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We propose a new method for tumor classif ication from gene expression data, which
mainly contains three steps. Firstly, the original DNA microarray gene expression
data are modeled by independent component analysis (ICA). Secondly, the most
discriminant eigenassays extracted by ICA are selected by the sequential f loating
forward selection technique. Finally, support vector machine is used to classify
the modeling data. To show the validity of the proposed method, we applied it
to classify three DNA microarray datasets involving various human normal and
tumor tissue samples. The experimental results show that the method is eff icient
and feasible.

Key words: independent component analysis, feature selection, support vector machine, gene
expression data

Introduction

With the advent of DNA microarrays, it is now pos-
sible to simultaneously monitor the expression of all
genes in the genome. Increasingly, the challenge is
to interpret such data to gain insight into biologi-
cal processes and the mechanisms of human disease.
To deal with such challenge, new statistical methods
must be introduced to analyze those large amounts of
data yielded from microarray experiments.

One of the central goals in microarray expression
data analysis is to identify the tumor category. A re-
liable and precise classification of tumors is essential
for successful diagnosis and treatment of cancer. How-
ever, traditional methods for classifying human malig-
nancies mostly rely on a variety of morphological, clin-
ical, and molecular variables. Despite recent progress,
there are still many uncertainties in diagnosis. Fur-
thermore, it is likely that the existing classes of tu-
mors are heterogeneous diseases that are molecularly
distant. Recently, with the development of large-scale
high-throughput gene expression technology, it has
become possible for researchers to directly diagnose
and classify diseases, particularly cancers (1 , 2 ). By
monitoring the expression levels in cells for thousands
of genes simultaneously, microarray experiments may
lead to a more complete understanding of the molecu-
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lar variations among tumors, and hence to a finer and
more reliable classification.

With the wealth of gene expression data from mi-
croarrays being produced, more and more new pre-
diction, classification, and clustering techniques are
being used for analysis of the data. Up to now, sev-
eral studies have been reported on the application of
microarray gene expression data analysis for molec-
ular classification of cancer (3–5 ). The analysis of
differential gene expression data has been used to
distinguish between different subtypes of lung ade-
nocarcinoma (6 ) and colorectal neoplasm (7 ). The
method that predicted clinical outcomes in breast
cancer (8 , 9 ) and lymphoma (10 ) from gene expres-
sion data has been proven to be successful. Golub
et al (2 ) utilized a nearest-neighbor classifier method
for the classification of acute myeloid lymphoma and
acute leukemia lymphoma in children. Furey et al (5 )
proposed to use SVM as the classifier. Nguyen and
Rocke (11 ) used partial least squares to reduce the
dimension of gene expression data and then used lo-
gistic discrimination and quadratic discriminant anal-
ysis to classify them. Pochet et al (12 ) performed
a systematic benchmarking study of microarray data
classification, and gave some useful conclusions about
how to use different classification methods. Dudoit
et al (13 ) performed a systematic comparison of sev-
eral discrimination methods for classification of tu-
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mors based on microarray experiments. While linear
discriminant analysis was found to perform the best,
in order to utilize the method, the number of genes
selected had to be drastically reduced from thousands
to tens using a univariate filtering criterion.

In spite of the harvests achieved till now, one of the
challenges of bioinformatics is to develop new efficient
ways to analyze global gene expression data. A rig-
orous approach to gene expression data analysis must
involve an up-front characterization of the structure
of the data. In addition to a broader utility in analy-
sis method, principal component analysis (PCA) (14 )
can be a valuable tool for obtaining such a characteri-
zation. In gene expression data analysis applications,
PCA is a popular unsupervised statistical method for
finding useful eigenassay or eigengene (14 ). One
goal for the PCA technique is to find a “better” set
of eigenassay so that in this new basis the snapshot
coordinates (the PCA coefficients) are uncorrelated,
that is, they cannot be linearly predicted from each
other. One characteristic of the PCA technique is
that only second-order statistical information is used.
However, in the task such as classification, much of
the important information may be contained in the
high-order relationships among samples. Therefore,
it is important to investigate whether the generaliza-
tions of PCA are sensitive to high-order relationships,
not just second-order relationships. Generally, inde-
pendent component analysis (ICA) (15 ) is one of such
generalizations. A number of algorithms for perform-
ing ICA have been proposed (16 ). Here, we employ
FastICA, which was proposed by Hyvärinen (17 ) and
has been proven successful in many applications.

In this paper, we propose a new method for tu-
mor classification from gene expression data. Firstly,
the original DNA microarray gene expression data
are modeled by ICA. Secondly, the most discriminant
eigenassays extracted by ICA are selected by the se-
quential floating forward selection (SFFS) technique
(18 , 19 ). Finally, support vector machine (SVM) is
used to classify the modeling data. To validate the
efficiency, the proposed method was applied to clas-
sify three different DNA microarray datasets of colon
cancer (3 ), acute leukemia (2 ), and high-grade glioma
(20 ). The prediction results show that our method is
efficient and feasible.

Model

ICA

ICA is a useful extension of PCA that has been devel-

oped in context with blind separation of independent
sources from their linear mixtures (15 ). Such blind
separation techniques have been used in various appli-
cations such as auditory signal separating and medical
signal processing (16 ). In a sense, the starting point
of ICA is the uncorrelatedness property of the stan-
dard PCA. Roughly speaking, rather than requiring
that the coefficients of a linear expansion of the data
vectors be uncorrelated, in ICA they must be mu-
tually independent (or as independent as possible).
This implies that higher-order statistics are needed in
determining the ICA expansion.

Considering an n × p data matrix X, whose rows
ri (i = 1, · · · , n) correspond to observational variables
and whose columns cj (j = 1, · · · , p) are the individ-
uals of the corresponding variables, the ICA model of
X can be written as:

X = AS (1)

Without loss of generality, A is an n × n mix-
ing matrix, and S is an n × p source matrix subject
to the condition that the rows of S are as statisti-
cally independent as possible. Those new variables
contained in the rows of S are called “independent
components”, that is, the observational variables are
linear mixtures of independent components. The sta-
tistical independence between variables can be quan-
tified by mutual information I =

∑
k

H(sk) − H(S),

where H(sk) = − ∫
p(sk) log p(sk)dsk is the marginal

entropy of the variable sk, p(sk) is the probabilistic
density function, and H(S) is the joint entropy (17 ).
Estimating the independent components can be ac-
complished by finding the right linear combinations
of the observational variables, since we can invert the
mixing as:

U = S = A−1X = WX (2)

So far there have been a number of algorithms for
performing ICA (16 , 21 , 22 ). In this paper, we em-
ploy the FastICA algorithm (17 ) to address the prob-
lems of tumor classification. In this algorithm, the
mutual information is approximated by a “contrast
function”:

J(sk) = (E{G(sk)} − E{G(v)})2 (3)

where G is any nonquadratic function and v is a nor-
mally distributed variable. For more details please see
the literature (17 ).
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Like PCA, ICA can remove all linear correlations
and only take into account higher-order dependencies
in the data. Yet, ICA is superior to PCA since PCA
is just sensitive to second-order relationships of the
data. In addition, the ICA model usually leaves some
freedom of scaling and sorting by convention; the in-
dependent components are generally scaled to unit
deviation, while their signs and orders can be chosen
arbitrarily. In general, the number of independent
components equals to the number of the observational
variables.

It should be noted that ICA is a very general tech-
nique. When super-Gaussian sources are used, ICA
can be seen as doing something akin to nonorthogonal
PCA and to cluster analysis. In particular, we have
empirically observed that many gene expression data
are “sparse” or “super-Gaussian” signals (all the three
datasets used in this paper are “super-Gaussian” sig-
nals). When sparse source models are appropriate,
ICA has the following potential advantages over PCA:
(1) It provides a better probabilistic model interpre-
tation of the data, which better identifies the position
where the data are to concentrate on n-dimensional
space; (2) It uniquely identifies the mixing matrix A;
(3) It finds a not-necessarily orthogonal basis that
may reconstruct the data better than PCA do in the
presence of noise; (4) It is sensitive to high-order
statistics in the data, not just the covariance matrix
(23 ).

However, when the source models are sub-
Gaussian, the relationship between these techniques

is less clear. Please see Lee et al (24 ) for a discussion
of ICA in the context of sub-Gaussian sources.

ICA models of gene expression data

Now let the n×p matrix X denote the gene expression
data (generally n<<p), and xij is the expression level
of the jth gene in the ith assay. ri (a p-dimensional
vector), the ith row of X, denotes the snapshot of the
ith assay. Alternatively, cj (an n-dimensional vector),
the jth column of X, is the expression profile of the
jth gene. We suppose that the data have already been
preprocessed and normalized, that is, every gene ex-
pression profile has mean zero and standard deviation
one.

Regardless of which algorithm is used to compute
ICA, we can apply ICA to model gene expression data
as shown in Figure 1. In this model, the snapshots ri

in X are considered to be a linear mixture of sta-
tistically independent basis snapshots (eigenassay) S

combined by an unknown mixing matrix A. The ICA
algorithm learns the weight matrix W , which is used
to recover a set of independent eigenassays in the rows
of U . In this architecture, the snapshots are variables
and the gene expression profile values provide obser-
vations for the variables. Essentially, this method co-
incides with traditional ICA, such as the model of
cocktail problem (16 ). Projecting the input snapshots
onto the learned weight vectors produces the indepen-
dent basis snapshots. As a result, the corresponding
mixing and unmixing models can be represented as in
Equations 1 and 2.

Fig. 1 The gene expression data synthesis model. To find a set of independent basis snapshots (eigenassay), the

snapshots in X are considered to be a linear combination of statistically independent basis snapshots (the rows in S),

where W is the unmixing matrix and A is an unknown mixing matrix. The independent eigenassay is estimated as the

output U of the learned ICA.
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In this approach, ICA is used to find a matrix W

such that the rows of U are as statistically indepen-
dent as possible. The independent eigenassays esti-
mated by the rows of U are then used to represent
the snapshots. The representation of the snapshots
consists of their corresponding coordinates with re-
spect to the eigenassays defined by the rows of U , as
shown below:

rj = aj1 × u1 + aj2 × u2 + · · · + ajn × un (4)

ICA representation = (aj1, aj2, · · · , ajn)

These coordinates are contained in the rows of the
mixing matrix, A = W−1. Clearly, every coordinate
aj (row of A) is an n-dimensional vector while the
snapshot rj is a p-dimensional vector. In general, the
number of genes in a single assay is in thousands while
the number of assays is up to hundreds. So the above
procedure can be used to compress the gene expres-
sion data. In this paper, we just use this idea to find a
good set of basis snapshots (eigenassays) to represent
gene expression data so that they can be reasonably
classified.

From another viewpoint, the gene expression
profiles (columns of X) can be regarded as points
in a multidimensional space with dimensions corre-
sponding to the number of samples. The linear ICA
model X = AS represents the gene expression profiles
(the columns of X) by a new set of basis vectors (the
columns of A). This idea is based on two assumptions.
First, the gene expression profiles are determined by
a combination of hidden regulatory variables, which
are called “expression modes”. Second, the genes’ re-
sponses to these variables can be approximated by
linear functions (25 , 26 ). Expression mode k is char-
acterized by its profile over the samples (kth column
of A) and by its linear influences on the genes (kth

row of S).

Interpretation of ICA model

The ICA model states that different modes can ex-
ert independent influences on the genes. To interpret
this point in more details, the first step of the analy-
sis is the study of the mixing matrix A. For a fixed
eigenassay i, the coefficients aji represent the projec-
tion of snapshot j on source i, or the “importance” of
eigenassay i in snapshot j. If one believes in the “lin-
ear mixture of independent eigenassay” model, and
accepts identifying a source with a regulation path-
way in first approximation, the coefficients aji would

allow one to assert to which extent the eigenassay i is
(positively or negatively) “active” in snapshot j.

In addition, the distribution of the column values
of the mixing matrix A is often interesting and may
reveal specific features of the dataset. Particularly
interesting is the situation where the distribution of
mixing coefficients for a given eigenassay exhibits a
bimodal or multimodal behavior. This indicates that
the source under consideration has a good discrimi-
nating power between two or more different classes of
conditions. However, as Chiappetta et al (27 ) have
pointed out, even though bimodal distributions yield
spectacular results, good discrimination may also be
obtained without such a behavior.

A second step in the interpretation of the ICA re-
sults is to analyze carefully the behavior of specific
genes in different eigenassays. It generally happens
that a given independent eigenassay is characterized
by a number of significantly overexpressed (or under-
expressed) genes. Putting such genes into correspon-
dence with snapshots, or clinical data, may happen
to be extremely informative. Because the main aim
of this paper is not to study biological interpretation
of ICA results for microarray data, moreover, there
have been many literatures involved in this issue, so
we will not discuss it in details here. Readers who are
interested in this issue can further see the literatures
(25–28 ) for the details.

Searching for the consensus eigenassays

Chiappetta et al (27 ) have pointed out that unlike
PCA, ICA requires searching for the maxima of a
target function in a large-dimensional configuration
space. Therefore, one often encounters difficulties
with local maxima in which most algorithms may get
stuck, and the result may be sensitive to initializa-
tion. We also found in experiment that compared
with PCA, ICA is not always reproducible when used
to analyze gene expression data. This problem had
also been found by previous studies (26 , 27 ). In ad-
dition, the results obtained from an ICA algorithm
are not “ordered”. Chiappetta et al (27 ) concluded
that, the reason of this phenomenon is that the ICA
algorithm may converge to local optima. Moreover,
they have proposed a “consensus source” (eigenassay)
search algorithm, which yields extremely stable and
robust estimates for the eigenassays as well as indica-
tions relative to their stability.

In this paper, we use the method advised by Chi-
appetta et al (27 ) to overcome these difficulties with

Geno. Prot. Bioinfo. Vol. 6 No. 2 2008 77



Gene Expression Data Classification Using ICA

the following procedure. The independent source
estimate is run for certain times (say, 100 times)
with different random initializations, and “consensus
sources” are recorded. In other words, the eigenas-
says obtained with a frequency larger than a cer-
tain threshold are conserved, and their frequencies
of appearance are recorded and used as “credibil-
ity indices”. As a result, one is led to a (variable,
data-driven) number of average consensus eigenassays
s̄1, · · · , s̄n.

Finally, the corresponding consensus mixing ma-
trix A is computed as:

aji =
n∑

k=1

vik(s̄i)′rj (5)

(j = 1, · · · , n; i = 1, · · · , n)
where V is the inverse of the n × n matrix C of the
scalar product of the consensus eigenassays [cij =
(s̄i)′s̄j ]. More details can be found in the literature
(27 ).

Feature selection

Generally, not all of the features are used for clas-
sification. To achieve good classification results, some
features should be discarded. As a matter of fact, one
goal of this study is the automatic selection of the
best feature subset from a given ICA feature vector
for classification. In contrast to the PCA method,
where feature subset selection is based on an energy
criterion, the selection of an ICA basis subset is not
immediately obvious since the energies of the indepen-
dent components cannot be determined in advance.
Furthermore, it is conjectured that some feature selec-
tion schemes focusing on “recognition” rather than on
“reconstruction” could augment the classification per-
formance. With this goal in mind, we use the SFFS
technique (18 ) to find the most discriminating ICA
features.

For this SFFS method, features are selected suc-
cessively by adding the locally best feature points,
which provides the highest incremental discrimina-
tory information, to the exiting feature subset. In
addition, the SFFS method goes through cleaning pe-
riods, in which features are removed systematically
so long as the performance is improved after pruning.
We use the leave-one-out cross-validation (LOOCV)
in the training dataset to determine the number of
components to be included in the model. In each
LOOCV iteration (the number of iterations equals the

sample size), one sample is left out of the data, a clas-
sification model is trained on the rest of the data, and
this model is then evaluated on the left out data point.
As an evaluation measure, the LOOCV performance
is used. More details about SFFS can refer to the
literature (29 ).

Classif ier

After processing the gene expression data using ICA,
the final step is to classify the dataset. There have
been many methods for performing the classification
tasks so far, such as radial basis function neural net-
work (30 ), logistic discrimination, and quadratic dis-
criminant analysis (11 ). Because the dimension of
DNA microarray gene expression data is higher even
after they are processed by ICA, and there are only
few samples of the data achieved in general, we use
SVM (31–33 ), which has been proved to be very use-
ful and robust (34–36 ), to classify the gene expression
data.

When it is used for classification, SVM can sepa-
rate a given set of binary labeled training data with
a hyper-plane that is maximally distant from them
(the maximal margin hyper-plane). For the cases in
which no linear separation is possible, they can work
in combination with the technique of “kernels”, which
automatically realizes a nonlinear mapping to a fea-
ture space. Generally, the hyper-plane founded by the
SVM in a feature space corresponds to a nonlinear de-
cision boundary in the original space.

Without loss of generality, let the ith input sam-
ple βi = (βi

1, · · · , βi
n) be the realization of the ran-

dom vector β, and this input sample is labeled by
the random variable γ ∈ {−1,+1}. Assume that
φ : U ⇒ V (U ⊆ Rp, V ⊆ Rq) is a mapping from
the input space U to a feature space V , and that
we have a set of samples θ of m labeled data points:
θ = {(β1, γ1), · · · , (βm, γm)}. The SVM learning al-
gorithm is to find a hyper-plane (ω, b) such that the
quantity

χ = min
i

γi{〈ω, φ(βi)〉 − b} (6)

is maximized, where 〈〉 denotes an inner product, the
vector ω has the same dimensionality as V , ‖ω‖2 is
held as a constant, b is a real number, and χ is called
the margin. The quantity (〈ω, φ(βi)〉−b) corresponds
to the distance between the point βi and the decision
boundary. When multiplied by the label γi, it gives a
positive value for all correct classifications and a neg-
ative value for all the incorrect ones. The minimum of
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this quantity over all the data is positive if the data is
linearly separable, which is called “margin”. Given a
new data sample β to be classified, a label is assigned
according to its relationship to the decision boundary,
and the corresponding decision function is:

f(β) = sign(〈ω, φ(β)〉 − b) (7)

Evaluation

To validate the efficiency of the proposed method,
we applied it to classify three different DNA microar-
ray datasets of colon cancer (3 ), acute leukemia (2 ),
and high-grade glioma (20 ). All data samples have
already been assigned to a training set or test set.
An overview of the characteristics of all the datasets
can be found in Table 1. The acute leukemia dataset
(1 ) has already been used frequently in previous mi-
croarray data analysis studies. In our experiment,
this dataset is preprocessed by setting threshold and
log-transformation on the original data, similar to the
way in the original publication. Threshold technique
is generally achieved by restricting gene expression
levels to be larger than 20. In other words, the ex-
pression levels that are smaller than 20 will be set
to 20. Regarding the log-transformation, the natural
logarithm of the expression levels is usually taken. In
addition, no further preprocessing is applied to the
rest of the datasets.

Since all data samples in the three datasets have
already been assigned to a training set or test set,
we built the classification models using the training
samples, and estimated the classification correct rates
using the test set.

To simplify the computation, we normalized the
expression values for each of the genes such that each
sample has zero mean and unit variance. We first
performed ICA on Xtn to produce two matrixes Atn

and U such that

S = WtnXtn = A−1
tn Xtn (8)

Xtn = AtnS (9)

Hence, the rows of Atn contain the coefficients
(representations) of the linear combination of statis-
tically independent sources (rows of S) that comprise
Xtn. For the test set Xtt, we can achieve their repre-
sentations by the following equation:

Att = XttS
−1 (10)

After the representations of the training and test
data have been achieved, we then used SFFS and
SVM to select independent features for experiment.
The numbers of the selected features were determined
by using LOOCV in the training dataset. What
should be denoted is that the eigengenes (columns
of A) and the eigenassays (rows of S) were not sim-
ply calculated by FastICA. In experiments, they were
calculated by using ICA and consensus sources algo-
rithm.

In this study, we used the SVM with RBF kernel
as the classifier. Since building a prediction model
requires good generalization towards making predic-
tions for previously unseen test samples, tuning the
parameters is an important issue, which requires opti-
mization of the regularization parameter as well as the
kernel parameter of SVM. This was done by search-
ing a two-dimensional grid of different values for both
parameters. Moreover, the small sample size charac-
terizing microarray data restricts the choice of an es-
timator for the generalization performance. To solve
these problems, the optimization criterion also used
the LOOCV performance described above. The value
of the regularization parameter corresponding to the
largest LOOCV performance was then selected as the
optimal value.

To obtain reliable experimental results showing
comparability and repeatability for different numer-
ical experiments, we not only used the original divi-
sion of each dataset in training and test set, but also
reshuffled all datasets randomly. In other words, all
numerical experiments were performed with 20 ran-
dom splits of the three original datasets. In addi-
tion, they are also stratified, which means that each
randomized training and test set contains the same

Table 1 Overview of the three datasets for classif ication

Dataset No. of training set No. of test set No. of genes

Class 1 Class 2 Class 1 Class 2

Colon cancer 14 26 8 14 2,000

Acute leukemia 11 27 14 20 7,129

High-grade glioma 21 14 14 15 12,625
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amount of samples of each class compared with the
original training and test set.

We used our proposed method (ICA+SFFS+SVM)
to analyze the three gene expression datasets.
For comparison, we also used SVM, PCA+SVM,
PCA+SFFS+SVM, and ICA+SVM methods respec-
tively to do the same tumor classification experiment.
The classification results for tumor and normal tis-
sues using these methods are displayed in Table 2. For
each classification problem, the experimental results
gave the statistical means and standard deviations of
accuracy on the original dataset and 20 randomiza-
tions as described above. Since the random splits for
training and test set are disjoint, the results given in
Table 2 are unbiased and can in general also be too
optimistic.

From Table 2, we can see that for the colon
data, the LOOCV performance of every method is
different, where the performance of our proposed
method (Method 5) is the highest. Yet, for the ac-
curacy on test set, the performances are very similar.

For the leukemia data, Method 5 performs better
than other four methods on the LOOCV performance
and the accuracy on test set. The performances of
Methods 1 and 4 for the test set are similar, while
those of Methods 2 and 3 are relatively low. For the
glioma data, Method 5 is better than other methods

on the LOOCV performance and the accuracy on test
set. The accuracy of Method 4 on test set is high, yet
its LOOCV performance is the lowest one. From the
analysis above, we can see that our method is indeed
efficient and feasible. Of course, this only comes from
the three datasets used in this paper. In fact, there
is no method whose classification effect is always the
best for all the datasets.

In addition, for all the three datasets, the standard
deviations of accuracy on test set obtained by Method
5 are relatively small, which means that Method 5 is
more stable than other methods. Another thing we
can see from Table 2 is that, for a given dataset, when
the LOOCV performance is high, the accuracy on test
set is not definitely high. This is embodied especially
in the colon dataset.

Conclusion

In this paper, we presented ICA methods for the clas-
sification of tumors based on microarray gene expres-
sion data. The methodologies involve dimension re-
duction of high-dimensional gene expression data us-
ing ICA, followed by feature selection using SFFS and
classification applying SVM. We compared the exper-
imental results of our method with those of other four

Table 2 Comparison of the classif ication performances of f ive methods on three datasets

No. Method Colon cancer dataset

LOOCV performance (%) Accuracy on training set (%) Accuracy on test set (%)

1 SVM 88.25±3.74 95.00±2.35 88.18±3.83

2 PCA+SVM 87.25±2.99 93.25±2.05 89.54±3.74

3 PCA+SFFS+SVM 89.25±3.13 91.00±4.28 89.54±3.74

4 ICA+SVM 83.50±4.44 96.00±3.37 89.09±4.39

5 ICA+SFFS+SVM 91.25±2.12 93.75±2.42 89.54±3.74

No. Method Acute leukemia dataset

LOOCV performance (%) Accuracy on training set (%) Accuracy on test set (%)

1 SVM 93.69±2.21 100±0.00 95.30±3.45

2 PCA+SVM 91.59±2.99 100±0.00 93.24±5.01

3 PCA+SFFS+SVM 96.58±2.78 97.90±2.78 93.53±4.55

4 ICA+SVM 90.82±3.79 100±0.00 95.30±3.45

5 ICA+SFFS+SVM 97.90±2.07 99.21±1.27 96.77±2.57

No. Method High-grade glioma dataset

LOOCV performance (%) Accuracy on training set (%) Accuracy on test set (%)

1 SVM 80.00±6.67 99.52±1.51 66.55±4.00

2 PCA+SVM 78.09±7.17 94.76±3.51 67.93±3.65

3 PCA+SFFS+SVM 88.10±5.61 97.62±3.37 67.24±6.35

4 ICA+SVM 77.64±6.51 99.52±1.51 71.38±4.31

5 ICA+SFFS+SVM 88.54±4.00 97.62±3.37 71.73±3.91
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methods on three datasets, and the results show
that our method is effective and efficient in predict-
ing normal and tumor samples from three human
tissues. Furthermore, these results hold under re-
randomization of the samples.

Since currently we have no suitable gene expres-
sion data of multiclass at hand, we only studied bi-
nary tumor classification problem in the experiments.
In fact, our method can be extended to address the
problems with multiclass by using other appropriate
classifiers such as neural networks. In future works,
we will continue to study the ICA model of gene ex-
pression data, try to apply this method to solving
multiclass problems of tumor classification, and make
full use of the information contained in the gene data
to restrict ICA models so that more exact prediction
of tumor class can be achieved. In particular, we will
also study the application of other ICA models (such
as nonlinear ICA models) in the tumor classification,
and investigate how to use the method proposed in
this paper on the application of other gene datasets.
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