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The purpose of many microarray studies is to find the association between gene 
expression and sample characteristics such as treatment type or sample phenotype. 
There has been a surge of efforts developing different methods for delineating the 
association. Aside from the high dimensionality of microarray data, one well rec- 
ognized challenge is the fact that genes could be complicatedly inter-related, thus 
making many statistical methods inappropriate to use directly on the expression 
data. Multivariate methods such as principal component analysis (PCA) and clus- 
tering are often used as a part of the effort to capture the gene correlation, and the 
derived components or clusters are used to describe the association between gene 
expression and sample phenotype. We propose a method for patient population 
dichotomization using maximally selected test statistics in combination with the 
PCA method, which shows favorable results. The proposed method is compared 
with a currently well-recognized method. 
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Introduction 
The goal of many pharmacogenomics studies is to 
find the association between gene expression and sam- 
ple characteristics, which could be either the condi- 
tions that the samples are exposed to, or the pheno- 
types of the subject that the samples are extracted 
from. One type of sample characteristics is multi- 
categorical (qualitative) classes such as cancer types, 
different treatments, treatment over a time course, 
response to a treatment (yes or no), polymorphism 
of nucleotides, and so on. The research interest for 
such studies is generally to find the genes showing 
differential expressions across the sample categories. 
The approaches for data analysis in this situation are 
typically of the ANOVA type. The expression profile 
of the differentially expressed genes is expected to 
provide insights on the basic understanding of issues 
such as disease mechanism, drug action, therapeutic 
target, gene function, metabolic pathway, or other as- 
pects of cell biology. Another type of sample charac- 
teristics is continuous (quantitative) in nature, such 
as subject tumor size, survival time, cholesterol level, 
and so on. The analysis of interest for such studies is 
also to identify the genes whose expressions are cor- 
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related with the sample phenotypes, but the analysis 
approaches for such a situation are' generally of the 
regression type. The genes whose expressions are as- 
sociated with sample characteristics could be of prog- 
nostic value, and thus could be used to assess the like- 
lihood of the subject's response to a drug treatment, 
or to predict the subject's clinical outcome such as 
tumor growth or time of survival. The genes with 
such properties could be good candidate biomarkers 
for drug targets (for example, mutated genes) or for 
the development of patient-specific therapy (gene ex- 
pression serves as surrogate biomarker for drug re- 
sponse). 

Microarray is a high-throughput technology for 
pharmagogenomics that allows the monitoring of gene 
expression at the genome level. Aside from the high 
dimensionality of microarray data, one well recog- 
nized challenge is the fact that gene expression could 
be complicatedly correlated. Many genes interact and 
highly c+regulate with each other; they may share 
the same molecular function, involve in the same bi- 
ological pathway or other more complicated genetic 
network. Investigating genes independently is not op- 
timal since the univariate approach totally ignores the 
combinatorial effect of gene expression. It is thus im- 
portant that genes should be considered in groups 

110 Geno. Prot. Bioinfo. Vol. 4 No. 2 2006 



Shen and Huang 

rather than individually. Specifically, this research 
focuses on the case where survival time (subject to 
censoring) is the measured phenotype, and discern- 
ing the association between survival time and gene 
expression is the analysis of interest. 

In the past several years, there are quite a few 
publications proposing novel methodologies to sta- 
tistically quantify the association of gene expression 
with patient survival. A frequently used approach is 
to first classify patients into several groups, each of 
which shares a distinct expression profile (based on 
the whole genome or a subset of genes), followed by 
a comparison of the survival profile (such as Kaplan- 
Meier curves) among the patient clusters. A good 
separation of the survival curves indicates that gene 
expression pattern distinguishes (associates with) pa- 
tient survival. To deal with the difficulties of high 
dimensionality and correlation, principal component 
analysis (PCA) is another common approach to build- 
ing survival models because correlated genes would 
project onto the same direction, that is, load onto 
the same principal component (PC). The identified 
PCs could then be treated as covariates replacing all 
the gene expressions that they are derived from. The 
drawback of both methods is that the phenotype in- 
formation is not considered when the principal com- 
ponents or the sample clusters are derived, since the 
data dimension-reduction is based solely on gene ex- 
pression. Recently, more complicated methods have 
been developed to simultaneously take account of gene 
expression correlation and the phenotype association. 
These methods showed improved performance in as- 
sociation modeling ( I  , 2 ) .  

In cancer clinical studies, it is of frequent inter- 
est to simply classify patients into subgroups based 
on prognostic factors such as gene expression. For 

Scenario 1: 

Scenario 2: 

instance, it is desirable to categorize patients into 
high/low risk groups. Such a categorization can pro- 
vide useful input for optimizing patient treatment as- 
signment. Motivated by these realistic considerations, 
we propose a method for patient dichotomization us- 
ing maximally selected test statistics (for example, 
Chi-square test statistics, Wilcoxon rank sum statis- 
tic, and so on) in combination with PCA on gene ex- 
pression. Li and Gui ( I )  explored patient group di- 
chotomization using the risk score function, but the 
choice of cutoff for the two groups is arbitrary. Our 
method identifies the optimal cutoff such that the 
difference between the two groups is maximized. To 
evaluate the performance of the proposed method, Li 
and Gui’s method is chosen as the benchmark in this 
research. 

Results 

Simulations 

In order to compare our method with Li and Gui’s, 
data were simulated according to two scenarios. The 
first scenario assumes that there are two genes, X1 
and X2, correlated with each other and with the 
survival time. The second scenario assumes five 
( X I ,  X2, X3, X4,  X5)  biomarkers, of which the first 
four are correlated to the survival time, with ( X I ,  X,)  
independent of (X3,  X4) ,  and X s  serving as an inde- 
pendent noise in the model. The first scenario demon- 
strates the simplest case, while the second scenario 
resembles a more realistic data setting. In each sce- 
nario, 150 samples were simulated. The correlation 
matrix and the variation levels for each variable are 
shown as follows for the two scenarios respectively: 

0.82 0.72 
Corr ( k; ) = ( i.82 1 0.66 ) , Var ( E; ) = ( !!:) 

0.72 0.66 1 

Y 1 0.43 0.35 0.5 0.35 0 Y 
0.43 1 0.93 0 0 0 
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Evaluation of the abovementioned two methods 
was based on comparing the best PC (having the 
smallest pvalue) of the principai components for Cox 
regression (PC-CR) and that of the principal compo- 
nents for partial Cox regression (PC-PCR) (see Ma- 
terials and Methods). In light of the simulation, only 
the first two PCs were considered. Data were ran- 
domly split into 75% training set and 25% testing 
set. To improve the reliability of the results, the pro- 
cess was repeated for 100 iterations. The two meth- 
ods, PC-CR and PC-PCR, were applied simultane- 
ously and compared in each random split. Table 1 
summarizes the results across the 100 iterations. The 
first column corresponds to the smallest pvalue of 
the 100 iterations; the second column gives the num- 
ber of times that each method was “better” (smaller 
pvalue) between the two; and the third column gives 
the average ranking for each method (2 for smaller 
pvalue, 1 for bigger pvalue, so bigger ranking corre- 
sponds to smaller pvalues). In addition, the number 
of times that the pvalues are below certain thresh- 
olds is given in Table 2. The Kaplan-Meier curves 
of the best separation based on the best component 
from the 100 iterations are plotted in Figures 1 and 2 
for Scenarios 1 and 2, respectively. 

According to the results, the PC-CR model seems 
to be comparable to the PC-PCR model for both 
datasets. Tables 1 and 2 show a similarity in the num- 
bers of iterations that a method returns the smaller 
pvalues from the two models. 

Application to lung cancer data 

The study on lung cancer was conducted by the 
Whitehead Institute and MIT Center for Genome Re- 
search, with the goal to identify subclasses of adeno- 
carcinoma based on patient gene expression profile. 
The dataset consists of a total of 125 snap-frozen 
lung adenocarcinoma tumor samples and 17 normal 
lung specimens. For each of the 125 adenocarcinoma 
samples, there was available clinical and pathologi- 
cal information such as patient age, gender, survival 
time, smoking history, and cancer status. The to- 
tal RNA extracted from samples was used to gen- 
erate cRNA targets, and subsequently hybridized to 
human U95A oligonucleotide probe arrays accord- 
ing to standard protocols. Each array consists of 
12,625 probe sets. See the website http://research. 
dfci.harvard.edu/meyersonlab/lungca/ for more de- 
tails about the study ( 3 ) .  CEL files were down- 
loaded from the website, and the gene expression 
data were subsequently extracted using Affymetrix 
MAS5.0 software (Affymetrix, Santa Clara, USA). 
The averaged expression was used for samples with 
replicates. 

For the current research, the 12,625 probe sets 
were first tested for differential expressions between 
the cancer group and the normal group. Non- 
differentially expressed genes were excluded from fur- 
ther analysis. The significance was based on the fol- 
lowing criteria: mean difference greater than 250, fold 

Table 1 Comparison of the pvalues Between PC-CR and PC-PCR (Simulation) 

Model Best pvalue*’ No. of times that Average ranking*3 
pvalue is smaller*’ 

s1 s2 s1 52 s1 s2 
PC-CR 2.23-9 6.OE9 65 53 1.47 1.53 
PC-PCR 2.2E9 1.1E6 70 47 1.52 1.47 

*‘The best pvalue in the 100 iterations. *‘The number of times that one method outperformed the other. Note: when 
a tie is presented, both numbers are incremented by one. *3The average ranking for each method (bigger ranking value 
means better performance). 

Table 2 Number of Iterations that the pvalues Are Below a Threshold (Simulation)* 

Model pvalue<0.05 pvalue<O.Ol pvalue<0.005 pvalue<0.001 

s1 s2 s1 s2 s1 s2 s1 s2 
PC-CR 99 88 97 64 93 51 88 33 
PC-PCR 100 83 97 61 95 50 83 27 

*Varying pvalue cutoffs are used to define the significance level. At each level, the number of iterations (out of 100) 
passing the significance level is reported. 
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Fig. 1 Kaplan-Meier curves of the best separation from the 100 iterations on the simulated data for Scenario 1. A. 
The PC-CR model. B. The PC-PCR model. Each iteration randomly separates 75% data into the training set and 
25% data into the testing set. 
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Fig. 2 Kaplan-Meier curves of the best separation from the 100 iterations on the simulated data for Scenario 2. A. 
The PC-CR model. B. The PC-PCR model. Each iteration randomly separates 75% data into the training set and 
25% data into the testing set. 

change greater than 2, and false discovery rate ( 4 )  
smaller than 0.01. This resulted in 324 interesting 
probe sets that might be involved in the cancer mech- 
anism (Figure 3). 

In Figure 3, Three patient clusters (rows) and two 
gene clusters (columns) were requested. The last clus- 

ter of samples corresponds to the 17 samples from 
normal patients (with 0% classification error, which 
is not surprising because the probe sets were so se- 
lected and the whole data were used as the “training” 
set). Since the probe sets in each cluster show very 
similar expression pattern, a subset of 30 probe sets 
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Fig. 3 Heat map of the cancer-related genes. Three patient clusters (rows) and two gene clusters (columns) were 
requested. 

Table 3 Comparison of the p-values Between PC-CR and PC-PCR (Lung Cancer Data) 

Model Best pvalue No. of times that Average ranking 
pvalue is smaller 

PC-CR 3.43-4 85 
PC-PCR 1.8E-2 15 

1.85 
1.15 

Table 4 Number of Iterations that the pvalues Are Below a Threshold (Lung Cancer Data) 

Model pvalue<0.05 pvalue<O.Ol pvalue<0.005 pvalue<0.001 
PC-CR 54 19 13 3 
PC-PCR 11 0 0 0 

were “randomly” selected from the three clusters for 
the following analyses. The 17 patient samples were 
left out since there was no survival information avail- 
able for them. 

The two methods were again applied simultane- 
ously and compared in each random split. Each split 
randomly separated 93 (out of the 125) patients into 
the training set, and the remaining 32 patients into 
the testing set. Tables 3 and 4 summarize the re- 
sults from the 100 iterations. Based on these analysis 
results, it is obvious that the PC-CR method outper- 
forms the PC-PCR method in classifying patient risk 

114 Geno. Prot. Bioinfo. 

groups. The Kaplan-Meier curves of the best separa- 
tion from the 100 iterations are plotted in Figure 4 
for the two methods separately. 

To answer the question on how well the model pre- 
dicts the subjects who are likely to die and the sub- 
jects who are likely to survive, Figure 5 shows the area 
under the curve (AUC) versus time for the simulated 
and the lung cancer datasets, respectively. For both 
datasets, the PC-CR model demonstrates more accu- 
racy since it has larger AUC for all time points. For 
the simulated data, the difference between the two 
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and the remaining 32 patients into the testing set. 

AUC vs time AUC vs time 
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Fig. 5 Area under the curve (AUC) versus time (in weeks) for the simulated data based on the second scenario (A) and 
the lung cancer data (B). Estimations are based on the PC-CR model (solid Iine) and the PC-PCR model (dashed line). 

AUC curves ranges between circa 0.05 and 0.1, for 
time between 7 to  23 weeks; while for the lung cancer 
data, it ranges between approximately 0.01 and 0.2, 
for time between 2 to 13 weeks, and the difference is 
larger in the first several weeks up to  week 5. 

Discussion 
It has been realized that in clinical studies drugs show 

varying efficacy on different patients. The variation 
in reaction to a treatment can be due to  many factors, 
an important one of which is the genetic difference in 
the patient population. Pharmacogenomics studies 
have provided a useful tool in developing strategies 
to  identify differences in subject genotype or gene ex- 
pression that could be included in prospective and 
randomized trials to develop a more individualized 
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treatment for patients. In other words, studies need to 
identify molecular biomarkers whose expression signa- 
ture (or expression profile) can help predict response Sample dichotomization using maxi- 
to the proposed therapy. For example, as discussed 
in this paper, a frequent interest for clinical studies is 
to simply divide the subject into high/low risk groups 
based on gene expression profile, so that the assign- 
ment of treatment could be “sub-population specific”. 

Materials and Methods 

mally selected test statistics 
In terms of data analysis, the goal of risk assessment 
is to categorize patients into subgroups using gene ex- 
pression as the surrogate biomarker, that is, to group 
samples in such a way that the association between ex- 

Multiple genes interacting with each other may 
affect response in complex ways. F’rom our analysis, 
we conclude that the PC-CR method provides good 
ability to discri&nate patient subgroups, comparable 
to the PC-PCR method proposed by Li and Gui. Ap- 
propriately utilizing gene-gene co-regulation can aid 
pharmacogenomics to hold the promise that drugs 
might one day be individualized based on genetic ex- 
pressio? profile. Environment, sex, age, lifestyle, and 
many other factors, all can influence a person’s re- 
sponse to medicine, but understanding an individ- 
ual’s genetic profile is the key to creating personal- 
ized drugs more effectively and safely. Pharmaceuti- 
cal companies desire to create better drugs based on 
the association between the expression of a specific 
group of genes and the outcome of a disease. It is 
highly desirable to be able to analyze a patient’s ge- 
netic profile and prescribe the best therapy without 
guessing or taking any risky chances. Therefore, it 
is’important to build accurate predictive models that 
enable better diagnose and prescription. 

In this paper, we developed a potential multivari- 
ate methodology for identifying significant (groups 
of) genes associated with clinical outcomes or other 
sample characteristics. We were able to use the pre- 
dictive genes to find a threshold that could satis- 
factorily classify patients into high/low risk groups. 
This method shall be further applied and assessed on 
different datasets in future research. Li and Gui’s PC- 
PCR method has the advantage of finding the most 
informative PCs by incorporating the survival infor- 
mation when searching for the PCs. Compared with 
Li and Gui’s method, our method has the advantage 
that the cutoff is optimally selected and it is easier to 
apply in practice. It is reasonable to expect that the 
PC-PCR method will do better if the cutoff point is 
chosen based on maximally selected test statistics, but 
that is outside the scope of this research. Even though 
our method is developed for survival data analysis, it 
could be similarly applied to more general phenotypes 
such as tumor size, treatment type, and so on. 

pression values and phenotype measure is statistically 
significant. Suppose that the goal is to separate pa- 
tients into two risk groups (high/low) based on the ex- 
pression of one gene, the following gives the algorithm 
for identifying the best cutoff of the expression and 
subsequently calculating the significance level of the 
difference between the two risk groups. This method 
was originally developed by Miller and Siegmund ( 5 ) .  

Algorithm for optimal dichotomization of samples 
using gene expression: 

1. Sort the dataset by increasing expression value 
of the gene (or the PC), and choose the searching 
range [ E I , E ~ ]  of the expression data (for example, €1 
= lo%, EZ= 90%. Cutoffs close to the ends give un- 
stable results). 

2. Start the threshold from quantile ~1 of the ex- 
pression values, separate the samples into two groups 
using this threshold as the cutoff. 

3. Achieve the statistic (Chi-square test statistics, 
Wilcoxon rank sum statistic, log-rank, etc.) or pvalue 
for the testing difference of the phenotype in the two 
groups. 

4. Repeat Steps 2 and 3 for each distinct value in 
the interval [&I, €21 of the expression intensities. 

5. Find the optimal test statistic (largest test 
statistic or smallest pvalue) and its corresponding 
threshold. 

6. Calculate the significance of the difference be- 
tween the two groups, which is defined by the optimal 
cutoff with the pvalue adjusted by: 

where z is an appropriate transformation of the test 
statistic (for example, square-root of the Chi-square 
statistics, or the untransformed Wilcoxon rank sum 
statistic) or a transformation of pvalue given by 
z = @-‘(l - Pmin/2), in which Pmin is the observed 
minimal pvalue; 4 denotes the standard normal prob- 
ability density function, and @ is the standard normal 
distribution function. For details, please see Miller 
and Siegmund ( 5 )  and Halpern ( 6 ) .  
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Principal components for Cox regres- 
sion (PC-CR) 

PCA is a dimension reduction method widely applied 
to high-dimension microarray data, which is designed 
to capture the maximum variation of the dataset in 
terms of PCs. In other words, this method tries to 
reduce the dimension of the dataset, retaining the 
most important information while filtering out the 
noise. PCs are a set of variables that summarize the 
maximum amount of variation in the original dataset 
and at the same time are uncorrelated to each other. 
Specifically, the first PC is the combination of vari- 
ables that explains the greatest amount of variation 
of the data. The second PC captures the next largest 
amount of variation and is independent to the first 
PC, and so on. PCA can also be viewed as finding 
a projection of the observations onto orthogonal axes 
contained in the space defined by the original vari- 
ables. The criteria are: the first axis includes the 
maximum amount of variation, the second axis in- 
cludes the maximum amount of variation orthogonal 
to the first, and the third axis contains the maximum 
amount of variation orthogonal to the first and sec- 
ond axis, etc., until the last axis contains the least 
amount of variation (7). 

The Cox regression model (8) is widely used 
in the analysis of survival time to delineate the 
effect of explanatory variables. Suppose there are 
n number of patients, and p number of genes. Let 
X,,,  = { X I ,  X 2 , .  . . , X,} denote the gene expression 
data matrix that is used to predict the patient sur- 
vival. The datum for the ith subject is denoted by 
(ti, 6i ,  zil, zi2,. . . ,z ip),  where 6i is the censoring indi- 
cator, and ti is the time to event outcome such that 
ti is the survival time if &=O or is the censoring time 
if &=1. Meanwhile, i (i=l, . . . , n) represents the pa- 
tient index, and j (j=l,. . . ,p) represents the gene 
index. 

For the PC-CR method, PCA is first performed 
on X n x p ,  and the resulted PCs are treated as new 
variables for the Cox regression model. Since the cor- 
related genes would load onto the same PC, and that 
the PCs are orthogonal to each other, multicolinearity 
is not an issue. Due also to the orthogonality, each 
PC could be fitted into the Cox model separately and 
the significant ones could be independently identified, 
then the significant PCs can be put together into the 
final Cox model. Finally, the significant gene list can 
be obtained by observing which ones are highly corre- 
lated or heavily loaded onto the PCs in the final Cox 

model. The hazard function of the considered Cox 
model could be written as: 

where Xo(t) is an unspecified baseline hazard func- 
tion, X is a gene subset of X n x p ,  k is the number of 
PCs selected into the model, and f ( X )  is the log haz- 
ard ratio, which is also called risk index score. Like 
the PCs, f ( X )  is a linear combination of X. 

The high/low risk patient subgroups is to be clas- 
sified based on the values of f ( X ) .  In particular, 
rather than choosing the cutoff point arbitrarily, we 
propose that the cutoff point is determined by the 
procedure developed by Miller and Siegmund ( 5 )  as 
discussed above. The significance of the difference 
between the two risk groups is correspondingly deter- 
mined. 

Principal components for partial Cox 
regression (PC-PCR) 

Partial least square (PLS; ref. 9 )  is a method for mod- 
eling linear regression equations by constructing new 
explanatory variables (often called latent components 
or projections) using linear combinations of the orig- 
inal variables. Unlike PCA, the PLS method makes 
use of the response variable in constructing the latent 
components, so it does not suffer the drawback that 
clinical outcome information is ignored in the p r e  
jection step. Li and Gui (1)  proposed the PC-PCR 
method as an extension of PLS to the Cox model. 
Their algorithm involves constructing predictive com- 
ponents by iterative fitting the Cox regression model 
and least square fitting to the residuals from the pre- 
vious Cox model. The identified components are then 
used in the Cox model for building a predictive model 
for clinical outcomes. The goal of PC-PCR is to build 
the following model: 

where each component of T k  and f ( X )  is a linear com- 
bination of X = { X I ,  X2 , .  . . , X,} (some coefficients 
may be zero). The first component is defined as 
Vlj = Xj - ?fj, where Zj is the sample means of 
the jth column, and V1j is a standard value of X j .  
Then, for each column j ,  the components are fitted 

into the model X ( t )  = Xo(t)exp(j?ljVlj). Let flu be 
A 
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the estimate of / ? l j  derived from the maximum par- 
tial likelihood estimate, in order to combine V1j into 
one component, the first component is represented 

by TI = C Plj @lj Vlj, where wlj is a weight that is 

proportional to the variance of Vlj. The information 
in Xj that is not explained by TI would remain in the 
residuals when regressing TI against Xj, or equiva- 
lently against V1j since V1j is just another form of Xj. 
Iteratively, V(i+l)j = V , j  - +Ti and the following 
Cox regression will be achieved: 

P A 

j = 1  

V;. Ti 

Sensitivity (c ,  t If(X)) = Pr{f(X) > c lA(t) = 1 )  
Specificity (c,  t If(X)) = Pr{f(X) 5 c lA(t) = 0 )  

(6) 
In the above equations, f(X) represents the risk 

index score, and A(t )  is the event indicator at time 
t ,  with A(t)=l representing an event (death) and 
A(t)=O a censoring. Therefore, sensitivity is the pro- 
portion of patients classified into the high risk group 
based on cut point c among the patients who died 
(that is, an event occured) at a given time point 
t ;  it is equivalent to the proportion of true posi- 

X ( t )  = &(t) exp(/?lTl+/?zTz+. . .+/?,Ti+@(i+l)jVi+l)j) tives. Correspondingly, specificity is the proportion 
of patients classified into the low risk group by cut 

and each Ti+l will be constructed as point c among the patients who survived to time t 
or longer. In both proportions, greater value means 

P A better classification. The ROC curve, denoted by 
ROC(t If(X)), is the plot of Sensitiwity(c, t I f ( X ) )  
versus [l-Specificity(c, t I f ( X ) ) ]  with the cutoff point 
c varying. It is worth mentioning that the sensi- 
tivity value is generally greater than the value of 
( 1  - Specificity) because there are greater proportions 

P P of true negative than false positive in practice. A 
greater ratio of Sensitiwityl(1-Specificity) indicates 
better prediction at the cut point. Graphically, if sen- 
sitivity is plotted on the y-axis and (1-Specificity) on 
the x-axis, the ROC curve would be above the 45 de- 

is used to prediction. In the following, AUC(t If(x)) 
denote the area under the curve of ROC@ If(X)). 

(4) 

Ti+l = C m(i+l)j P ( i + l ) j  V i + l ) j  
j=1 

The risk score function f(X) can be written in terms 
of x: 

f(X) = c/?pj = cp3f(Xj  - z j )  (5) 
j = 1  j = 1  

Li and Gui used the mean Of the risk “Ores Of 

cutoff point to divide the patients into high and low 
risk groups. 

the patients in the training set, which b zero, as the gree line. Consequently, greater AUC indicates better 
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