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Many classes of non-coding RNAs (ncRNAs; including Y RNAs, vault RNAs, 
RNase P RNAs, and MRP RNAs, as well as a novel class recently discovered in 
Dictyostelium discoideum) can be characterized by a pattern of short but well- 
conserved sequence elements that are separated by poorly conserved regions of 
sometimes highly variable lengths. Local alignment algorithms such as BLAST are 
therefore ill-suited for the discovery of new homologs of such ncRNAs in genomic 
sequences. The F’ragrep tool instead implements an efficient algorithm for Idetect- 
ing the pattern fragments that occur in a given order. For each pattern fragment, 
the mismatch tolerance and bounds on the length of the intervening sequences 
can be specified separately. Furthermore, matches can be ranked by a statistically 
well-motivated scoring scheme. 

Key words: F’ragrep, non-coding RNA detection, fragmented pattern, Dictyostelium discoideum 

Introduction 
Methods for detecting non-coding RNAs (ncRNAs) in 
genomic sequence data have been a topic of intense 
research. While techniques for detecting protein- 
coding genes can rely on universal characteristics 
such as start and stop codons, triplet amino acid 
codes, or ribosome binding sites, there are no cor- 
responding characteristics known in ncRNAs. Early 
approaches to ncRNA detection were designed for 
specific types of RNAs, in particular tRNAs ( 1 ) .  
Other approaches to ncRNA searching were designed 
for detecting arbitrary ncRNA classes, typically based 
on the conserved sequences or secondary structure el- 
ements. The RNAMotif ( 2 )  tool allows to describe a 
search pattern consisting of conserved stems and 
helices, while the ERPIN tool ( 3 )  allows to anno- 
tate an alignment with secondary structure informa- 
tion, which is then used as a search pattern. The IN- 
FERNAL tool ( 4 )  also derives its query from a mul- 
tiple alignment. In contrast to ERPIN, however, the 
alignment is translated into a stochastic context-free 
grammar, which is then used for the (quite time- 
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demanding) task of scanning genomic sequences. In 
general, the computational complexity of searching 
RNAs increases with the complexity of the search pat- 
tern, limiting the use of such methods for genome- 
wide surveys. 

In this paper, we present F’ragrep, an efficient 
tool that is optimized for this kind of sequence-based 
searches. The approach implemented in the F’ragrep 
tool is based on an elementary way of describing 
search patterns, allowing a highly efficient and hence 
genome-wide application. This approach is particu- 
larly fruitful for the classes of ncRNlb that contain 
stem or loop regions with well-conserved sequence 
patterns, such as Y RNAs and vault RNAs (5’0, 
which, however, are interrupted by non-conserved 
sequences of highly variable lengths. Compared to 
RNAMotif, we provide a statistically well-motivated 
ranking scheme, which relieves the user from defining 
an individual scoring scheme as in FLNAMotif. On 
the other hand, Ragrep does not search for explicit 
secondary structure constraints. 

The problem of efficiently searching a large se- 
quence database for interrupted sequence patterns is 
also relevant in the context of other ncDNA motifs, 
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for example cis-regulatory modules (8). In this con- 
text, the approach investigated in Fragrep is comple- 
mentary to  the motif discovery procedures such as 
BioOptimizer (9) or Bipad (10) :  once a suitable mo- 
tif has been discovered, Fragrep can be applied to  
scan genome databases for such patterns (or constel- 
lations of patterns). In some cases, the fragmented 
patterns are informative enough to be clearly distin- 
guished between true and false positives. In many 
other cases, however, Fragrep can at least act as an 
efficient filtering technique. The Fragrep tool can 
be downloaded from the URL http://www.bioinf.uni- 
leipzig.de/Software/fragrep/. 

Algorithm 

Suppose that the ncRNA of interest contains k con- 
served sequence fragments, denoted by C1, . . . , c k ,  

which occur in a given order in a set of known ex- 
amples. In practice, the fragment Ci is obtained 
as the consensus sequence of conserved blocks in a 
multiple alignment. Scanning a genome T for these 
blocks, we expect to  find a non-conserved sequence 
segment X i  between any two fragments Ci and Ci+l. 
Fragrep solves the problem of determining whether 
there are sequences X I , .  . . , x k - 1  so that the string 
ClX1C2X2 . . . Xk-lCk is contained as a substring in 
T .  Additionally, Fragrep can take into account two 
further aspects: 

Gap length bounds: For each X i ,  the user can spec- 
ify the upper and lower bounds of the length, denoted 
by ui and & ,  respectively; only the matches satisfying 
ti 5 lXil I ui will be taken into account by Fragrep. 

Mismatches: The fragment Ci does not need to 
match the corresponding sequence part of T exactly; 
the user can specify the number of mismatches (mi). 
Denoting Ci as the modified fragment of Ci by at 
most mi arbitrary mismatches, Fragrep will report 
the occurrences of C;X1C;X2.. . xk-1ck as well. 

We also refer to  the string ClXlCzX2 . . . Xk-lCk 
satisfying all these constraints as a matching subse- 
quence of T .  Similar features are incorporated in 
other tools such as RNAbob (ftp://ftp.genetics.wustl. 
edu/pub/eddy/software/rnabob-2.1 .tar.Z) , which is 
based on a nondeterministic finite state machine with 
node rewriting rules instead of the dynamic program- 
ming approach used by F’ragrep. 

The algorithm underlying Fragrep essentially 
works in two steps: 

1. For each i E [l : k ] ,  compute a list of all occur- 

rences of Ci in T .  
2. Apply a dynamic programming algorithm to 

the lists computed in the first step in order to  find all 
matching subsequences in T .  

As a re- 
sult, we obtain an ordered list of indices % = 
( y i , ~ ,  y ~ ,  . . . , y i , ~ , ) ,  with yi, j  denoting the position 
of the jth occurrence of Ci in T ,  and Li denoting the 
number of occurrences of Ci in T .  Using Y1 , . . . , Y k ,  

we now set up a graph G = (V, E )  with the vertex 
V = { ( i , j )  I i E [l : k ] ,  j E [l : Li]}  and an edge be- 
tween (2 ,  j )  and (i+l, j ’ ) ,  whenever the corresponding 
occurrences of Ci and Ci+l satisfy the upper and lower 
bounds for the gap in between. Obviously, any path 
of length k - 1 in G corresponds to a valid occurrence 
of c1,. . . ,Ck in T .  For each (i,j), i E [l : k]  and 
j E [I : Li],  we now compute 

Performing step 1 is straight-forward, 

1 if T contains the model 

(C l ,  el 7 ~ 1 , .  . . ,  ci, ti, U i )  

with Ci occurring at position yi,3 
0 otherwise. 

Mi,j := 

Apparently, we have a valid occurrence of 
c1,. . . , c k  in T whenever we have Mk,j = 1 for some 
k E [I : Lk].  Furthermore, we have Ml,j = 1 for all 
j E [1 : L1] (since every occurrence of C1 is a valid 
occurrence up to  the first fragment). Now, using the 
graph G, we can compute all Mi,j for i > 1 as 

0 if Mi-I,j, = 0 

1 otherwise. 
for all ((i - l,j’), ( i , j ) )  E E Mi,j = 

Starting with i = 1, the Mi,j values can be 
computed using dynamic programming in a straight- 
forward way. Now, each non-zero entry in the kth 
row of M indicates at least one valid match. Defining 
L := maxi Li,  altogether k .  L matrix entries are com- 
puted, so that the overall time complexity for com- 
puting M is O(kL); enumerating all p matching sub- 
sequences of T can be done in O ( k L  + p) time. The 
match number p is proportional to the tolerance al- 
lowed by the gap length bounds, that is, ui -&. While 
in principle p is bounded by O ( L 2 )  (since each occur- 
rence of C1 might yield one matching subsequence for 
each occurrence of c k ) ,  one is naturally interested in 
queries that produce few significant rather than an 
abundance of insignificant matches. Hence, for all 
practical purposes, O(kL)  should be seen as the dom- 
inating term in the running time. 
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Note that the above procedure can be easily 
adapted to start dynamic programming with the most 
informative sequence C, rather than C1 by starting in 
the ath row of M .  This increases the search efficiency 
and in practice leads to a significant speedup, in par- 
ticular when short or ambiguous fragments are part 
of the pattern. The C++ implementation of Fra- 
grep has been optimized in this and several other 
algorithmic details to improve the runtime. The cur- 
rent implementation only searches for gap-free Ci pat- 
terns. This limitation could be relaxed by employ- 
ing a different pattern matching algorithm that al- 
lows gaps at a prescribed gap function. The use of 
the exact Smith-Waterman local sequence alignment 
algorithm for this purpose is possible but computa- 
tionally quite expensive. In our applications, gaps 
were restricted to specific positions. In this case, it is 
more efficient to break the search pattern into smaller 
units linked by short intervals of variable lengths. 
Since the identification of these breaks is self-evident 
in the applications under our consideration, one ob- 
tains significantly more specific query patterns than 
for gapped alignment matches. 

A major issue in evaluating the quality of the 
matches produced by the above procedure is to assess 
how surprising a given match is, that is, how likely it 
is to be observed in a random sequence. To this end, 
Fragrep provides p and E-value-like ranking schemes 
that are computed from a dinucleotide-based Markov 
model. 

In order to adapt the Markov models to the oc- 
currences of a fragmented rather than a contigu- 
ous sequence pattern, we let Ej denote the event of 
C1, . . . , Cj being observed at least once in a sequence 
of length N in the given order and satisfying the dis- 
tance constraints given by the respective upper and 
lower bounds ui and ti for each Ci (formally dealing 
with a probability space over all sequences of length 
N ) .  Furthermore, let q ( j ,  L)  denote the event of ob- 
serving C, at least once in a sequence of length L. 
Our main interest obviously is to determine the prob- 
ability p ( E k ) .  

We start with computing the probability p(E1).  
Denote MT as the first order Markov model result- 
ing from the dinucleotide frequency distribution in T ,  
we may compute PT(C~) := P(C~(MT) as the proba- 
bility of the fragment C1 being produced by MT. In 
order to obtain p ( E l ) ,  we assume that the probability 
of C1 being produced at a position x in a sequence of 
length N is independent of the probability of C1 be- 
ing produced at any other position y in T-note that 

this assumption holds for the fragments that do not 
contain any substring of length 2 more than twice, 
and, for all practical purposes, is a sufficiently good 
approximation for the fragments that are short and 
contain only few repetitive substrings. Now, under 
this assumption of independence, we obtain 

P(&)  = Q(1,N) = PT(C1) c (1 - ~ T ( c l ) ) v  
OIu<N--(C11 

(1) 
The probabilities q ( j ,  L)  can be computed analo- 

gously for arbitrary j and L. It is now easy to see 
that for j E {2 , .  . . , k}, we have 

P(Ej) = P(Ej-l)Q(j,Uj -- 4) (2) 

(since, in a sense, Cj needs to be generated by MT in 
a sequence of length uj - l j  + ICj I) so that we finally 
obtain 

P ( E k )  = P(El) n Q(j+, - 4)  (3) 
2 5 5 k  

As described above, p(Ek)  is the probability of ob- 
serving at least one exact match of the given frag- 
mented pattern in a sequence of length N .  This 
value can be easily adapted to the scenario involv- 
ing occurrences with a certain number of mismatches 
by modifying the probabilities PT ('Cj) accordingly. 
Since different matches obtained by Fragrep gener- 
ally have different mismatches in different positions, 
we can also compute the analogous probabilities for 
the individual matches detected by Fragrep. Finally, 
w(Ek) := -log ( p ( E k ) )  provides a convenient and 
statistically well-motivated ranking scheme for the 
matches. 

Results and Discussion 

We used Fragrep to studying the evolution of a class of 
ncRNAs in the slime mold Dictyostelium discoideum 
that was discovered in an experimental survey by As- 
pegren et a1 ( 1  1 ). We searched the g:enomic sequence 
(12) for the type-I ncRNAs using the following simple 
pattern: 

0 0 GTTGRCCTTACAGCAA 2 
0 120 GTCAACTG 2 

The first two columns contain the m.inima1 and max- 
imal distance between the pattern fragment (always 
0 for the first fragment, of course), the last column is 
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the maximal number of mismatches that is tolerated 
in each fragment. The gap length in the sequences 
derived from the study by Aspegren et al (11) ranges 
between 58 and 88 nucleotides, so that 120 is a rea- 
sonable choice for the gap length's upper bound. We 
recovered 45 candidates, of which 34 were sufficiently 
similar to the experimentally determined sequences to 
be alignable. The other 11 very divergent sequences 
were not included in the further analysis. A neighbor- 

joining tree summarizing both known sequences and 
the novel candidates detected by Fragrep is displayed 
in Figure 1. We find that the class-I ncRNAs are lo- 
cated in small clusters in all six chromosomes. Inter- 
estingly, there are two subclasses, denoted by A and 
B, that alternate in the larger clusters, even though 
their directions on the chromosomes do not seem to 
follow a simple rule. 

+.-- am 

x2 ~111 

a b c  
x3 c ;+ 

Fig. 1 The type-I ncRNAs from Dzctyostelzum dzswzdeum. Top Left: The phylogenetic tree (neighborjoining method) 
suggests that there are two major subgroups, labeled as A and B. Leaf labels refer to the positions of the corresponding 
occurrences within the genome; for instance, X4a-5 refers to the fifth member within cluster a in Chromosome 4 (see 
the middle part of the figure); plus (+) or minus (-) indicates the occurrences in the 5' or 3' direction. Top Right: 
The type-I ncRNAs that appear in clusters on all chromosomes. The clusters are labeled by lower case letters, and the 
italic numbers below the clusters indicate the DdR- numbers of the expressed RNAs from the experimental survey by 
Aspegren et a1 (11). Bottom: The organization of the two largest clusters a and b located at Chromosome 4. Note 
that type A and type B copies alternate. The other type-I ncRNA clusters consist of no more than three sequences. 
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In order to evaluate the performance of the algo- 
rithm underlying Fragrep, we used the query 

0 0 TRGCNNAGYGG I 
0 100 GGTTCGANTCC I 
0 100 GGTTCGANTCC I 

derived from the vault RNA A-, B1-, and B2-box con- 
sensus structures in Kickhoefer et al (7) to scan the 
whole human genome. The query consisted of three 
fragments, each of which was 11 nucleotides long. 
Scanning all chromosomes of the human genome took 
less than 10 minutes on a standard desktop computer 
with a 2 GHz processor and 1 GB main memory. Fur- 
ther results from scanning the human as well as the 
mouse, rat, and dog genomes are listed in Table 1. 

Table 1 Surveys of Mammalian Genomes for 
vault RNA Candidates 

Genome Size Runtime No. of 
(Mb) (mm:ss) matches 

Homo sapiens 2,980 9:24 14 
Mus musculus 2,561 7:36 35 
Rattus norvegicus 2,640 8:33 44 
Canis familiaris 2,454 7:55 768 

In order to obtain an estimation of the influence 
of high gap-length tolerance on the running time, we 
modified the above query to allow for gap lengths 
up to 20,000, resulting in an increase of the running 
time by less than five folds. Note that this increase in 
fault tolerance also increased the number of matching 
subsequences to the order of hundreds of thousands, 
so that the significance of such highly fault tolerant 
queries is already limited from a practical point of 
view. In spite of this undue fault tolerance, the run- 
ning time remains within acceptable bounds. 

These examples demonstrate that Fragrep can be 
used for systematic surveys of eukaryotic genomes. 
The application of standard multiple alignment tools 
such as ClustalW or Dialign to a relatively small set 
of representatives of an ncRNA class can be used to 
determine conserved sequence patterns, which can be 
turned into Fragrep queries in a straight-forward man- 
ner. The Fragrep tool can then be employed to find 
additional members of the ncRNA family in related 
genomes. This approach yields significant matches 
where other sequence search tools such as BLAST fail 

the search for specific constellations of transcription 
factor binding sites is another potential application. 
hrthermore, the approach could be easily adapted to 
searching peptide motifs in protein databases. 
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