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Methods for estimating synonymous and nonsynonymous substitution rates among 
protein-coding sequences adopt different mutation (substitution) models with sub- 
tle yet significant differences, which lead to different estimates of evolutionary 
information. Little attention has been devoted to the comparison of methods for 
obtaining reliable estimates since the amount of sequence variations within tar- 
geted datasets is always unpredictable. To our knowledge, there is little informa- 
tion available in literature about evaluation of these different methods. In this 
study, we compared six widely used methods and provided with evaluation results 
using simulated sequences. The results indicate that incorporating sequence fea- 
tures (such as transition/transversion bias and nucleotide/codon frequency bias) 
into methods could yield better performance. We recommend that conclusions 
related to or derived from Ka and Ks analyses should not be readily drawn only 
according to results from one method. 
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Introduction 
In the field of molecular evolution, one of the power- 
ful tools for understanding the mechanisms of DNA 
sequence evolution, reconstructing phylogenic trees, 
and identifying protein-coding exons is to estimate 
nonsynonymous (amino-acid replacing) and synony- 
mous (silent) substitution rates among protein-coding 
sequences, termed as Ka and Ks, respectively (1-5). 
Ka reflects nonsynonymous substitutions per nonsyn- 
onymous site, and Ks reflects synonymous substitu- 
tions per synonymous site. The Ka/Ks ratio (de- 
noted as w )  is widely used as an estimator of selective 
strength for DNA sequence evolution, with w > 1 in- 
dicating positive selection, w < 1 indicating purifying 
(negative) selection, and w close to 1 indicating neu- 
tral mutation. 

Over the past two decades, several methods have 
been developed for Ka and Ks estimations. Although 
these methods consider different features of sequence 
evolution, they fall into two classes: approximate 
methods and maximum-likelihood methods. Approx- 
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imate methods normally involve three steps to esti- 
mate Ka and Ks: Firstly, count the numbers of syn- 
onymous (S) and nonsynonymous (N) sites (the sum 
of S and N is scaled to the length of the sequences 
compared); Secondly, calculate the numbers of syn- 
onymous (sd) and nonsynonymous (Nd) substitutions 
(the sum of sd and Nd equals to the number of sub- 
stitutions between pairwise sequences); Thirdly, cor- 
rect for multiple substitutions due to the fact that 
the observed number of substitutions underestimates 
the real number of substitutions as sequences diverge 
over time (6). Different from approximate methods, 
maximum-likelihood methods adopt the probability 
theory to finish the three steps in one go (7) .  We 
list the definitions of symbols used in Ka and Ks 
estimations in Table 1. In addition, these methods 
can also be classified as nucleotide-based or codon- 
based methods according to their adopted mutation 
models. In this study, we focus on six of them: Nei- 
Gojobori method (NG; ref. 8 ) ,  Li-Wu-Luo method 
(LWL; ref. 9) ,  Li-Pamilo-Bianchi method (LPB; ref. 
10, l l ) ,  Goldman-Yang method (GY; ref. 12), Yang- 
Neilsen method (YN; ref. 13),  and modified Yang- 
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Table 1 Definitions of Symbols Used in Ka and Ks Estimations 

Symbol Definition 
S Number of synonymous sites 
N Number of nonsynonymous sites 
s d  Number of synonymous substitutions 
Nd Number of nonsynonymous substitutions 
Ks Synonymous substitution rate 
Ka Nonsynonymous substitution rate 
W 

t 
Estimator of selective strength, w = Ka/Ks 
Divergence time between two sequences, the expected number of nucleotide 
substitutions per codon, t = (Ks x 3s + Ka x 3N)/(S+N) 
Ratio of transitional rate between purines to transversional rate 
Ratio of transitional rate between pyrimidines to transversional rate 
Ratio of transitional rate to transversional rate 

KR 

ICY 

n 

Neilsen method (MYN; ref. 14). Among them, only 
GY belongs to the maximum-likelihood method. 

It should be noted that different methods adopt 
different mutation models (12, 15-18) with subtle 
yet significant differences, which lead to  diverse es- 
timates of evolutionary distance (19). Since Ka, Ks, 
and w are broadly applied in molecular evolution, it 
is necessary to evaluate the accuracies of these meth- 
ods so that evolutionary information among compared 
sequences can be accurately captured. To our knowl- 
edge, few studies have been done on comprehensive 
evaluation for these six widely used methods. There- 
fore, we conducted this study to  compare and evaluate 
these methods by computer simulations and empiri- 
cal data. In addition, we recommend that methods 
for estimating Ka and Ks should be used cautiously, 
and conclusions related to  or derived from Ka and Ks 
analyses should not be readily drawn only according 
to results from one method. 

Results 

Comparative results 

Effects of codon jkequency bias and tmnsi- 
tion/tmnsversion bias 

We performed simulations to  generate long sequences 
as consistency analysis (13). Since the two ratios of 
transitional rate between purines ( K R )  and between 
pyrimidines ( K Y )  to  transversional rate often vary 
from 1.5 to 5, we considered 3.75 as a “typical value”. 
Hence, we can fix one of them to 3.75 and set the 
other to  vary from 1 to 10. We plotted estimates of w 
that were calculated with these six methods against 
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ICR (fixing KY = 3.75) under three different codon 
frequencies (Figure 1A-I). Similar results can be ob- 
tained for fixed KR and variable ny (data not shown). 

According to  the results, codon frequencies have 
obvious influence on NG, LWL, and LPB, but mi- 
nor influence on GY, YN, and MYN (Figure 1A-I). 
Although LWL is more biased than NG in w estima- 
tion, they both have a nearly parallel trend with an 
increasing KR and tend to underestimate w for most 
of the parameter combinations examined. These re- 
sults are in substantial agreement with previous stud- 
ies (13 ,19 ) .  

Despite the fact that closer results are sometimes 
estimated for neutral mutation (Figure 1D-F), LPB, 
which was proposed as a modification of LWL, per- 
forms unsteadily as KR increases: overestimate w for 
purifying selection (Figure 1A-C) and underestimate 
w for positive selection (Figure 1G-I). Taking the hu- 
man codon frequencies as an example, when KR = 4 
and 10, the estimates of w given by LPB are 0.316 
and 0.345 for w = 0.3, 0.944 and 0.991 for w = 1, and 
2.380 and 2.406 for w = 3, respectively. As a whole, 
LPB has a better performance than NG and LWL. 

GY and YN give rise to  similar estimates of w 
primarily due to the fact that they both take ac- 
count of major features of DNA sequence evolution 
(transition/transversion rate bias, nucleotide/codon 
frequency bias). Ignoring the difference between KR 

and ny,  GY and YN produce closer estimates only 
when KR NN 3.75. For instance, when ICR = 4, esti- 
mates of w given by GY and YN under equal codon 
frequencies are 0.303 and 0.297 for w = 0.3, 1.010 and 
1.012 for w = 1, and 3.036 and 3.049 for w = 3, re- 
spectively. GY and YN tend to underestimate w when 
ICR < KY and to overestimate w when KR > K Y ,  and 
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their biases become more serious as ICR increases or de- 
creases to extremes (14). Compared with NG, LWL, 
and LPB, GY and YN perform better for most of the 
parameter combinations tested, which is attributable 
to the consideration of more evolutionary features. 

MYN, a modified YN method, allows for two 
different ratios of transitional rate between purines 
( K R )  and between pyrimidines (Q-) to transversional 
rate as well as nucleotide/codon frequency. It can 
become equivalent to YN when KR = KY and thus 
similar results can be observed by the two methods. 
For example, when KR = 4, estimates of w by YN 
and MYN under human codon frequencies are 0.306 
and 0.307 for w = 0.3, 1.025 and 1.026 for w = 1, 
and 3.024 and 3.023 for w = 3, respectively. When 
IER # tcy, MYN sometimes yields biased estimates, 
but it represents a better performance for most of the 
parameter combinations tested. 

We also examined Ks estimations and plotted per- 
centage errors of estimated Ks against KR (Figure 2A- 
I; see Materials and Methods). NG and LWL have a 
tendency to overestimate Ks for most of the param- 
eter settings examined, and the bias of LWL is more 
serious than that of NG, which is consistent with those 
found in w estimations. As to LPB, closer estimates 
of Ks can be obtained only for neutral mutation (Fig- 
ure 2D-F). It tends to give rise to negative percentage 
errors of Ks for purifying selection (Figure 2A-C) and 
positive percentage errors of Ks for positive selection 
(Figure 2G-I). These results also agree well with w 
estimations. 

GY and YN produce similar results of Ks for most 
of the parameter combinations: closer estimation only 
when ICR FZ 3.75, overestimation when KR < IEY (not 
apparent in Figure 2B), and underestimation when 
KR > K Y .  In comparison with NG, LWL, and LPB 
that do not allow for transition/transversion bias or 
nucleotide/codon frequency bias, GY and YN both 
perform better in Ks estimations. MYN gives esti- 
mates of Ks similar to GY and YN when FCR FZ ICY, 

which is in agreement with w estimations. Taking the 
human codon frequencies as an example, when K R  = 
4, the percentage errors of estimated Ks calculated 
with GY, YN, and MYN are -3.957%, -1.991%, 
and -2.114% for w = 0.3, -2.184010, -3.770%, and 
-3.778% for w = 1, and -0.709%, -2.614%, and 
-2.558% for w = 3, respectively. MYN yields biased 
estimates when RR < KY and closer estimates when 
KR > ICY. For instance, when ~ C R  = 1, the percentage 
errors of estimated Ks calculated with GY, YN, and 
MYN are -3.397%, 0.246%, and -9.156% for w = 0.3, 

1.582010, l . O O l % ,  and -7.544% for w = 1, and 5.779%, 
4.383%, and -4.053% for w = 3, respectively. Simi- 
larly, when KR = 10, those with GY, YN, and MYN 
are -13.949%, -14.498%, and -7.114% for w = 0.3, 
-9.991%, -11.787%, and -5.367% for w = 1, and 
-6.386%, -8.213%, and -2.006% for w = 3, respec- 
tively. As a whole, MYN is less biased than other 
methods for most of the parameter combinations ex- 
amined. 

Estimates of Ka with these six methods were also 
tested (Figure 3A-I). NG and LWL underestimate 
Ka, which is consistent with those found in Ks and w 
estimations. Compared with LWL, NG gives slightly 
better estimates of Ka, and they both are more biased 
than other methods. LPB has a tendency to overes- 
timate Ka for purifying selection [Figure 3A-C; it is 
not apparent because of slight underestimations of Ka 
and Ks arising from about 4% loss of sites due to mu- 
tations leading to stop codons ( 2 0 ) ] ,  and to underes- 
timate Ka for neutral mutation and positive selection 
(Figure 3D-I). GY, YN, and MYN perform similarly 
and give rise to less bias in Ka estimation. Taking 
the human codon frequencies as an example, the per- 
centage errors of estimated Ka calculated with GY, 
YN, and MYN for the expected w = 3 (Figure 3H) 
are -6.379%, -7.134010, and -3.466% when ICR = 1, 
-0.749%, -1.851%, and -1.802% when KR = 4, and 
-1.269%, -2.826%, and -5.638% when KR = 10, re- 
spectively. Biases of Ka given by these methods are 
overall relatively smaller when compared with Ks and 
w estimations. 

Effects of divergence time 

Since the amount of sequence variations reflected in 
divergence time ( t )  is always unpredictable within tar- 
geted datasets, we performed simulations to examine 
its effect under the human codon frequencies. Three 
different combinations of KR and ICY were tested: tcR 

(=1) < IEY (=lo), KR (=lo) > ~y (=l), and KR = ICY 

(= 3.75). We plotted estimates of w against t vary- 
ing from 0.1 to 1 for the expected w = 0.3, 1, and 3, 
respectively (Figure 4A-I). 

With t increasing, NG and LWL tend to give bet- 
ter estimates of w for purifying selection and biased 
estimates for positive selection, whereas t has no ob- 
vious influence on them for neutral mutation. LPB 
overestimates w for purifying selection and underes- 
timates w for positive selection, which is consistent 
with those found above. GY and YN represent a sim- 
ilar trend with t increasing: underestimate w when 
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Fig. 1 Estimated w with six methods when KY = 3.75, considering K R  varying from 1 to 10. Three sets of codon 
frequencies are used: equal (A, D, G), human (B, E, H) calculated from human protein-coding genes, and rice (C, F, I) 
derived from rice protein-coding genes. w = 0.3 (A-C), w = 1 (D-F), and w = 3 (G-I) are considered aa typical values 
for purifying selection, neutral mutation, and positive selection, respectively. 

Fig. 2 Percentage errors of estimated Ks with six methods when ICY = 3.75, considering KR varying from 1 to 10. 
Three sets of codon frequencies are used: equal (A, D, G), human (B, E, H) calculated from human protein-coding 
genes, and rice (C, F, I) derived from rice protein-coding genes. w = 0.3 (A-C), w = 1 (D-F), and w = 3 (G-I) are 
considered as typical values for purifying selection, neutral mutation, and positive selection, respectively. 
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Fig. 3 Percentage errors of estimated Ka with six methods when ICY = 3.75, considering IER varying from 1 to 10. 
Three sets of codon frequencies are used: equal (A, D, G), human (B, E, H) calculated from human protein-coding 
genes, and rice (C, F, I) derived from rice protein-coding genes. w = 0.3 (A-C), w = 1 (D-F), and w = 3 (G-I) are 
considered as typical values for purifying selection, neutral mutation, and positive selection, respectively. 

Fig. 4 Estimates of w with s ix  methods considering divergence time ( t )  varying from 0.1 to 1. Sequences are simulated 
with the human codon frequencies derived from human protein-coding genes. Three different combinations of ICR and 
ICY are examined: ICR = 1, ICY = 10 (A, D, G); ICR = 10, ICY = 1 (B, E, H); ICR = ICY = 3.75 (C, F, I). w = 0.3 (A-C), 
w = 1 (D-F), and w = 3 (G-I) are considered as typical values for purifying selection, neutral mutation, and positive 
selection, respectively. 
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K R  < ICY, overestimate w when KR > KY, and yield 
closer estimates when KR = K Y .  As to MYN, the bias 
of estimated w tends to become more serious as t in- 
creases to extremes when KR # ny, whereas t has mi- 
nor influence and closer estimates could be observed 

NG, since the number of substitutions in most cases 
is less than that of sites and thus the influence of K on 
substitutions is not stronger than that on sites (LWL 
considers the transition/transversion bias only when 
counting substitutions). 

when KR = ICY. 

Evaluation results 

NG and LWL 

Interestingly, it seems that NG and LWL, with 
increasing t ,  tend to give better estimates for puri- 
fying selection but biased estimates for positive se- 
lection, whereas t has no influence on them for neu- 
tral mutation (Figure 4). To explain this result, we 

NG considers all possible evolutionary pathways derived an approximate formula for w = Ka/Ks M 
among compared DNA sequences and assumes that (Nd/N)/(Sd/S) = (S/N) X (Nd/Sd) (the symbol of “M” 
each nucleotide is substituted by any other at is due to the absence of correcting for multiple substi- 
equal rate (KR=KY=1) when counting sites and tutions). Therefore, w is composed of two parts: S/N, 
substitutions. It adopts the Jukes-Cantor’s one- which is always underestimated, arising from the as- 
parameter formula (17) to correct for multiple sub- 
stitutions. Since transitions are more likely to occur 
than transversions, NG often underestimates transi- 
tion/transversion rate ratio (6) and thus the num- 
ber of synonymous sites (S), which results in overes- 
timation of Ks and underestimation of w. This phe- 
nomenon can be observed in our simulation results, 
which was also found by Yang and Nielsen (20 ) .  

LWL classifies sites and substitutions as i-fold de- 
generate sites (i = 0,  2, 4) (three-fold degenerate 
sites, ATT, ATC, and ATA, are considered as two- 
fold ones). It considers unequal rates between transi- 
tional and transversional changes only when counting 
substitutions, but equal rates when counting sites. In 
detail, LWL assumes that two-fold degenerate sites 
are one-third synonymous and two-thirds nonsynony- 
mous with Equations 1 and 2:  

sumption of KR = ny = 1 when counting sites by NG 
and LWL; Nd/Sd, which is related to t since an in- 
crease in t leads to more substitutions. For purifying 
selection, synonymous substitutions are more likely to 
occur than nonsynonymous ones. Therefore, small t 
tends to give rise to synonymous substitutions with 
only one difference, whereas an increase in t may re- 
sult in more differences between two compared codons 
and thus provoke not only synonymous substitutions 
but also nonsynonymous ones according to different 
evolutionary pathways. Hence, for purifying selection, 
the value of Nd/Sd is on the rise as t increases, which 
can cancel the underestimation of S/N and thus lead 
to better estimates of w for large t than for small t. 
In a similar way, the value of &/Sd for positive selec- 
tion is on the decrease as t increases, which leads to 
the underestimation of w ;  for neutral mutation, the 
value of Nd is close to that of s d  since synonymous 
and nonsynonymous substitutions per site occur with 
equal frequency and therefore w seems to be nearly 
constant. These theoretical results are consistent well 
with the data found in Figure 4. 

where Li is the number of i-fold degenerate sites, 
and Ai and Bi are the numbers of transitional and 
transversional substitutions per i-fold degenerate site 
(i = 0,  2, 4), respectively. Hence, the total number 
(Ki )  of substitutions per i-fold degenerate site is for- 
mulated as Ki = Ai + Bi. Although the Kimura’s 
two-parameter formulas (15 )  are used for correction 
of multiple substitutions, LWL performs similarly to 

LpB 

LPB, proposed as a modification of LWL, corrects 
for the bias in counting sites by using different for- 
mulas for Ka and Ks estimations (which is the only 
difference between LWL and LPB) with Equations 3 
and 4: 
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LPB considers that Ka comprises two parts: the 
transitional nonsynonymous substitution rate A0 and 
the transversional nonsynonymous substitution rate 
( L O B ~ + L ~ B ~ ) / ( L O + L ~ ) .  Likewise, Ks comprises the 
transitional synonymous substitution rate B4 and the 
transversional synonymous substitution rate (&A2 + 
L4&)/(L2 fL4). Based on these modifications, LPB 
improves the performance of LWL for most of the pa- 
rameter combinations observed in simulations. 

It can be observed ' from our comparative results 
that LPB tends to overestimate w for purifying se- 
lection and to underestimate w for positive selection. 
This result can be explained by assuming Ka = KO 
and Ks = K4 at the perfect condition, since substi- 
tutions at nondegenerate sites are all nonsynonymous 
and those at four-fold degenerate sites are all synony- 
mous (10 ) .  We reformulated the equations of Ka and 
Ks and found that the weighted average of KO and 
A0 + B2 over 0- and 2-fold degenerate sites is consid- 
ered as Ka (Equation 3) and the weighted average of 
K4 and A2 + B4 over 2- and 4fold degenerate sites is 
Ks (Equation 4). 

Let us first examine purifying selection. Transver- 
sions at two-fold degenerate sites can lead to syn- 
onymous substitutions (for example, CGG to AGG), 
whereas those at nondegenerate sites cannot. Since 
synonymous substitutions are more likely to occur 
than nonsynonymous ones for purifying selection, the 
value of Bo is less than that of Bz, which leads to 
KO = (A0 + Bo) < (A0 + Bz). In addition, the value 
of A4 is greater than that of A2 due to the fact that 
synonymous substitutions occur with higher possibil- 
ities at four-fold degenerate sites than two-fold ones. 
As a result, K4 = (A4 + B4) > (A2 + B4). Therefore, 
we can conclude that LPB overestimates w for puri- 
fying selection, arising from Ka > KO and Ks < K4. 
For positive selection, LPB underestimates Ka and 

overestimates Ks in a similar way, resulting in the un- 
derestimation of w. We can see that this theoretical 
conclusion agrees well with simulation results for most 
of the parameter combinations examined. 

G Y ,  YN,  and M Y N  

GY, based on a codon-based model, takes ac- 
count of more features of DNA sequence evolution 
(such as transition/transversion rate bias and nu- 
cleotide/codon frequency bias) and calculates Ka and 
Ks by maximum likelihood estimation. YN, a sim- 
plified version of GY, adopts the Hasegawa-Kishino- 
Yano model (16 )  that also considers these evolution- 
ary features and thus gives a close approximation 
of the maximum-likelihood method. To allow for 
more features of sequence evolution, MYN exploits 
the Tamura-Nei model (18)  and uses two different 
ratios of transitional rate between purines ( K R )  and 
between pyrimidines ( K Y )  over the transversional rate 
when counting sites and substitutions. As a whole, 
these three methods perform better than NG, LWL, 
and LPB, while MYN improves the performance of 
YN for most of the parameter combinations (14). 

However, we cannot conclude that which one of 
them is more accurate than other methods since our 
simulations are merely approximate and all methods 
may more or less give biased results for at least some 
parameter settings. We summarized the above anal- 
yses for these six methods in Table 2. In addition, 
there still have other methods (21-24) that are not 
included in our study. For example, a method simi- 
lar to GY was proposed by Muse and Gaut (24 ), and 
some modified versions of LWL or LPB were improved 
by subdividing two-fold degenerate sites and substi- 
tutions, taking account of transition/transversion rate 
bias in counting sites, correcting for Arginine (ATT, 
ATC, and ATA), and so on. 

Table 2 Mutat ion Models and Evolutionary Features in Different Methods 

Method Mutation model Transition/transversion Codon/nucleotide frequency 
site#' substitution#' 

NG J ukes- Cantor K R = K Y = 1  K R = K Y = 1  equal 
LWL Kimura KR = ICY = 1 KR = K Y  equal 
LPB Kimura 

KR = KY unequal 
YN Hasegawa-Kishino-Yano K R  = KY KR = KY unequal 

unequal 

- * _* equal 

GY Codon-based KR = K Y  

MYN Tamura-Nei KR # K Y  KR # KY 

#KR and KY are assumed by different methods: #'in the step of counting sites and #'in the step of counting substitu- 
tions. *LPB has no specific definition of synonymous and nonsynonymous sites or substitutions. 
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Discussion 

It can be found from our results that incorporating 
more features of sequence evolution (such as tran- 
sition/transversion bias and nucleotide/codon fre- 
quency bias) into Ka and Ks estimations could accu- 
rately capture more reliable estimates among protein- 
coding sequences. Although it is still hard to accom- 
modate the trade-off between considering more pa- 
rameters (evolutionary features) and avoiding over- 
parameterization (25 ) ,  and simple methods (such as 
NG) are more suitable for short sequences, methods 
taking more evolutionary features into account should 
be the first choice to yield estimates with high quality 
and accuracy. 

However, it should also be noted that all methods 
may one way or another give rise to biased results 
for at least some parameter combinations. How can 
we obtain the most reliable estimates of Ka and Ks? 
As mentioned above, these methods adopt different 
nucleotide substitution or mutation models, leading 
to diverse estimates of evolutionary distance (19). In 
addition, since the amount and the degree of sequence 
substitutions vary among datasets, a single model or 
a single method is not adequate for Ka and Ks cal- 
culations. As a consequence, model selection, that 
is, choosing a best-fit model according to compared 
sequences when estimating Ka and Ks, becomes crit- 
ical for capturing appropriate evolutionary informa- 
tion (26) .  Therefore, implementation of different mu- 
tation models in a framework of maximum likelihood 
could help us include as many features as needed in 
Ka and Ks estimations, which accordingly needs the 
Akaike Information Criterion or the Bayesian Infor- 
mation Criterion (27) as a measure of fitness between 
models and data. 

Materials and Methods 

Simulated sequences were generated from hypotheti- 
cal common ancestral sequences. Each codon of the 
common ancestral sequences was randomly chosen 
from 64 codons (except stop codons) according to 
codon frequencies. In this study, we considered three 
sets of codon frequencies derived from three empirical 
datasets: (1) equal codon frequencies, that is, each 
sense codon frequency is 1/(64-the number of stop 
codons) (19); (2) human codon frequencies deduced 
from 39,420 human protein-coding genes from the EN- 
SEMBL database (Release 35; ref. 28);  and (3) rice 

codon frequencies retrieved from 19,079 rice protein- 
coding genes (29). 

In addition to codon frequencies, other parameters 
were set in simulations, including sequence length, di- 
vergence time ( t ) ,  two ratios of transitional rate be- 
tween purines ( K R )  and between pyrimidines ( K Y )  to 
transversional rate, and the selective strength (w = 
Ka/Ks). Although w varies from gene to gene, w = 
0.3, 1, and 3 can be regarded as “typical values” for 
negative selection, neutral mutation, and positive se- 
lection, respectively (3,  13, 30),  which could be ob- 
served from real datasets. To accurately examine the 
effect of one parameter and avoid stochastic errors 
arising from other factors, we simulated sequences 
with 2,000,000 codons. 

To compare the accuracies of Ka and Ks estima- 
tions with different methods, we estimated expected 
Ks and Ka values by counting the numbers of synony- 
mous and nonsynonymous sites of ancestral sequences 
and then using the formulas Ks = 3x(S+N)xt/ (S+ 
wxN) and Ka = wxKs. Considering that simulated 
sequences have different expected values of Ka and 
Ks, we used the formula 100% x [(estimated value) 
- (expected value)]/(expected value) to calculate per- 
centage errors for a better display of relative biases 
between estimated and expected values. 

For Ka and Ks estimations, we used six different 
methods: NG, LWL, LPB, GY, YN, and MYN, 
which have been implemented in our software 
KaKs-Calculator (prepared for submission). For 
error-checking, we also compared the results esti- 
mated by KaKs-Calculator with those by other tools, 
such as PAML (31), in which NG, GY, and YN were 
implemented. 
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