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In the post-genomic era, identif ication of specif ic regulatory motifs or transcrip-
tion factor binding sites (TFBSs) in non-coding DNA sequences, which is essential
to elucidate transcriptional regulatory networks, has emerged as an obstacle that
frustrates many researchers. Consequently, numerous motif discovery tools and
correlated databases have been applied to solving this problem. However, these
existing methods, based on different computational algorithms, show diverse motif
prediction eff iciency in non-coding DNA sequences. Therefore, understanding the
similarities and differences of computational algorithms and enriching the motif
discovery literatures are important for users to choose the most appropriate one
among the online available tools. Moreover, there still lacks credible criterion to
assess motif discovery tools and instructions for researchers to choose the best ac-
cording to their own projects. Thus integration of the related resources might be
a good approach to improve accuracy of the application. Recent studies integrate
regulatory motif discovery tools with experimental methods to offer a complemen-
tary approach for researchers, and also provide a much-needed model for current
researches on transcriptional regulatory networks. Here we present a comparative
analysis of regulatory motif discovery tools for TFBSs.
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Introduction

Biological processes in prokaryotic and eukaryotic or-
ganisms are guided by genomic information in coding
and non-coding DNA sequences. Both kinds of se-
quences coordinate the construction of transcriptional
regulatory networks to perform gene expression with
temporal-spatial variations. Compared with the pre-
genomic era, which concentrated on deciphering cod-
ing DNA sequences and completed the blueprint of
the human genome, the post-genomic era puts more
emphases on digging the gold mine hidden in non-
coding DNA sequences. Currently the identification
of specific motifs or transcription factor binding sites
(TFBSs) has become one of the key steps in this task.

As we all know, interaction between transcription
factors (TFs) and non-coding DNA sequences is a pre-
requisite for transcription initiation of genes. The
function of TFs is to recognize short conserved re-
gions in non-coding DNA sequences, which are called
motifs or TFBSs (1 ). However, it is not enough to
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find motifs or TFBSs in non-coding DNA sequences
only depending on experimental methods. For exam-
ple, systematic evolution of ligands by exponential en-
richment (SELEX), serial analysis of gene expression
(SAGE), and DNA microarray are only for transcript
profiling in vitro (1 , 2 ). Chromatin immunoprecipi-
tation (ChIP) can be combined with DNA microar-
ray, namely ChIP-on-chip, to identify protein-DNA
interaction in vivo (3 ), but it is limited by antibody
performance and availability (4 ). For this reason,
a wide range of motif discovery tools and databases
have been applied to motif or TFBS prediction in bi-
ological studies. Unfortunately, 99.9% of their predic-
tions are shown to be futility theorems (5 ).

Motifs or TFBSs are always represented as con-
sensus IUPAC strings, position frequency matrices
(PFMs), position weight matrices (PWMs), or posi-
tion specific scoring matrices (PSSMs) in databases.
Commonly, motifs or TFBSs in non-coding DNA se-
quences are conserved but still tend to be degenerate,
which can influence the interaction between TFs and
motifs or TFBSs. Therefore, after motif or TFBS data
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are collected and aligned from experimental or com-
putational results, relevant consensus IUPAC strings
can be constructed by selecting a degeneracy base pair
symbol for each position in the alignment (5 ). The
motif or TFBS data can also be modeled as PFM by
aligning identified sites and counting the frequency
of each base pair at each position of the alignment
(6 ). Usually, PFM should be converted into PWM
or PSSM according to formulas (5 , 7 ). Site scoring of
non-coding DNA sequences can be calculated by com-
puting the values for each position in PWM or PSSM
model (5 ). Moreover, by using sequence logos, PWM
can be displayed with color and height proportional
to the base pair frequency and information content
for each position by formulas (8 ).

In 1970s, scientists predicted that the pivotal
difference between human and chimpanzee was lo-
cated in non-coding DNA sequences rather than cod-
ing DNA sequences (9 ). Since then many essential
elements of transcriptional regulatory networks have
been identified in non-coding DNA sequences, includ-
ing promoters, enhancers, insulators, silencers, and
locus control regions (6 ). Nowadays, the discovery
of motifs is mainly limited in canonical 5′ termini of
known genes, where TFs are generally thought to bind
in. Nevertheless, recently some researches have shown
that only small proportion of motifs or TFBSs lie in
immediate upstream sequences of well-characterized
protein-coding genes, while the rest of them exist in
either introns or 3′ regions (6 , 10 , 11 ).

A number of algorithms to discover motifs have
been applied previously, for example, BE95 (12 ),
KYD96 (13 ), DB97 (14 ), vHRCV00 (15 ), BJVU98
(16 ), EP20 (17 ), KFQW99 (18 ), and so on. However,
many of these algorithms were designed for finding
longer or more common motifs rather than for identi-
fying TFBSs (19 ). The price paid for this generality is
that many of the cited algorithms are not guaranteed
to find globally optimal solutions, since they employ
some forms of local search, such as Gibbs sampling,
expectation maximization (EM), and phylogenetic al-
gorithms. In this study, we give a brief introduction
to the algorithm design and analysis for TFBSs with
a focus on problems in comparative motif discovery.

Results and Discussion

Combinatorial approaches

Among the possible algorithmic approaches, combi-
natorial approaches try to exhaustively explore all
the ways that a molecular process could happen.

This leads to hard combinatorial problems for which
efficient algorithms are required. Thus this kind of
algorithms must make use of complex data represen-
tations and techniques.

Sequence-driven or Sample-driven (SD) algo-

rithms

SD algorithms try to find comparative patterns by
comparing the given length strings and looking for
local similarities between them. They are based on
constructing a local multiple alignment of the given
non-coding DNA sequences and then extracting the
comparative patterns from the alignment by combin-
ing the segments, which is common to most of the
non-coding DNA sequences (20 ).

Pattern-driven (PD) algorithms

PD algorithms are based on enumerating candidate
patterns in a given length string and inputting sub-
strings with high fitness. The advantage of PD algo-
rithms is that they can search the best comparative
patterns in some limited sizes (20 ). Compared with
SD algorithms, PD algorithms can be performed in-
telligently so that patterns are not present in the data
that are not generated. For example, if a pattern α

is not frequently present in the data, then there will
be no frequent refinement that makes α more specific
(hitting in even fewer places) in the data either (20 ).

Multiprofiler

This algorithm mainly utilizes multi-profiles that gen-
eralize a notion of a profile to detect subtle patterns
that might escape detection by standard profiles (21 ).
It is designed for finding particularly subtle motifs
even in the case when real motifs may be blurred by
random ones. The advantage of Multiprofiler is that
it takes much less time (21 ). Kravchenko et al used
Multiprofiler to search and statistically assess puta-
tive motifs in promoter regions of co-regulated genes,
where the discovered over-represented sites could be
totally verified by cell transfection experiments (22 ).

Consensus

This approach determines all possible pairwise align-
ments of matrices and remains words to create two
sequence alignments. It scores the two sequence align-
ments by using information content, and the highest
scoring will be saved (23 ). Each of the two sequence
matrices is paired with each word that is not already
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in the matrix, and then three sequence matrices are
scored for information content, among which the high-
est will be kept again. This process will continue
until each sequence has contributed exactly once to
each saved alignment (24 ). In practice, Lenz et al
scanned the upstream regions of the known Vibrio
cholerae σ54-regulated genes and obtained a 16 bp
motif, which perfectly matches the known σ54 bind-
ing sites in V. cholerae with the consensus sequence
“TGGCAC-N5-TTGCA/T” (25 ). In another study,
to prove the hypothesis that IL-2-regulated genes in
T1 cells may be influenced by STAT5, Fung et al
searched for motifs in 5,000 bp upstream regions by
using the Consensus approach, and the obtained clas-
sic motif “TTCNNNGAA” can be verified by ChIP
experiments (26 ).

Teiresias

Teiresias is a two-phase combinatorial approach for
general pattern discovery. This algorithm assumes an
instance that every motif is present in every sequence,
namely, it finds all the maximal patterns with mini-
mum support. Its performance scales quasi-linear se-
quences with the size of output (27 ). One property
that differentiates Teiresias from other algorithms is
the type of structural restriction. In this algorithm
users are allowed to impose on special patterns to
search. For example, only the parameter W needs
to be set. It thus becomes possible to discover pat-
terns of arbitrary length as long as preserved positions
are not more than W residues away (28 ). In 2005,
Kiesler et al scanned 23 Hrp59 target exons by using
Teiresias and found the known “GGAGG” core motif.
This result was confirmed by ChIP, IP, and RT-PCR
experiments, respectively (29 ).

Winnower, SP-STAR, and cWinnower

Winnower first represents motif instances as vertices,
then it tries to delete spurious edges and recover
motifs with the remaining vertices (30 ). SP-STAR
is a local sum of pairwise score improvement algo-
rithm, which considers only the subsequences present
in dataset and iteratively updates scores of the mo-
tifs (30 ). cWinnower improves its running time by a
stronger constraint function (31 ).

MobyDick

In some cases, motifs can be defined as strings whose
probability of occurrence greatly exceeds the expecta-
tion of background. One problem is to decide which

part constitutes the background and natural limits in
a motif since large pieces of a motif will show up in a
list of improbable strings. MobyDick can resolve this
issue perfectly. It is suitable for discovering motifs
from a large collection of sequences, for example, all
of the upstream regions in the yeast genome or all of
the genes regulated during sporulation (32 ). In 2003,
based on two clusters of genes gained from microarray
experiments, Murphy et al scanned 1,000 bp promoter
regions of each gene in each cluster and found a motif
“T(G/A)TTTAC”, which had been previously vali-
dated to be bound by a known TF. Moreover, they
found a new motif “CTTATCA” that may control
gene transcription (33 ).

Smile, Verbumculus, and Weeder

The Smile algorithm takes into consideration the fact
that TFBSs may be multiple and present a con-
strained spatial structure in genomes. Such algo-
rithm is therefore able to identify genomic sequences
that are called “structured motifs”. A suffix tree is
used for finding such motifs (34 ). The inner core
of Verbumculus rests on subtly interwoven properties
of statistics, pattern matching, and combinatorics on
words. Thereby it is more feasible to both detect and
visualize such words in a fast and practically useful
way (35 ). Weeder permits to extend exhaustive enu-
meration to signals and does not need to input the
exact length of the pattern to be found (36 ).

Mitra

Mitra can be extended to handle insertions and dele-
tions in addition to mismatches in selected sequences.
It takes advantage of a new insight, which prunes the
patterns that allow for more efficient use of pairwise
similarity than in Winnower. For example, unlike pre-
vious PD or SD algorithms, Mitra is able to discover
composite motifs of a combined length over 30 bp
(37 ).

Projection

This algorithm ameliorates the limitations of exist-
ing algorithms by using random projections of input.
It extends previous projection-based searching tech-
niques to solve a multiple alignment problem that is
not effectively addressed by pairwise alignments. It
is designed to efficiently solve the problems from the
planted-(l, d) motif model, and can do more reliably
and substantially difficult instances than previous al-
gorithms (38 ). For t= 20 and n= 600, this algorithm
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achieves performance close to the best possible, being
limited primarily by statistical considerations (38 ).

EC and MoDEL

The evolutionary computation (EC) approach allows
variation of motifs by the measurement of a simi-
larity score. Compared with SD algorithms, which
are not always easy to define and rely on the accu-
racy of PSSM, the EC approach does not rely on any
pre-defined or estimated weight matrices (39 , 40 ).
MoDEL uses a hybrid strategy consisting of an evo-
lutionary algorithm (global search) and hill-climbing
optimizations (local search) according to Brazma’s
classification (41 ). It addresses a well-known prob-
lem: given a set of functionally related sequences,
how to choose exactly one occurrence per sequence
in a way that all chosen occurrences are maximally
similar. Such a set of occurrences will be referred to
as ungapped local multiple alignment (41 ).

Probabilistic approaches

Probabilistic or randomized approaches make certain
decisions randomly. This concept extends the classi-
cal model of deterministic algorithms and has gener-
ated many useful and probably efficient algorithms
over the last twenty years. Probabilistic approaches
are often faster, simpler, or more elegant than their
combinatorial counterparts. Probabilistic algorithms
that identify gene modules based on motif discovery
are highly appropriate for analyzing synthetic lethal
genetic interaction datasets, and have great potential
in the integrative analysis of heterogeneous datasets
(42 ).

EM

The EM algorithm is used to estimate the probability
density of a given dataset by employing the Gaussian
mixture model. The probability density of a dataset
is modeled as the weighted sum of a number of Gaus-
sian distributions. The main advantage of EM is its
fast speed, while the disadvantage is that it requires
“appropriate” starting values and is difficult to deal
with constrained parameters (43 ).

Gibbs Sampler

The Gibbs sampling algorithm is one of the simplest
Markov chain Monte Carlo algorithms. By Gibbs
sampling, the joint distribution of the parameters will
converge to the joint probability of the parameters in

the given dataset. Gibbs sampling strategies claim
to be fast and sensitive. It generally finds an opti-
mized local alignment model for N sequences in N -
linear time, avoiding the problem that the EM algo-
rithm falls into. For example, it requires a relatively
large dataset (15 or more sequences) for weakly con-
served patterns to reach statistical significance (44 ).
In 2000, Petersen et al tried to find motifs that are
not necessarily 100% conserved in 17 putative pro-
moter regions obtained from microarray experiments
by using Gibbs Sampler (45 ). The search was per-
formed in sequences ranging from 6 to 16 bp, where
Gibbs Sampler repeatedly found motifs “TTGACT”
and “GACTWWHC”, both of which had been iden-
tified by previous experiments.

MEME

The MEME algorithm extends the EM algorithm for
identifying motifs in unaligned sequences. While a
drawback of EM is that the maximum it finds is only
local (46 ), MEME can either favor motifs that ap-
pear exactly once (one-per model) or appear zero or
once (zero-or-one-per model) in each sequence in a
training set, or give no preference to a number of oc-
currences (zero-or-more-per model). In 2005, Hall et
al acquired a set of correlated genes from genomic,
transcriptomic, and proteomic analyses. They ap-
plied MEME to scan 1,000 bp of the 3′ end of stop
codon, where a 47 bp motif was found in six of the
analyzed sequences. Then it was used to search the
entire genome and 20 additional genes were identified
to have the same motif. This motif was known to be
bound to Puf protein, implying that Puf protein may
control the transcription of the analyzed genes (47 ).

LOGOS and MotifPrototyper

LOGOS consists of two interacting submodels:
HMDM, a model for aligned selected sequences, and
HMM, a model for the global distribution of mo-
tif instances. HMDM is a hidden Markov-Dirichlet
multinomial model that captures rich biological prior
knowledge and positional dependence in motif local
structure in a principled way. HMM is a standard hid-
den Markov model, which allows formal and efficient
inference of motif locations, and is potentially capable
of capturing their dependencies. Model parameters
can be fit on training motifs by using a variational
EM algorithm within an empirical Bayesian frame-
work (48 ). MotifPrototyper is later used to train the
model’s parameters and to scan for known regulatory
motifs and discover unknown ones (49 ).
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Motif Sampler

Motif Sampler uses higher-order Markov models to
represent the intergenic motifs in non-coding DNA
sequences. It can incorporate higher-order back-
ground models to update probabilities of finding a
motif at a certain position (50 ). To search for a
known TF Yrrp1 consensus binding site in yeast, Le
Crom et al used Motif Sampler to search for motifs
in the genes regulated by Yrrp1, and the result mo-
tif “(T/A)CCG(C/T)(G/T)(G/T)(A/T)(A/T)” was
confirmed by EMSA experiments (51 ).

AlignACE

AlignACE is based on the Gibbs sampling algorithm,
but it differs from Gibbs sampling in the following
ways. Firstly, the motif model is changed so that base
frequencies for non-site sequences are fixed according
to the source genome. Secondly, both strands of input
sequences are simultaneously considered at each step
of this algorithm. Overlapping sites are not allowed
even if these sites are on opposite strands. Thirdly,
simultaneous multiple searching is replaced by an ap-
proach in which single motif is found and iteratively
masked (52–54 ).

ANN-Spec

The objective function for ANN-Spec is designed to
find patterns that distinguish the positive dataset
from background. It succeeds in identifying the de-
sired patterns specific for the positive dataset. For ex-
ample, Gibbs sampling and ANN-Spec both work very
well when the background is assumed to be random,
while ANN-Spec finds patterns with higher specificity
and higher correlation coefficients when it is provided
with background sequences (55 , 56 ).

BioProspector

BioProspector uses the Markov background to model
base dependencies of non-motif bases, which greatly
improves the specificity of reported motifs. The pa-
rameters of the Markov background model are ei-
ther estimated from user-specified sequences or pre-
computed from the whole genome. A new motif scor-
ing function is adopted to allow each input sequence
contain zero to multiple copies of the motif. In ad-
dition, BioProspector can model gapped motifs with
palindromic patterns, which are prevalent motif pat-
terns in prokaryotes (57 , 58 ).

MDscan and Motif Regressor

MDscan mainly examines ChIP-on-chip selected se-
quences. It combines the advantages of two widely
adopted motif search strategies, word enumeration
and PSSM, and incorporates ChIP enrichment in-
formation to accelerate the searching and enhance
its success rate. Motif Regressor uses linear regres-
sion analysis to select motifs whose sequence match-
ing scores are significantly correlated with ChIP-on-
chip enrichment or downstream gene expression val-
ues. Ranking motifs by linear regression p-value, Mo-
tif Regressor automatically picks the best one with
optimal width (59–61 ).

Improbizer

Improbizer searches for motifs that occur with im-
probable frequency by using a variation of the EM
algorithm. It works by finding the patterns that oc-
cur more frequently than they should occur by chance.
The simple way to estimate how frequently a particu-
lar nucleotide should occur by chance is to put one
quarter to the power of the number of nucleotides
in the sequence. Optionally, Improbizer constructs
a Gaussian model of motif placement, so that motifs
occurring in similar positions in the input sequences
are more likely to be found (62 ).

SeSiMCMC

SeSiMCMC is a tool for multiple local alignment of
a set of non-coding DNA sequences, which is based
on a modification of the Gibbs sampling algorithm.
Its primary objective is to create a computationally
efficient tool that uses user-defined motif symmetry
and evaluates motif length from dataset. Sequence
fragments in a training set can have arbitrary orien-
tation, and there is a probability for a sequence to
contain no sites (63 ).

GMS-MP

GMS-MP performs significantly better than standard
PWM-based Gibbs sampling methods. Compared
with the Bayesian network approach, GMS-MP has
a simpler model, easier prescribing prior, and much
faster computation. The step of sampling pairwise
correlations takes up only about 3% of the total com-
puting time, which is much faster than the Bayesian
network. This method also does not suffer any prob-
lems with over-fitting, which is likely to occur due to
the employment of a rather conservative prior distri-
bution on model pattern (64 ).
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Phylogenetic footprinting approaches

Phylogenetic footprinting approaches discover regula-
tory elements in a set of orthologous regulatory re-
gions from multiple species by identifying the best
conserved motifs in those orthologous regions (65 ).

PhyloCon

Phylogenetic-Consensus (PhyloCon) takes into ac-
count both conserved orthologous genes and co-
regulated genes within a species. The key idea of Phy-
loCon is to compare aligned sequence profiles from
orthologous genes or co-regulated genes rather than
unaligned sequences. PhyloCon integrates the knowl-
edge of co-regulated genes in single species with se-
quence conservation across multiple species to im-
prove the performance of motif discovery. An advan-
tage of PhyloCon is that it reports motifs of varying
lengths, instead of requiring the motif length to be
input (66 , 67 ).

EMnEM and OrthoMeme

Expectation-maximization on evolutionary mixtures
(EMnEM) considers special motifs that are generated
from ancestral sequences. The ancestral sequences
are made of two component mixtures of motifs and
background, each with their own evolutionary model.
The value of varying evolutionary models has been
realized in other contexts as well, and such models
have been successfully trained by using EM. Nor-
mally, MEME often scores better than EMnEM with
a substitution model, except for higher evolutionary
distances, where EMnEM takes the head (68 ). Or-
thoMeme is the first algorithm to deal with hetero-
geous data sources in a truly integrated manner by
using all the data from onset of analysis (69 ).

PhyME

PhyME integrates two different axes of information
content in evaluating the significance of candidate
motifs. One axis is the overrepresentation that de-
pends on the number of occurrences of motifs in each
species. The other axis is the level of conservation
of each motif instance across species. An important
feature of PhyME is that it allows motifs to occur
in evolutionarily conserved as well as unconserved re-
gions in orthologous sequences. PhyME treats the
two kinds of occurrences differently when it scores a
motif (70 ).

FootPrinter

The unique character of FootPrinter is that it takes
input as a set of unaligned homologous sequences from
various species and elicits a phylogenetic tree relating
to these species. It then searches for short regions of
the sequences that are highly conserved according to
a parsimony criterion. The regions identified will be
good candidates for regulatory elements (71 ).

CompareProspector

CompareProspector identifies regulatory elements by
using information content from both intraspecies pat-
tern enrichment and interspecies sequence conserva-
tion. This distinguishes it from other phylogenetic
footprinting programs that use orthologous sequences
of a single gene from multiple species to identify reg-
ulatory elements (44 ).

Conclusion

In the last decade, computational identification of
motifs or TFBSs by analyzing non-coding DNA se-
quences has emerged as a major new technology
for elucidating transcriptional regulatory networks.
Combinatorial algorithms assume a discrete model
and search for motifs with a high rate of occurrences in
non-coding DNA sequences. One major drawback of
combinatorial algorithms is that they are sometimes
difficult to understand and many “hidden” details
make them hard to implement. Probabilistic algo-
rithms often run faster than their corresponding com-
binatorial algorithms. Moreover, many probabilis-
tic algorithms are easier to implement and describe
than combinatorial algorithms of comparable perfor-
mance. However, these algorithms may miss lots of
useful information when searching in non-coding DNA
sequences. Phylogenetic footprinting assumes that
functional sequences tend to be conserved through
evolution. Motifs or TFBSs can thus be identified
by looking for conservation of small regions within
multiple alignments of non-coding DNA sequences.

Up to date, more than 120 motif discovery tools
have been applied in biological researches. All the
time the main challenge of motif discovery tools has
been the application of effective algorithms that can
treat all the intrinsic complexities associated with the
nature of motifs or TFBSs. However, there still ex-
ist some considerations that we should bear in mind
when thinking of computational approaches to tackle
biological problems. One is the issue of futility the-
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orem, which means we still do not have any good
methods other than traditional molecular biology to
find out whether our predictions of individual motif or
TFBS have any relationships with a clear function in
vivo. Another is that pattern discovery methods are
severely restricted by the signal-to-noise problem, be-
cause the information content of motifs is strictly lim-
ited by its intrinsic nature. Additionally, some algo-
rithms that work well for yeast might not work for hu-
man due to the complexity of DNA structure. There-
fore, all observed patterns must be carefully consid-
ered.

Materials and Methods

Web-based resources for non-coding

DNA sequence datasets

The non-coding DNA sequence dataset perspectives
in web-based resources give the tools for biologists to

work with relational experimental researches in their
application development. The relational dataset tools
include views, wizards, editors, and other features
that make it easy for users to predict and test the
experimental elements of their applications (partially
in Table 1).

Web-based resources for regulatory mo-

tif or TFBS datasets

The relational motif or TFBS datasets help biologists
create and manipulate the data definitions for their
own projects, in terms of relational dataset schemas.
Users can access relational motif or TFBS datasets
under the analysis perspective, which allows users to
browse or import dataset schemas in the servers view,
create and work with dataset schemas in the data
definition view, and change dataset schemas in the
table editor. Users can also export data definitions
to another dataset installed either locally or remotely
(partially in Table 2).

Table 1 Selected web-based resources for promoter databases

Database Explanation URL

EPD Eukaryotic promoter database http://www.epd.isb-sib.ch/

DBTSS Database of transcriptional start

sites (human)

http://dbtss old.hgc.jp/hg17/

SCPD Saccharomyces cerevisiae promoter

database

http://rulai.cshl.edu/SCPD/

DCPD Drosophila core promoter database http://www-biology.ucsd.edu/labs/Kadonaga/DCPD.html

PlantProm DB Plant promoter database http://mendel.cs.rhul.ac.uk/mendel.php?topic=plantprom

CSHLmpd Cold Spring Harbor Laboratory

mammalian promoter database

http://rulai.cshl.edu/CSHLmpd2/

TRED Transcriptional regulatory element

database

http://rulai.cshl.edu/cgi-bin/TRED/tred.cgi?process=home

Table 2 Selected web-based resources for regulatory motifs or TFBSs

Database Explanation URL

JASPAR A collection of transcription factor

DNA-binding preferences

http://mordor.cgb.ki.se/cgi-bin/jaspar2005/jaspar db.pl

TRANSFAC Database on eukaryotic transcrip-

tion factors, their genomic binding

sites and DNA-binding profiles

http://www.gene-regulation.com/pub/databases.html#transfac

TRRD Transcription regulatory regions

database

http://wwwmgs.bionet.nsc.ru/mgs/gnw/

RegulonDB A computational model of mecha-

nisms of transcriptional regulation

http://regulondb.ccg.unam.mx/html/What is RegulonDB.jsp

TFD Transcription factor databases http://www.ifti.org/
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Web-based resources for motif or TFBS

discovery algorithms

Emphases are placed on the development of general
design algorithms and data structures that are par-

ticularly suited for biological problems. Applications
in a variety of areas such as genetic information sys-
tems, computer graphics, alignments, and computer
aided designs are performed (partially in Table 3).

Table 3 Selected web-based resources for motif discovery tools

Algorithm Motif model Match model Ref.

AlignACE matrix PWM 52

ANN-Spec matrix PWM 55

BioOptimizer – PWM 72

BioProspector matrix, dyad PWM 57

CAGER – – 73

Cis-analyst – PWM 74

CisModule – PWM 75

Cister – PWM 76

Clover – PWM 77

ClusterScan – PWM 78

CoBind matrix, dyad PWM 79

COMET – – 80

CompareProspector – – 57

ConsecID – PWM 81

Consensus matrix PWM 24

ConSite – PWM 82

COOP – reg.exp 83

cWinnower string mismatch 31

DMotifs string reg.exp 84

DMS – PWM 85

Dyad analysis string, dyad oligos 15

EC string fitness 39

EMnEM – – 68

FastM – PWM 18

FootPrinter – mismatch 71

FrameWorker – PWM 86

GANN – flexible 87

Gibbs sampler matrix PWM 44

Gibbs recursive matrix PWM 88

GLAM string – 89

GMS-MP GWM HMM 64

HMDM – DM 90

Improbizer – PWM 62

LOGOS HMDM DM 48

MAPPER – HMM 91

MCAST – PWM 92

MDScan matrix PWM 59

MEME matrix PWM 46

MERMAID string PWM 93

MISAE – mismatch 94

Algorithm Motif model Match model Ref.

Mitra string, dyad mismatch 48

Mitra-dyad – mismatch 17

MITRA-PSSM matrix PWM 95

MM – PWM 96

MobyDick string mismatch 32

MoDEL string PWM 41

ModelGenerator – PWM 97

ModelInspector – PWM 97

Modulescanner – PWM 98

ModuleSearcher – PWM 98

MotifLocator – PWM 98

MotifPrototyper – DM 49

Motif regressor – PWM 41

Motif sampler – PWM 50

MSCAN – PWM 99

MultiProfiler string mismatch 21

NestedMICA – PWM 100

NONPAR – mixture 101

Oligo-analysis string oligos 102

OrthoMEME – PWM 69

Pattern-assembly – – 103

PhyloCon – PWM 66

PhyME – – 70

Pratt2 – reg.exp 104

Projection string PWM 38

ProMapper – DM 105

PromoterInsp – oligos 106

QuickScore string IUPAC 107

REDUCE – PWM 108

SCORE – – 109

SeSiMCMC – PWM 63

SMILE string, mult mismatch 34

SOMBERO – PWM 110

Splash – reg.exp 111

Stubb – PWM 42

Teiresias string reg.exp 27

TFBScluster – PWM 112

Verbumculus string mismatch 35

Weeder string mismatch 36

Winnower string mismatch 30

YMF string reg.exp 113
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