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KaKs Calculator is a software package that calculates nonsynonymous (Ka) and
synonymous (Ks) substitution rates through model selection and model averag-
ing. Since existing methods for this estimation adopt their specif ic mutation
(substitution) models that consider different evolutionary features, leading to
diverse estimates, KaKs Calculator implements a set of candidate models in a
maximum likelihood framework and adopts the Akaike information criterion to
measure fitness between models and data, aiming to include as many features
as needed for accurately capturing evolutionary information in protein-coding se-
quences. In addition, several existing methods for calculating Ka and Ks are
also incorporated into this software. KaKs Calculator, including source codes,
compiled executables, and documentation, is freely available for academic use at
http://evolution.genomics.org.cn/software.htm.
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Introduction

Calculating nonsynonymous (Ka) and synonymous
(Ks) substitution rates is of great significance in
reconstructing phylogeny and understanding evolu-
tionary dynamics of protein-coding sequences across
closely related and yet diverged species (1–3 ). It is
known that Ka and Ks, or often their ratio (Ka/Ks),
indicate neutral mutation when Ka equals to Ks, neg-
ative (purifying) selection when Ka is less than Ks,
and positive (diversifying) selection when Ka exceeds
Ks. Therefore, statistics of the two variables in genes
from different evolutionary lineages provides a pow-
erful tool for quantifying molecular evolution.

Over the past two decades, several methods have
been developed for this purpose, which can generally
be classified into two classes: approximate method
and maximum likelihood method. The approximate
method involves three basic steps: (1) counting the
numbers of synonymous and nonsynonymous sites, (2)
calculating the numbers of synonymous and nonsyn-
onymous substitutions, and (3) correcting for multiple
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substitutions. On the other hand, the maximum
likelihood method integrates evolutionary features
(reflected in nucleotide models) into codon-based
models and uses the probability theory to finish all
the three steps in one go (4 ). However, these meth-
ods adopt different substitution or mutation models
based on different assumptions that take account of
various sequence features, giving rise to varied esti-
mates of evolutionary distance (5 ). In other words,
Ka and Ks estimation is sensitive to underlying as-
sumptions or mutation models (3 ). In addition, since
the amount and the degree of sequence substitutions
vary among datasets from diverse taxa, a single model
or method may not be adequate for accurate Ka and
Ks calculations. Therefore, a model selection step,
that is, to choose a best-fit model when estimating
Ka and Ks, becomes critical for capturing appropri-
ate evolutionary information (6 , 7 ).

Toward this end, we have applied model selection
and model averaging techniques for Ka and Ks esti-
mations. We use a maximum likelihood method based
on a set of candidate substitution models and adopt
the Akaike information criterion (AIC) to measure
fitness between models and data. After choosing the
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best-fit model for calculating Ka and Ks, we average
the parameters across the candidate models to include
as many features as needed since the true model is
seldom one of the candidate models in practice (8 ).
Finally, these considerations are incorporated into a
software package, namely KaKs Calculator.

Algorithm

Candidate models

Substitution models play a significant role in phyloge-
netic and evolutionary analyses of protein-coding se-
quences by integrating diverse processes of sequence
evolution through various assumptions and providing
approximations to datasets. We focused on a set of
time-reversible substitution models (9–16 ) as shown
in Table 1 (17 , 18 ), ranging from the Jukes-Cantor
(JC) model, which assumes that all substitutions have
equal rates and equal nucleotide frequencies, to the
general time-reversible (GTR) model that considers
six different substitution rates and unequal nucleotide
frequencies. Subsequently, we incorporated the pa-
rameters in each nucleotide model into a codon-based
model (19 , 20 ). As a result, a general formula of
the substitution rate qij from any sense codon i to
j (i 6= j) is given for all candidate models (19 ):

qij =





0 if i and j differ by more than one
difference

κxy πj if i and j differ by a synonymous
substitution of x for y

ω κxy πj if i and j differ by a nonsynony-
mous substitution of x for y

where πj is the frequency of codon j, ω is the Ka/Ks
ratio, and κxy is the ratio of rxy to rCA, x, y ∈{A,
C, G, T} (Table 1). For example, in the JC model,
κxy and πj are equal to 1 owing to equal substitution
rates and equal nucleotide frequencies assumed. In
the Hasegawa-Kishino-Yano (HKY) model, κTC and
κAG become equivalent to the transition/transversion
rate ratio and πj can be estimated from sequences,
similar to the method reported by Goldman and Yang
(19 ). Other models can be accommodated by making
obvious modifications. Therefore, we could acquire
maximum likelihood scores in various values gener-
ated from individual candidate model by implement-
ing the codon-based models in a maximum likelihood
framework (19 , 20 ).

Model selection

AIC (21 ) has been widely used in model selection
aside from other methods such as the likelihood ra-
tio test (LRT) and the Bayesian information crite-
rion (BIC) (8 ). AIC characterizes the Kullback-
Leibler distance between a true model and an ex-
amined model, and this distance can be regarded as
quantifying the information lost by approximating the
true model. KaKs Calculator uses a modification of
AIC (AICC), which takes account of sampling size (n),
maximum likelihood score (lnLi), and the number of
parameters (ki) in model i as follows:

AICCi = AICi+
2ki(ki + 1)
n− ki − 1

= −2 ln Li+2ki+
2ki(ki + 1)
n− ki − 1

AICC is proposed to correct for small sampling
size, and it approaches to AIC when sampling size
comes to infinity. Consequently, we could use this
equation to compute AICC for each candidate model
and then identify a model that possesses the smallest
AICC, which is a sign for appropriateness between
models and data.

Model averaging

Model selection is merely an approximate fit to a
dataset, whereas a true evolutionary model is seldom
one of the candidate models (8 ). Therefore, an al-
ternative way is model averaging, which assigns each
candidate model a weight value and engages more
than one model to estimate average parameters across
models. Accordingly, we first need to compute the
Akaike weight (wi, where i = 1, 2, . . . , m) for each
model in a set of candidate models:

wi =
exp[− 1

2 (AICCi −minAICC)]∑m
j=1 exp[− 1

2 (AICCj −minAICC)]

where min AICC is the smallest AICC value among
candidate models. We can then estimate model-
averaged parameters. Taking κTC as an example, a
model-averaged estimate can be calculated by:

κTC =
∑m

i=1 [wi × I(κTC,i)× κTC,i]∑m
i=1 [wi × I(κTC,i)]

where κTC,i is κTC in model i and

I(κTC,i) =

{
1 if rTC 6= rCA in model i

0 otherwise
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Table 1 Candidate Models for Model Selection and Model Averaging in KaKs Calculator

Model Description (Reference) Nucleotide Substitution rate*

frequency

JC Jukes-Cantor model (9 ) Equal rTC = rAG = rTA = rCG = rTG = rCA

F81 Felsenstein’s model (10 ) Unequal

K2P Kimura’s two-parameter model (11 ) Equal rTC = rAG 6= rTA = rCG = rTG = rCA

HKY Hasegawa-Kishino-Yano model (12 ) Unequal

TNEF TN model with equal nucleotide frequencies Equal rTC 6= rAG 6= rTA = rCG = rTG = rCA

TN Tamura-Nei model (13 ) Unequal

K3P Kimura’s three-parameter model (14 ) Equal rTC = rAG 6= rTA = rCG 6= rTG = rCA

K3PUF K3P model with unequal nucleotide frequencies Unequal

TIMEF Transition model with equal nucleotide frequencies Equal rTC 6= rAG 6= rTA = rCG 6= rTG = rCA

TIM Transition model Unequal

TVMEF Transversion model with equal nucleotide frequencies Equal rTC = rAG 6= rTA 6= rCG 6= rTG 6= rCA

TVM Transversion model Unequal

SYM Symmetrical model (15 ) Equal rTC 6= rAG 6= rTA 6= rCG 6= rTG 6= rCA

GTR General time-reversible model (16 ) Unequal

*rij indicates the rate of substitution of i for j, where i, j ∈ {A, C, G, T}.

Application

KaKs Calculator is written in standard C++ lan-
guage. It is readily compiled and run on Unix/Linux
or workstation (tested on AIX/IRIX/Solaris). In ad-
dition, we use Visual C++ 6.0 for graphic user inter-
face and provide its Windows version that can run
on any IBM compatible computer under Windows
operating system (tested on Windows 2000/XP).
Compiled executables on AIX/IRIX/Solaris and
setup application on Windows, as well as source
codes, example data, instructions for installation and
documentation for KaKs Calculator is available at
http://evolution.genomics.org.cn/software.htm.

Different from other existing tools (22 , 23 ),
KaKs Calculator employs model-selected and model-
averaged methods based on a set of candidate models
to estimate Ka and Ks. It integrates as many features
as needed from sequence data and in most cases gives
rise to more reliable evolutionary information (see the
comparative results on simulated sequences at http://
evolution.genomics.org.cn/doc/SimulatedResults.xls)
(24 ). KaKs Calculator also provides comprehen-
sive information estimated from compared sequences,
including the numbers of synonymous and non-
synonymous sites and substitutions, GC contents,
maximum likelihood scores, and AICC. Moreover,
KaKs Calculator incorporates several other methods
(19, 25-31 ) and allows users to choose one or more
methods at one running time (Table 2).

Table 2 Methods Incorporated in

KaKs Calculator

Approximate method

Method Mutation model#1 Reference

Step 1 Step 2 Step 3

NG JC JC JC 26

LWL JC K2P K2P 28

MLWL K2P K2P K2P 30

LPB –* –* K2P 25 , 29

MLPB –* –* K2P 30

YN HKY HKY HKY 27

MYN TN TN TN 31

Maximum likelihood method

Method Mutation model#2 Reference

GY HKY 19 , 20

MS a model that has the

smallest AICC among

14 candidate models

Model-selected

method proposed

in this study

MA a model that averages

parameters across 14

candidate models

Model-averaged

method proposed

in this study

#1The approximate method involves three basic steps:

Step 1: counting the numbers of synonymous and non-

synonymous sites; Step 2: calculating the numbers of syn-

onymous and nonsynonymous substitutions; Step 3: cor-

recting for multiple substitutions. #2The maximum like-

lihood method uses the probability theory to finish the

three steps in one go (4 ). *No specific definition of syn-

onymous and nonsynonymous sites or substitutions.
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Although there exist 203 time-reversible models of
nucleotide substitution (8 ), model selection in prac-
tice is often limited to a subset of them (32 ), and
thus model averaging can reduce biases arising from
model selection. Therefore, model-averaged methods
should be preferred for general calculations of Ka and
Ks. Some planned improvements include application
of model selection and model averaging to detect posi-
tive selection at single amino acid sites, which requires
high-speed computing for maximum likelihood esti-
mation, especially when an adopted model becomes
complex.

In conclusion, KaKs Calculator incorporates as
many features as needed for accurately extracting evo-
lutionary information through model selection and
model averaging, therefore it may be useful for in-
depth studies on phylogeny and molecular evolution.
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