process) of differentially expressed genes

Processes common to all of the four cancer types

ASM anatomical structure morphogenesis

BMP biopolymer metabolic process

CD cell differentiation

CL cellular localization

CMM cellular macromolecule metabolic process

NNN nucleobase, nucleoside, nucleotide and nucleic acid metabolic process

NRBP negative regulation of biological process

OD organ development

OOB organelle organization and biogenesis

PP phosphorus metabolic process

PRB positive regulation of biological process

RCM regulation of cellular metabolic process

SD system development

ST signal transduction

Processes found only in specific cancers

BC blood coagulation thyroid

CBP cellular biosynthetic process colon, thyroid

CCS cell-cell signaling bladder

CP cell cycle process bladder, kidney, thyroid

GPM generation of precursor metabolites and energy colon

HE hemostasis thyroid

HOP homeostatic process colon, kidney

MCP macromolecule catabolic process bladder

MOB membrane organization and biogenesis kidney

PMP protein metabolic process colon, thyroid

PT protein transport colon

RMP regulation of membrane potential kidney

RST regulation of signal transduction bladder, kidney

RW response to wounding bladder, thyroid

SEM symbiosis, encompassing mutualism through parasitism colon

VMT vesicle-mediated transport bladder, kidney

reported in patients with thyroid cancer as a result of
up-regulation of thrombin, protein S alpha and coagu-
lation factor X. Similarly, PPIs involved in membrane
organization and biogenesis (MOB) and regulation of
membrane potential (RMP) were observed only in
kidney cancer. Proteins associated with these pro-
cesses regulate ionic homeostasis, suggesting the im-
portance of homeostasis in renal cell carcinoma (14 ).
Moreover, most of these interactions are among mem-
brane proteins that are vital for membrane transport
to maintain homeostasis (chloride channels, Na+/H+

exchanger, ferritin, the iron storing protein, Thy-1
membrane glycoprotein, etc).

Lastly, PPIs associated with the generation of pre-
cursor metabolites and energy (GPM), symbiosis en-

compassing mutualism through parasitism (SEM) and
protein transport (PT) were observed only in colon
cancer. Proteins associated with the GPM process
are mostly mitochondrial respiratory enzymes and mi-
tochondrial outer membrane proteins. It is reported
that a quantitative mitochondrial change occurs in
colon carcinoma patients; in particular, the ratio be-
tween outer membrane enzyme activity and respira-
tory enzyme activity may be altered (15 , 16 ). An-
other process that is regulated only in colon cancer is
SEM. This is not surprising because the role of bacte-
ria in the development of colorectal tumors was well
documented (17 ). The involvement of colonic bacte-
ria expressing enzymes in the metabolism of procar-
cinogens and tumor promoters suggests that changes
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Figure 2 Comparison of the frequency distribution of GO terms describing the common biological processes in the

PPIs of different cancers including bladder (BLAD), colon (COL), kidney (KID) and thyroid (THY) cancers. A.

Histogram showing the most frequent processes in at least three types of cancers; processes found only in three types

of cancer are marked with asterisk. B. Histogram showing the most frequent processes in only one or two types of

cancers.

in the colonic bacterial population would influence
cancer risk by altering the activity of these enzymes
(18 ). Major proteins involved in the SEM process are
ubiquitin protein ligase and HLA class histocompati-
bility antigen. Proteins associated with the PT pro-
cess are chromatin modifying protein, SH3 and PX
domain containing protein (sorting nexin-9), which
are involved in intracellular trafficking. The chro-
matin remodeling enzymes with their role in cancer
and dysplastic syndromes were previously reported
(19 ). Studies on sorting of nexin-9 and EG-1 proteins
that are significantly elevated in colorectal, breast and
prostate cancer revealed the possible role of nexin-9
in signaling pathway (20 ).

Other processes regulated in multiple cancers in-
clude regulation of signal transduction (RST) and
vesicle-mediated transport (VMT) in bladder and kid-

ney cancers, homeostatic process (HOP) in colon and
kidney cancers, regulation of protein metabolic pro-
cess (PMP) and cellular biosynthetic process (CBP)
in colon and thyroid cancers, and response to wound-
ing (RW) in bladder and thyroid cancers. PPIs as-
sociated with the RW process were observed among
proteins such as thrombin, serine proteinase inhibitor,
prostaglandin endoperoxidase synthase (aka COX-
2, cyclooxygenase-2), which are all responsible for
inducing tumor growth, metastasis and angiogene-
sis (21 , 22 ). Nevertheless, we were unable to find
literature-based explanations for each and every ob-
servation in our study, yet the aforementioned exper-
imental evidence strongly suggests that the method-
ology used in this study is able to identify the true
biological processes involved in the PPIs of cancer-
associated genes.
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Comparative analysis of molecular func-

tions associated with cancer PPIs

We also carried out similar analysis of GO terms that
describe the common “molecular functions” of PPIs
associated with different cancers. We collected the
top 20 most frequent GO terms from the PPIs of each
of the four cancers and then combined them to ob-
tain 30 unique GO terms describing their molecular
functions. Out of the 30 terms, 12 ones are common
to all these cancers (Figure 3A), including functions
related to the binding of protein, ion, carbohydrate
and nucleic acid, as well as to the catalytic activity
(listed in Table 3). This result clearly indicates that
binding and catalytic activities are the most common
functions associated with all types of cancers. Mean-

while, some functions were found in the PPIs of only
three cancer types. For instance, two functions, hy-
drolase activity acting on ester bonds (HAE) and pro-
tein binding, bridging (PBB), were regulated in all
these cancers except in kidney cancer; PPIs associated
with alpha-type channel activity (ATC), hydrolase ac-
tivity acting on acid anhydrides (HAA) and identical
protein binding (IPB) were expressed in all these can-
cers except in thyroid cancer; while protein domain
specific binding (PDSB) function was not found in
the PPIs of bladder cancer.

Similar to the biological processes, we have iden-
tified several molecular functions that are specifically
associated with a particular type of cancer (Figure
3B). Proteins regulated only in bladder cancer include
kinases and synthetases that belong to the GO cate-

Figure 3 Comparison of the frequency distribution of GO terms describing the common molecular functions in the

PPIs of different cancers including bladder (BLAD), colon (COL), kidney (KID) and thyroid (THY) cancers. A.

Histogram showing the most frequent functions in at least three types of cancers; functions found only in three types

of cancer are marked with asterisk. B. Histogram showing the most frequent functions in only one or two types of

cancers.
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Table 3 Gene Ontology terms (molecular function) of differentially expressed genes

Functions common to all of the four cancer types

CB cation binding

CPB cytoskeletal protein binding

CTA cation transport activity

DNAB DNA binding

EB enzyme binding

MIB metal ion binding

PA peptidase activity

PDA protein dimerization activity

PNB purine nucleotide binding

PSB polysaccharide binding

RB receptor binding

TRA transmembrane receptor activity

Functions found only in specific cancers

AB anion binding thyroid

ATC alpha-type channel activity bladder, colon, kidney

CEB coenzyme binding colon

CNB cyclic nucleotide binding kidney

CYB cytokine binding kidney

HAA hydrolase activity, acting on acid anhydrides bladder, colon, kidney

HAE hydrolase activity, acting on ester bonds bladder, colon, thyroid

IPB identical protein binding bladder, colon, kidney

PBB protein binding, bridging bladder, colon, thyroid

PDSB protein domain specific binding colon, kidney, thyroid

PIA protease inhibitor activity thyroid

PKRA protein kinase regulator activity thyroid

PLB phospholipids binding kidney

PRA peptide receptor activity bladder, kidney

RNAB RNA binding bladder, colon

TANB translation factor activity, nucleic acid binding thyroid

TATP transferase activity, transferring phosphorus-containing groups bladder

TFB transcription factor binding thyroid

gory of transferase activity, transferring phosphorus
containing groups (TATP). There is concrete evidence
on the role of these enzymes in tumorigenesis and
metastasis (23 , 24 ). Likewise, cyclic nucleotide bind-
ing (CNB), cytokine binding (CYB) and phospholipid
binding (PLB) functions are involved only in the PPIs
observed from renal cell carcinoma. Proteins reg-
ulated in this cancer include chemokine (a type of
cytokine) receptors and contactin-1 protein (a phos-
pholipid binding protein). A relationship between cy-
tokine binding and renal cancer cells was reported in
a previous study (25 ), and the role of contactin-1 was
found to be essential in tumor invasion and metasta-
sis (26 ). PPIs involved in coenzyme binding (CEB)
function were regulated only in colon cancer. Pro-

teins with this function are mostly mitochondrial, and
the relationship between mitochondrial enzymes and
colon cancer was previously explained in the biologi-
cal process section (15 ). Molecular functions includ-
ing protease inhibitor activity (PIA), anion binding
(AB), transcription factor binding (TFB), translation
factor activity, nucleic acid binding (TANB) and pro-
tein kinase regulatory activity (PKRA) were found
to regulate only in the PPIs of thyroid cancer. Pro-
teins associated with these functions include cathep-
sin, runt-related transcription factor, protein kinase,
cycline-dependent kinase inhibitor, etc. The regula-
tion of these proteins and their role in tumorigenesis
was well documented (27–29 ).

We also observed some molecular functions that
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are seen in only two types of cancers. For in-
stance, peptide receptor activity (PRA) was found
only in bladder and kidney cancers. Proteins in-
volved in these interactions include signaling recep-
tors like G-protein coupled receptor, interleukin-8 re-
ceptor, chemokine and bradykinin receptors. Expres-
sion and regulation of these proteins was reported in
bladder cancer (30 , 31 ).

Analysis of protein interaction networks

in nucleic acid metabolism

To demonstrate the effectiveness of this method in
identifying networks of genes that have different reg-
ulatory roles in different cellular processes associated
with cancer, we chose the biological process NNN
(nucleobase, nucleoside, nucleotide and nucleic acid
metabolism) for analysis, which is highly up-regulated
in all the four cancer types used in this study. We
created protein interaction networks for each cancer
separately, using PPIs that are associated with the
NNN process. These networks were compared against
each other to identify the similarities and differences
among them. As shown in Figure 4, we found that
some networks are universal to all these cancers (Fig-
ure 4A), while some are found only in part of these
cancers (Figure 4B) or only in a specific type of can-
cer such as bladder cancer (Figure 4C) or colon cancer
(Figure 4D). The observations are elucidated as fol-
lows.

Oncogenic activation of transcription factors is a
key event in the establishment and progression of hu-
man cancers. Most of the members of the networks
in Figure 4 are either transcription factors or their
activators/receptors. Figure 4A shows a network of
transcription factor activating proteins that are com-
mon to all of the four cancer types. The activity of
these proteins was shown to increase in multiple hu-
man tumor types, suggesting their pivotal role in tu-
morigenesis (32 ). These activator proteins were rec-
ognized as molecular targets for many antioxidant and
anti-inflammatory chemopreventive compounds. For
example, the transcription factor activation protein 1
(JUN) is associated with progression and recurrence
of various types of cancers (33 ), and several nuclear
receptors (NR1P1, NCOA2, NR4A1) play a pivotal
role in controlling the growth and differentiation in
many cell types. These proteins are also known to in-
hibit or enhance transcription by recruiting an array
of co-activator or co-repressor proteins to the tran-
scription complex (34 ). Transcription factors are gen-
erally not suitable as drug targets except the nuclear
receptors, which are considered as outstanding tar-
gets for developing cancer therapeutics and drug dis-
covery (35 ). Other proteins in this network include
hypoxia-inducible factor 1 alpha (HIF1A), which, in
association with other proteins, may be involved in
angiogenesis and tumor growth (36 ).

Figure 4B shows the proteins containing WW do-
main (WWTR1) or homeobox domain (NKX2.1) that

Figure 4 Protein interaction networks of nucleic acid pathway. A. NFYA, nuclear transcription factor Y subunit

alpha; HIF1A, hypoxia inducible factor 1 alpha; NRIP1, nuclear receptor interacting protein 1; JUN, transcription

factor activator protein 1; NCOA2, nuclear receptor co-activator 2; NR4A1, nuclear receptor subfamily 4 group A

member 1; ATF4, activating transcription factor 4; C/ATF4, cyclic AMP-dependent transcription factor ATF-4.

B. WWTR1 (TAZ), WW domain-containing transcription regulator protein; NKX2.1, homeobox protein Nkx-2.1.

C. Rxra, retinoic acid receptor RXR-alpha; crebbp, CREB binding protein; Thra, thyroid hormone receptor alpha.

D. NDK, nucleoside diphosphate kinase; Nm23, nucleoside diphosphate kinase, mitochondrial (precursor).
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are specific to both colon and bladder cancers.
Though their expression and involvement are not well
studied in bladder and colon cancers, their critical
role was reported in breast cancer (37 ) (not included
in this study due to constraints on HG-U133 plus
2 GeneChip data availability). The network that is
specific to bladder cancer (Figure 4C) contains impor-
tant receptor proteins, whose role as biomarkers was
well studied for developing therapeutic drugs in blad-
der cancer prevention (38 , 39 ). The network in Figure
4D was found only in colon cancer, which contains two
nucleoside diphosphate kinases NDK and Nm23. Out
of them, the mitochondrial precursor protein (Nm23)
was well studied as a metastasis-associated gene in
colon cancer (40 ).

We also looked into the subcellular localization of
the proteins involved in these networks. The result
shows that almost all of these proteins are localized in
the nucleus except those in Figure 4D, where Nm23
is localized to mitochondria and the localization of
NDK is unknown. The nuclear localization of these
proteins is expected owing to their role in the reg-
ulation of transcription. In addition, comparison of
PPI networks across four cancers and identification of
experimentally known protein clusters that are com-
mon or specific to different cancer types have demon-
strated the efficacy of our method in studying similar
interaction networks in other disease systems.

Conclusion

We performed bioinformatic analysis of differentially
expressed genes obtained from microarray studies of
various tumor tissues. Comparative analysis of PPIs
from different cancer types revealed a number of com-
mon functions or processes across all these cancers,
as well as those that are specific to partial cancers or
only to a particular cancer type. The function of a
protein in a system (such as a tumor) is better under-
stood by studying the function(s) of its interacting
proteins. The methodology used in this study de-
rives the common functions of protein pairs in PPIs
from different tumor tissues and uses this formation
as the basis for cross comparison of similarities and
differences among various cancer types. Comparison
of protein interaction networks revealed the group of
genes that are regulated uniformly across all these
cancer types as well as those regulated only in a
specific cancer, indicating their importance in that
particular cancer. We have provided literature-based

evidence for many observations in this study, yet such
evidence is not available to support every observation.
We believe that the similarities and differences ob-
served in the biological processes and molecular func-
tions of PPIs from various cancer types will provide
the basis for focused experimental investigations in
cancer therapeutics and drug discovery studies.

Materials and Methods

Cancer gene expression data

The GEO database (41 ), a central repository for
differential gene expression data, was used in this
study. This database offers an extensive collection
of gene expression data on cancer and compares vari-
ous types and subgroups. We selected only those gene
expression studies where a tumor tissue was compared
against a healthy tissue reference. The initial datasets
were derived for six cancer types including blad-
der (GSE7476), colon (GSE4107), kidney (GSE7023),
thyroid (GSE3678), breast (GSE6883) and prostate
(GSE3325) cancers. To maintain consistency, data
for all cancer types in this study were collected from
experiments that used only Affymetrix HG-U133 Plus
2.0 GeneChip. This is a newer chip from Affymetrix
that covers about 54,000 human genes, but the trade-
off is that this restriction limits the number of avail-
able datasets on a specific tumor grade for a specific
cancer. Since the goal of our study is to carry out
comparison of baseline PPIs in different cancer types,
it requires robust datasets for each cancer type. To
obtain datasets of reasonable size, we didn’t take the
tumor grade into account; hence heterogeneity some-
what exists in the grade of the tumor tissue sam-
ples used in this study. In brief, bladder, kidney
and prostate datasets were obtained from low, high
or metastatic (invasive) tumors, whereas breast, colon
and thyroid samples originated mostly from low grade
or early onset tumors. Under this GeneChip, breast
cancer and prostate cancer were found to have only 34
and 139 differentially expressed genes, respectively;
hence these two cancer types were eliminated from
further analysis. More details on the grade and tu-
mor type used for each cancer are provided in Table
S1 (see Supporting Online Material).

Datasets in each series were analyzed by Gene-
Spring software (v7.3.1; Agilent) using GCRMA nor-
malization and with the cross-gene error model acti-
vated. In each case, samples were grouped as nor-
mal or diseased, and a parametric t-test was per-
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formed to obtain genes with statistically significant
differences. The p-value cutoff was set at 0.05 and a
Benjamin Hochberg False Discovery Rate correction
was included. These restrictions would allow about
5% of the tested genes on the GeneChip (total 54,675)
to qualify by random chance. This gene list was fur-
ther filtered to obtain genes that showed at least a
two-fold differential expression between the normal
and diseased states, which generated between 1,300
to 3,700 differentially expressed genes for the four
cancer datasets (Table 1). Protein sequences corre-
sponding to these genes were obtained from GenBank
and UniProt databases.

Protein-protein interaction data

We created a comprehensive, non-redundant dataset
of human interacting protein pairs (PPIs) by com-
bining experimentally derived datasets from five
major protein interaction databases, including DIP
(Database of Interacting Proteins; http://dip.doe-
mbi.ucla.edu), IntAct (http://www.ebi.ac.uk/intact),
BIND (Biomolecular Interaction Network Database;
http://www.bind.ca), HPRD (Human Protein Ref-
erence Database; http://www.hprd.org) and MINT
(Molecular Interaction Database; http://mint.bio.
uniroma2.it/mint). Protein sequences in each of these
databases are fairly overlapping, but are indexed by
different identifiers such as SwissProt/UniProt iden-
tifier, GenBank protein identifier, etc, making it
difficult to identify redundant sequences. To remove
redundancy, we first created datasets of unique se-
quences (based on full-length protein sequence string
comparison using Perl scripts) within each database
and then merged them to create a non-redundant
dataset of interacting protein sequences, each indexed
with our internal identifier. Note that this inter-
nal identifier can be used to map all the original
source identifiers for corresponding sequences in the
source databases. Finally, we obtained 27,051 unique
human protein sequences (henceforth referred to as
Pint) representing 57,307 unique PPIs. The FASTA
formatted protein sequences and PPI datasets for
each cancer used in this study can be downloaded at
http://bioinformatics.albany.edu/gpb/.

Mapping and annotation of interacting

proteins

To map the interacting proteins with corresponding
differentially expressed genes, we performed a BLAST

search against the Pint dataset described above us-
ing very stringent criteria as following. For each
query protein, the top hits with a sequence identity
of ≥ 95% and a sequence length match between 90%–
110% were selected. Functional annotations for the
selected interacting proteins were obtained from the
GO database (http://www.geneontology.org). We de-
veloped several Perl scripts to analyze the most fre-
quent common GO terms in PPIs belonging to indi-
vidual cancer types.

Comparative analysis of PPIs based on

GO term frequency

GO is a hierarchical graph-based annotation system
where the terms closer to the root describe more gen-
eral information while those away from the root pro-
vide more specific information about a given GO cat-
egory. The root (level 0) describes three main GO
categories at level 1, which are “biological process”,
“molecular function” and “cellular component”. We
used GO terms only from the “biological process” and
“molecular function” categories because the data for
the “cellular component” category are very sparse.
Ideally, we would have used GO terms that provide
specific descriptions on the processes or functions;
however, the more specific the terms get, the less fre-
quent they are, which prohibits meaningful compar-
ison of GO term frequencies across different cancer.
Hence, we chose the GO terms at level 4 for our anal-
ysis because at this level, GO terms are more specific
(than those at previous levels), while generic enough
to cover broader groups of related processes or func-
tions to attain reasonable cumulative frequency for
analysis. All the GO terms associated with a pro-
tein sequence were obtained from the GO database as
graph paths, which have an inherent hierarchical or-
der starting from the root (level 0). Since our goal is
to compare the number of common GO terms across
different cancer types, these GO terms must be se-
lected at the same level in the graph path (for all
cancers) to make the comparison meaningful. We de-
veloped a Perl program to store all the graph paths
for a given protein. Using this program, under each
GO category (except the “cellular component”), the
common GO terms for a given pair of PPIs were de-
termined at level 4 to calculate the frequency of com-
mon GO terms in a given cancer. Since the size of
PPI dataset (Table 1) varies across different cancer
types, frequencies of common GO terms were normal-
ized against the number of PPIs, showing at least one

34 Genomics Proteomics Bioinformatics Vol. 7 No. 1–2 June 2009



Guda et al.

common GO term in each cancer dataset. This nor-
malization ensures a fair comparison of the common
GO term frequencies across different cancer types ir-
respective of the size of PPI datasets used. The top
20 most frequent common terms were selected from
each cancer, which were combined to obtain a non-
redundant set of GO terms under the biological pro-
cess and the molecular function categories, respec-
tively.

Creation of protein interaction net-

works

PPIs associated with differentially expressed can-
cer genes were used to create networks with the
application of Cytoscape program (v2.3.2) (http://
www.cytoscape.org). Semantic similarity provides a
quantitative measure of how similar a pair of proteins
are, based on the annotations (GO terms) in a given
GO category. This method has been proved to be very
effective in interpreting the functional similarities of
genes based on gene annotation information from het-
erogeneous data sources (42 , 43 ). In our study, the
semantic similarity between the molecular functions
or the biological processes of two proteins involved
in a PPI was calculated following the literature (43 )
and only those PPIs with a high semantic similarity
value of 4.0 or more (5.5 being the highest) were used
to create interaction networks under each GO term
category.
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