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The ability to predict the subcellular localization of a protein from its sequence 
is of great importance, as it provides information about the protein’s function. 
We present a computational tool, PredSL, which utilizes neural networks, Markov 
chains, profile hidden Markov models, and scoring matrices for the prediction 
of the subcellular localization of proteins in eukaryotic cells from the N-terminal 
amino acid sequence. It aims to classify proteins into five groups: chloroplast, 
thylakoid, mitochondrion, secretory pathway, and “other”. When tested in a five- 
fold cross-validation procedure, PredSL demonstrates 86.7% and 87.1% overall 
accuracy for the plant and non-plant datasets, respectively. Compared with Tar- 
getP, which is the most widely used method to date, and LumenP, the results 
of PredSL are comparable in most cases. When tested on the experimentally 
verified proteins of the Saccharomyces cerevisiae genome, PredSL performs com- 
parably if not better than any available algorithm for the same task. Rirther- 
more, PredSL is the only method capable for the prediction of these subcellu- 
lar localizations that is available as a stand-alone application through the URL: 
http://bioinformatics.biol.uoa.gr/PredSL/. 
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Introduction 
The subcellular localization of a protein is indica- 
tive of its function. Most proteins in eukaryotic cells 
are synthesized in the cytosol and are translocated 
to various subcellular compartments with the aid of 
a targeting sequence (1). In most cases of mito- 
chondrial (mTP), chloroplast (cTP), thylakoid lumen 
(lTP), and secreted proteins (SP), this targeting se- 
quence is in the N-terminal. There have been efforts 
to use several types of information towards predicting 
the subcellular localization of proteins in recent years 
( 2 ) ,  including the use of protein homology ( 3 ) ,  the 
whole amino acid composition ( 4 ) ,  quasi-sequence- 
order effect ( 5 ) ,  evolutionary and structural infor- 
mation (6), and the N-terminal targeting sequence 
(7).  The techniques used for this purpose include 
statistics ( B ) ,  weight matrices ( 9 ) ,  text mining (1 a) ,  
and machine learning methods such as support vec- 
tor machines (SVMs; ref. 11), hidden Markov mod- 
els (HMMs; ref. 12-14), feed-forward neural networks 
(7) ,  and recurrent neural networks (15). Currently, 
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the most widely used methods for the prediction 
of protein subcellular localization are SignalP (16), 
ChloroP (17), and TargetP (7) ,  which use the N- 
terminal residues of a sequence and two layers of neu- 
ral networEs for prediction. 

Here, we present a novel approach named PredSL 
for the prediction of protein subcellular localization 
based on the presence of an N-terminal targeting 
sequence, combining several of the techniques men- 
tioned above. We use the N-terminal targeting se- 
quence as it is responsible for the specific targeting 
of most proteins belonging to the particular subcel- 
lular localizations. Therefore, we casnsider it to be 
sufficient to provide a reliable Prediction. Other ap- 
proaches, using for instance the whole amino acid se- 
quence for prediction, have been shown to produce 
higher accuracy in some circumstances, but we did not 
consider them here. This is because the N-terminal 
sequence-based prediction also offers a useful biolog- 
ical insight into the mechanism of prlotein targeting. 
For instance, a predictor that uses the whole amino 
acid sequence as input may be biased against par- 
ticular protein families, reflecting the distinct bio- 
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logical functions of the organelles that they are tar- 
geted to. While using the N-terminal sequence, we 
are in accordance (at least for the vast majority of 
the proteins targeted to the particular subcellular lo- 
calizations) with the experimentally derived evidence, 
supporting the idea that the N-terminal sequence is 
sufficient for the appropriate targeting. The tool de- 
veloped here classifies proteins into five subcellular 
localizations (chloroplast, thylakoid, mitochondrion, 
secretory pathway, and “other”), and is freely avail- 
able for download, unlike other methods that perform 
a similar task. It is also freely available for academics 
on the web. 

Results and Discussion 

The prediction tool was tested using a five-fold cross- 
validation procedure (Table 1). The comparison of 
PredSL with TargetP cannot be made in an objec- 
tive manner, as the datasets used for the training are 
different. However, comparing the results from the 
cross-validation of PredSL and the results of TargetP 
in Emanuelsson et al (7 ) ,  we found that in most cases 
the sensitivity, specificity, and Matthew’s correlation 
coefficient (MCC) achieved by PredSL are compara- 
ble, if not better. Meanwhile, PredSL has the ad- 
vantage of offering a prediction for the lumen target- 
ing peptide (1TP). The results of the 1TP pre$iction, 
compared to that of LumenP ( I B ) ,  a module not in- 
cluded in the TargetP web server, are significantly 
better. The 1TP prediction (Table 2) was tested on 
the whole dataset, resulting to 91.9% accuracy, com- 
pared to 88.8% provided by the LumenP predictor. 
The cleavage site prediction is also better: 88.7% of 
the sequences have their 1TP cleavage sites predicted 
within f 2  residues, compared to 75.1% that the Lu- 
menP predictor estimates correctly. These results 
were based on the complete dataset of 259 sequences. 
On a redundancy reduced dataset of 109 sequences, 
which was obtained using cd-hit (19) by removing 
sequences that had more than 40% sequence homol- 
ogy, we obtained 85.3% accuracy of prediction con- 
cerning the existence of the lTP, and 82.4% accuracy 
concerning the prediction of the cleavage site, which 
are better than the 82.4% and 70.1% accuracy of the 
LumenP predictor, respectively. When testing with 
a five-fold cross-validation, we obtained 87.3% accu- 
racy of prediction concerning the existence of the lTP, 
and 66.1% accuracy concerning the prediction of the 
cleavage site, compared to the 87.0% and 54.8% ac- 

curacy of the LumenP predictor, respectively. Using 
a negative test set of 2,400 sequences of the proteins 
located in the chloroplast but not in the thylakoid lu- 
men or the membrane, only 5.3% were identified with 
the 1TP. 

In an effort to compare PredSL with the al- 
ready available prediction tools in a real dataset, we 
used the information from the YeastGFP database 
(http://yeastgfp.ucsf.edu). In this publicly available 
resource, the results of the global analysis of pro- 
tein localization studies in the budding yeast Saccha- 
romyces cerevisiae are deposited, which were obtained 
with the use of green fluorescent protein (GFP; ref. 
20) .  The comparison was made against TargetP, iP- 
SORT, and Predotar, mainly because they are the 
most commonly used and successful prediction meth- 
ods and are readily available to the public. TargetP is 
considered to be the most reliable tool currently avail- 
able. It consists of two layers of feed-forward artificial 
neural networks. By using the N-terminal sequence of 
a protein, it classifies the protein into mitochondrion, 
chloroplast, secretory pathway, or “other” localiza- 
tion. iPSORT is one of the oldest available prediction 
methods ( Z I ) ,  which is based similarly to TargetP 
on identifying N-terminal sorting signals. However, 
it uses simple empirical rules (charge, hydrophobic- 
ity, etc.) that are amenable to human intervention 
whereas at the same time are interpretable to visual 
inspection. iPSORT is available to the public also as 
a web server and as a stand-alone executable appli- 
cation. Lastly, we used Predotar, which is also based 
on feed-forward neural networks for identifying the N- 
terminal targeting signals. Predotar is also available 
as a stand-alone application and its use was also dic- 
tated by the need to compare our method with other 
available stand-alone applications. 

Table 3 shows that PredSL significantly outper- 
forms the iPSORT algorithm and it also performs 
similarly to TargetP and Predotar. Based on the 
above results tested on an experimentally character- 
ized genome, it can be assumed that the same will 
also hold, approximately, for other real-life applica- 
tions of these software tools. Towards this end, we 
applied the PredSL algorithm in various completely 
sequenced genomes of organisms belonging to differ- 
ent taxonomic groups (plants, fungi, mammals, pro- 
tozoa, arthropoda, and fishes). The results are pre- 
sented in Table 4 and are generally in agreement with 
previously published estimates for the particular or- 
ganisms. For instance, MITOPRED predicts 4.8%, 
4.3010, lo%, 6.3%, and 4% mitochondria1 proteins for 
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Table 1 Comparison of the Localization Performance of PredSL and TargetP Tested by Five-fold 
Cross-validation and Self-consistency* 

- 
Predictor set Overall accuracy (%) Category Sensitivity Specificity MCC 
A. PredSL (cross-validation/self-consistency) 
Plant 86.7188.3 cTP 0.90/0.90 0.80/0.91 0.8210.88 

mTP 0.8910.96 0.8710.81 0.8410.85 
SP 0.9610.95 0.9210.89 0.91/0.90 
other 0.7010.72 0.8610.95 0.7410.79 

Non-plant 87.1192.5 mTP 0.8810.91 0.8410.96 0.80/901.5 
SP 0.9410.95 0.91/0.91 0.89/0.!30 
other 0.8010.92 0.8610.91 0.7710.88 

B. TargetP (cross-validation/self-consistency) 
Plant 85.3190.4 cTP 03510.96 0.6910.78 0.7210.84 

mTP 0.821038 0.9010.95 0.7710.88 
SP 0.9110.94 0.9510.94 0.90/0.92 
other 0.8510.85 0.7810.87 0.7710.84 

Non-plant 90.0/92.2 mTP 0.8910.92 0.67/0.72 0.7310.79 
SP 0.9610.97 0.9210.95 0.9210.95 
other 0.8810.90 0.9710.97 0.8210.86 

*The PredSL datasets for plant proteins consist of 249 chloroplast sequences, 250 mitochondrial sequences, and 253 
secreted proteins’ sequences, whereas for non-plant proteins the datasets consist of 366 mitochondrial sequences and 
370 secreted proteins’ sequences. The TargetP datasets for plant proteins consist of 141 chloroplast sequences, 368 
mitochondrial sequences, and 269 secreted proteins’ sequences, whereas for non-plant proteins the datasets consist of 
371 mitochondrial sequences and 715 secreted proteins’ sequences. 

Table 2 Comparison of PredSL and LumenP on the Prediction Accuracy of the 1TP and 
Its Cleavage Site* 

Dataset 1TP prediction (%) Cleavage site prediction 
( k 2  residues) (%) 

PredSL LumenP PredSL LumenP 
Complete set 91.9 88.8 88.7 75.1 
(259 sequences) 
Reduced set 85.3 82.4 82.4 70.1 
(40% similarity) 
Cross-validation 87.3 87.0 66.1 54.8 
(259 sequences) 

*Tested by the fivefold cross-validation on the complete dataset (259 sequences) and on a 40% redundancy reduced 
dataset by cd-hit (109 sequences), respectively. 

Table 3 Comparison of PredSL with Other Three Prediction Tools on the Subcellular Localization 
Prediction of the S. cerevisiae Proteins 

Subcellular localization PredSL iPSORT TargetP Predot ar 
Total (unknown=2,164) 2,62113,554 (73.7%) 2,40413,554 (67.6%) 2,61613,554 (71.6%) 2,47513,554 (69.6%) 
Mitochondrion 3011499 (60.3%) 3041499 (60.9%) 306/499 (61.3%) 315/499 (63.1%) 
Secretory pathway 2241850 (26.4%) 2061850 (24.2%) 2571850 (26.4%) 2041850 (24.0%) 
Other 2,096/2,305 (90.9%) 1,894/2,305 (82.2%) 2,053/2,305 (89.1%) 1,956/2,305 (84.9%) 
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Table 4 Prediction Performance of PredSL on Various Completely Sequenced Genomes from Different 
Taxonomic Groups 

Group Organism cTP 1TP mTP SP other Total 

Plants Arabidopsis thaliana 4,596 (13.8%)* 184 (5.5%) 5,326 (16.0%) 8,191 (24.6%) 15,160 (45.6%) 33,273 
Thalassiosira 
pseudonana 

Fungi Schizosaccharomy ces 
pombe 
Saccharomyces 
cerevisiae 
Magnaporthe grisea 

Mammals Homo sapiens 
Mus musculus 

Protozoa Plasmodium 
falciparum 
Dictyostelium 
discoideum 

Arhthropoda Drosophila 
melanogaster 
Bombyx mori 

Fishes Ciona intestinalis 
Takifugu rubripes 

21 (0.2%) 1,406 (12.3%) 2,493 (21.9%) 6,686 (58.7%) 11,397 

- 586 (11.8%) 511 (10.3%) 3,890 (78.0%) 4,987 

- 566 (13.0%) 635 (14.5%) 3,167 (72.5%) 4,368 

- 1,314 (11.8%) 2,364 (21.3%) 7,431 (66.9%) 11,109 
- 2,727 (9.4%) 7,221 (24.8%) 19,159 (65.8%) 29,107 
- 3,353 (9.4%) 9,099 (25.5%) 23,274 (65.2%) 35,726 
- 314 (6.2%) 706 (14.0%) 4,029 (79.8%) 5,049 

644 (4.7%) 2,158 (15.8%) 10,878 (79.5%) 13,680 - 

- 1,949 (10.5%) 3,973 (21.5%) 12,576 (68.0%) 18,498 

- 

- 

- 

1,627 (7.6%) 2,648 (12.4%) 17,027 (79.9%) 21,302 
1,383 (8.7%) 2,370 (15.0%) 12,099 (76.3%) 15,852 
1,617 (4.3%) 4,478 (12.0%) 31,344 (83.7%) 37,439 

*We list the total number of sequences classified in each subcellular location and their percentage in the whole genome. 

Homo sapiens, Caenorhabditis elegans, S. cerevisiae, 
Drosophila melanogaster, and Arabidopsis thaliana, 
respectively. These estimates are clearly lower than 
the ones predicted by PredSL, but it is known that 
MITOPRED, which also uses profile HMMs derived 
from domains with known localization to the mito- 
chondria, shows greater specificity in predicting pro- 
teins targeted to mitochondria (though without pre- 
dicting any other localization). This fact was also 
acknowledged in the respective paper (13 ) ,  where the 
work of Kumar et al (22) was also cited, pointing 
to an overall estimate of 13% mitochondria1 proteins 
in the yeast genome. Similar results were also ob- 
tained by the recent development of MitPred (23) ,  
which also uses profile HMMs coupled with SVM. 
Chloroplast located proteins in A .  thaliana predicted 
by TargetP were of the same magnitude (approxi- 
mately 15% of the genome), whereas proteins targeted 
to thylakoid were also predicted by LumenP to be 
more rare (<1%) (24). In another recent work (25),  
among the 28,952 protein sequences of A .  thaliana 
that were tested, TargetP and Predotar respectively 
predicted 4,780 and 4,582 proteins to be chloroplast 
localized. Among these proteins, 1,947 were predicted 
to be chloroplast localized by both predictors. These 
figures are also in agreement with the results obtained 
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by PredSL and provide further evidence that, with 
the combination of the results of many independently 
developed and reliable predictors, we may have more 
specific estimates. PredSL thus, could be used in con- 
junction with the already established methods, and it 
would be interesting to perform large-scale analyses 
in order to discover the degree of concordance of the 
various predictors. In a completely new genome (that 
is, a genome of an organism with few homologous se- 
quences to those already used to train the methods), it 
would be interesting to have the option of using var- 
ious predictors and obtain different sets of proteins 
“predicted” to the various subcellular localizations. 
In this situation, the proteins predicted by all the al- 
gorithms would be the most “reliable”. 

In conclusion, PredSL is currently the only 
method that performs classification of eukaryotic pro- 
teins to the five subcellular localizations: chloro- 
plast, thylakoid, mitochondrion, secretory pathway, 
and other. It uses a combination of several methods in 
order to exploit different properties of the amino acid 
sequence and results to a reliable classification of the 
proteins. When compared with other available meth- 
ods such as TargetP, iPSORT, and Predotar, PredSL 
offers a comparable if not better reliability concerning 
the translocations of proteins to the chloroplast, the 
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mitochondrion, and the secretory pathway. Moreover, 
it offers the option of a reliable prediction of protein 
targeting to the thylakoids of the chloroplast, a fea- 
ture not offered by any other publicly available tool. 
Finally, it is one of the very few tools for subcellular 
localization prediction that is available for download 
as a stand-alone application, and it is the only one 
performing such a classification. 

Materials and Methods 

Datasets 

The training data were extracted from the release 3.5 
of UniProt (26). The datasets were initially extracted 
requiring the keyword “Eukaryota” in the “OC” field 
of their entry. If in the same field there was the 
keyword “phyta” or “planta”, the sequences were in- 
cluded in the plant dataset. Otherwise, they were 
included in the non-plant dataset. Sequences that 
did not have an N-terminal methionine (M) were ex- 
cluded from the datasets, as well as those including 
either B, Z, or X. The datasets were split into chloro- 
plast, mitochondrial, secreted, cytoplasmic, and nu- 
clear proteins. For the first three categories, it was 
required that they contain the keywords “TRANSIT” 
or “SIGNAL”, and “Chloroplast” or “Mitochondrial” 

1.First layer of networks 

3.Cleavage site prediction 
networks 

Query sequence: 
MAAFLIPR ....... ... 

SCORES 

in the “FT” field. For the others, it was required 
that they contain the keyword “Cytoplasm” or “NU- 
cleus” in their “CC” field. Sequences that had more 
than one subcellular localization assigned to  them 
were excluded from the datasets. After a 40% re- 
dundancy reduction using the program cd-hit (19), 
a plant set consisting of 1,309 sequences (249 chloro- 
plast, 62 mitochondrial, 422 secreted, 171 cytoplas- 
mic, and 405 nuclear sequences) was obtained and also 
a non-plant set of 10,559 sequences (366 mitochon- 
drial, 5,247 secreted, 1,458 cytoplasmic, and 3,488 
nuclear sequences). The training set construction was 
based on having a positive set and a negative set of 
the same size, consisting of equal numbers of the other 
categories. Because of the small size of the plant mi- 
tochondrial set, we used the mitochondrial sequences 
from the non-plant set as well. 

Algorithm 

PredSL employs a combination of mural networks, 
Markov chains, scoring matrices (PrediSi), and 
HMMs, in order to get a number of scores for each 
sequence. These scores are then fed into a neural net- 
work, which makes the final prediction of the sub- 
cellular localization. More specifically, the algorithm 
follows a number of steps (Figure 1): 

2.lntegratlng networks 

4.Calculation of average from 
residue 1 to cleavage site 

El 
5Prediction of SP 

by PrediSi 

1 MarkovChains 1 
6.Discrimlnation In two classes 

using Markov chains 

IHMMER I 
7.Use of HMMER to 

identify the presence of a 
targeting sequence ‘motif‘ 

8. FINAL 
NETWORK 

PREDICTION 

chloroplast 

mitochondrion 

secreted 

other 

9. HMMER 

thylakoid 

Non-thylakoid 

Fig. 1 An schematic overview of the PredSL algorithm. 
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1. Initially we create a first layer of two paral- 
lel neural networks (cTP and mTP) that distinguish 
between chloroplast and mitochondrial targeting se- 
quences. For the training of these networks, we use 
the NevProp4 package (http://brain.unr.edu/publi- 
cations/), which utilizes a version of the Quickprop 
algorithm (27), having 4 hidden units and the in- 
put window size is 55 and 35 amino acid positions for 
each network, respectively. Each amino acid is repre- 
sented by a set of 20 nodes with one of them switched 
on. For example, alanine is represented by the vector 
“10000000000000000000”. It results in 55 x 20=1100 
and 35 x 20=700 input nodes for each network, respec- 
tively. Each network produces 100 output scores for 
the 100 N-terminal residues of each sequence. 

2. The output scores for the 100 N-terminal 
residues of each sequence from each network are fed as 
input into two integrated neural networks, again one 
for each category (cTP and mTP), and are trained us- 
ing the same sets without hidden units, thus providing 
two scores. Since at this stage we are not interested in 
the prediction of the cleavage site, the length of 100 is 
sufficient for the discrimination even though in many 
cases the targeting sequence is significantly shorter, 
and in some others longer. 

3. Moreover, from the output scores of the first 
neural network, we calculate an approximate cutoff, 
under which the residues no longer belong to  a target- 
ing peptide, and we take a window of 40 amino acid 
positions for which we estimate the cleavage site of 
the cTP or mTP correspondingly, using a set of neu- 
ral networks. For the training of these networks, we 
only use the sequences that have definite annotations 
concerning the cleavage site as positive data. It results 
in a reduction of the numbers of sequences in the cTP 
and mTP datasets to 122 and 31 correspondingly for 
the plant set and the mTP dataset, and to  241 for 
the non-plant set. We use equal numbers of positive 
and negative sequences, and the negative sequences 
consist of equal representation of each of the negative 
datasets. Due to the small number of sequences used 
in the negative dataset, for each case (cTP and mTP) 
we train five neural networks with different sets of se- 
quences as negative, in order to make the prediction 
more objective. For training, after experimenting ini- 
tially using several window sizes, we choose the ones 
with the best performance; for the prediction of the 
cTP cleavage site it is 27 residues around the cleav- 
age site (-20, +6), and for the prediction of the mTP 
cleavage site it is 21 residues around the cleavage site 
(-12, +8). The output score is the average of those 

of the five neural networks. 
4. We calculate the average of the output scores of 

the first neural network from the first position to  the 
predicted cleavage site for each set of networks and 
obtain two more scores. 

5. Next we use the PrediSi algorithm (9) avail- 
able at http://www.predisi.de, which predicts signal 
peptides for secreted proteins using weight matrices, 
getting one more score. 

6. Subsequently, we use a combination of positive 
and negative sets to train a simple first-order Markov 
chain to distinguish sequences between the two classes 
(28). The combinations used for the plant set as posi- 
tive/negative are chloroplast/cytoplasmic, mitochon- 
drial/cytoplasmic, chloroplast/mitochondrial, mito- 
chondrial & chloroplast/cytoplasmic, mitochondrial 
& chloroplast/secreted, chloroplast/mitochondrial & 
cytoplasmic, and for the non-plant set are mitochon- 
drial/cytoplasmic, mitochondrial/secreted, mitochon- 
drial/cytoplasmic & secreted. Thus, we acquire six 
scores for the plant proteins and three for the non- 
plant. 

7. Finally, using the release 2.2 of HMMER (29), 
we generate profiles for the cTP and mTP and search 
the 120 N-terminal residues of the sequences for them. 
The length of the 120 N-terminal residues is used to 
ensure that we take into account most of the target- 
ing sequences, even if they are longer than the av- 
erage length. The alignments used to generate the 
profiles are created as follows: For the cTP, the first 
15 residues are aligned in the left, the next 8 residues 
are aligned in the middle, and the rest, up to  the cleav- 
age site plus 9 residues, are aligned to the right. For 
the mTP, the first 10 residues are aligned to the left, 
and the rest, up to the cleavage site plus 9 residues, 
are aligned to  the right. In this manner we get two 
more scores for each sequence. Therefore, we have 13 
scores for the plant sequences and 7 for the non-plant 
sequences. 

8. We feed these scores to a final neural network, 
which has been trained with equal numbers of se- 
quences from each category (chloroplastic, mitochon- 
drial, secreted, and other) and using six hidden units 
for the plant set and three for the non-plant set. The 
output consists of one score corresponding to  each 
subcellular localization (chloroplast, mitochondrion, 
and secretory pathway). If all the scores are less than 
a certain cutoff empirically determined, the sequence 
is classified as “other”. Otherwise the prediction is 
based on the largest score. 

9. The proteins predicted as chloroplast are then 
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searched for certain HMM-profiles from position 30 
to  120 for the existence of the 1TP. We search from 
position 30 of the precursor sequence to  avoid false 
positives, since it is improbable that there will be an 
1TP within the 30 N-terminal residues, and we ter- 
minate the search in position 120 since the average 
length of a cTP is between 30-90 residues. There- 
fore, the 1TP should in theory be detected within 
the 120 N-terminal residues. The profiles are cre- 
ated using the datasets from LumenP (18)  by align- 
ing with ClustalW (30), having 35 residues previous 
to  the 1TP cleavage site plus 6 positions after that. 
Three such profiles are used: one from the proteins 
following the Sec-pathway, one from those following 
the TAT-pathway, and one including all proteins. If 
even one output score from searching the sequence is 
above the cutoff (-4), the protein is then classified 
as “thylakoid” . 

Cleavage site prediction 

Depending on the prediction of the subcellular local- 
ization, we use the corresponding cleavage site predic- 
tion from the neural networks (cTP and mTP) or Pre- 
diSi (9) as a final prediction of the cleavage site. For 
the lTP, we use the prediction obtained by aligning 
the significant hits to the model generated by HM- 
MER (29). 
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