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Abstract The revolution of genome sequencing is continuing after the successful second-

generation sequencing (SGS) technology. The third-generation sequencing (TGS) technology, led

by Pacific Biosciences (PacBio), is progressing rapidly, moving from a technology once only capable

of providing data for small genome analysis, or for performing targeted screening, to one that pro-

mises high quality de novo assembly and structural variation detection for human-sized genomes. In

2014, the MinION, the first commercial sequencer using nanopore technology, was released by

Oxford Nanopore Technologies (ONT). MinION identifies DNA bases by measuring the changes

in electrical conductivity generated as DNA strands pass through a biological pore. Its portability,

affordability, and speed in data production makes it suitable for real-time applications, the release

of the long read sequencer MinION has thus generated much excitement and interest in the geno-

mics community. While de novo genome assemblies can be cheaply produced from SGS data, assem-

bly continuity is often relatively poor, due to the limited ability of short reads to handle long

repeats. Assembly quality can be greatly improved by using TGS long reads, since repetitive regions

can be easily expanded into using longer sequencing lengths, despite having higher error rates at the

base level. The potential of nanopore sequencing has been demonstrated by various studies in gen-

ome surveillance at locations where rapid and reliable sequencing is needed, but where resources are

limited.
Introduction

Genomics has been revolutionized over the last 20 years by the
development of first- and second-generation sequencing (SGS)

technologies, enabling the completion of, among many other
notable projects, the Human Genome Project [1,2] and the
1000 Genomes Project [3]. The first method to sequence

DNA was developed by Sanger in 1975 [4,5], and another
method was developed in parallel by Maxam and Gilbert in
nces and
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1977 [6], which were termed the ‘‘chain-termination method”
and the ‘‘chemical sequencing method”, respectively. Being less
complex and more scalable in comparison to the chemical

sequencing method, the chain-termination method eventually
was used extensively for first-generation sequencing. DNA
libraries with different insert sizes can be easily generated,

which turns out to be useful as whole genome assembly bene-
fits from the reads with mixed insert sizes. However, the low
throughput and high cost of the first-generation sequencing

led to a fundamental shift in methodology, taking us to
SGS. The revolution of massively parallel sequencing started
in 2005 with the introduction of Roche 454’s pyrosequencing
system. It was then followed by the sequencing-by-synthesis

based Genome Analyzer platform from Illumina/Solexa in
2007, and by ABI’s SOLiD system using sequencing-by-
ligation [7]. SGS technologies have dominated the sequencing

market in the last decade, owing to its ability to produce an
enormous volume of data cheaply. However, short reads
produced by SGS lead to highly-fragmented assemblies

when it comes to de novo assembly of larger genomes,
due to difficulties in resolving repetitive sequences in the
genome [7].

The demand for technologies that can operate at higher
speed and produce longer reads has resulted in the advent of
new sequencing approaches—the so-called third-generation
sequencing (TGS). Major SGS platforms adapt sequencing

by synthesis (SBS) technologies that rely on PCR to enlarge
clusters of a given DNA template. TGS technologies, by con-
trast, directly target single DNA molecules, enabling real-

time sequencing, where reads are available for analysis as soon
as they have passed through the sequencer. There are three
important improvements in TGS platforms: (1) increase in read

length from tens of bases to tens of thousands of bases per read;
(2) reduction of sequencing time from days to hours (or to
minutes for real-time applications); and (3) reduction or

elimination of sequencing biases introduced by PCR
amplification [8]. Apart from Helicos fluorescent sequencing
(http://seqll.com/), the first successful single-molecule real time
(SMRT) technology was introduced by Pacific Biosciences
Figure 1 The MinION sequencing device

DNA sequencing is performed by adding the sample to the flowcell. W

be a change in the magnitude of the current in the nanopore, which is m

MinKNOW, the software that generates the signal-level data. ASIC,
(PacBio, http://www.pacb.com/). With modern reagents and
sequencing kits, the typical throughput of the PacBio RS II
system is 0.5–1 gigabytes (GB) per SMRT cell, with a mean

read length of roughly 10 kilobases (kb). Nonetheless, PacBio
reads have a significantly higher error rate (�10%�15%) than
SGS reads (<2%) [9]. Fortunately these sequencing errors are

randomly distributed, the rates can therefore be greatly reduced
through the use of circular consensus sequencing (CCS) [10],
where a single molecule template and its complement

strand are sequenced multiple times to generate a unique
consensus.

In 2014 Oxford Nanopore Technologies (ONT) released a
new TGS platform, the MinION device, through an early

access program (The MinION Access Program, MAP). The
read length profile of the ONT data is very similar to that of
PacBio, with a maximum length up to a few hundred thousand

base pairs [11,12]. However, ONT reads have error rates
higher than PacBio reads, with accuracy ranging 65%�88%
[11–13]. In addition, the throughput per MinION flowcell

run is not very stable at the moment, varying from below
0.1 GB to 1 GB of raw sequence data [13]. Due to its small size
and low equipment cost, the MinION sequencer is attracting

considerable interest in the genomics community, particularly
for pathogen surveillance and clinical diagnostic applications,
as these areas would benefit from the real time nature of this
sequencing platform. A comprehensive review of PacBio

sequencing and its applications has been presented by Rhoads
and Au [14], who also compared the performance of PacBio
sequencing with SGS platforms. In this review, we focus on

MinION sequencing, the data characteristics, the algorithms
for genome assembly, and the differences between the PacBio
and ONT platforms.
The MinION device

Measuring only 10 � 3 � 2 cm and weighing just 90 g, the

MinION is the smallest sequencing device currently available
(Figure 1). It can plug directly into a standard USB3 port on
hen DNA molecules pass through or near the nanopore, there will

easured by a sensor. The data streams are passed to the ASIC and

application-specific integrated circuit.

http://seqll.com/
http://www.pacb.com/
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a computer with low hardware requirement and simple config-
uration. Using Window 7 or 8, a computer with a solid-state
drive (SSD), more than 8 GB of RAM and more than

128 GB of hard disk space (though 1 terabytes is recom-
mended) can be used for sequencing. Specialist software called
MinKNOW runs on the host computer to which the MinION

is connected. MinKNOW carries out several core tasks—data
acquisition; real-time analysis and feedback; data streaming
while providing device control (including run parameter selec-

tion); as well as sample identification and tracking—thus
ensuring that the platform chemistry performs correctly in
processing the samples. Only high-quality genomic DNA is
recommended for the Genomic DNA Sequencing Kits (at

the time of starting this paper, there were only two kits avail-
able: SQK-MAP005 and the more recent SQK-MAP006). The
starting DNA material should be composed of long fragments

(>30 kb), which can be typically obtained using standard
extraction and clean-up methods.

Similar to SGS technology, library preparation is needed

for various applications using MinION. Here, long and
double-stranded DNA (dsDNA) should be used so that
sequencing of both strands can be performed. The current

library construction process consists of a number of steps,
which are carried out in the following order: genomic DNA
shearing using a Covaris g-TUBE; an optional ‘‘PreCR” step
to repair damaged DNA; end-repair to create blunt ends in

sheared DNA and PCR fragments; dA-tailing to add an
‘‘A” base to the 30 end of the fragment; adapter ligation;
and finally His-bead purification to remove nucleotides and

enzymes. The library usually contains two adapters, the lea-
der adapter and the hairpin adapter, each ligated to one
end of the dsDNA (Figure 2A). The leader adapter is denoted

as the ‘‘Y adapter” as it has a ‘‘Y” shaped structure, whereas
the adapter with hairpin structure is called the ‘‘HP adapter”.
Sequencing begins at the single-stranded 50 end of the Y

adapter, followed by the ‘‘template” strand, then the HP
adapter, and the ‘‘complementary” strand. The motor protein
starts to unzip the dsDNA when approaching the turning
point of the Y adapter complementary region. At this point,

the first (the ‘‘template”) strand is passed into the nanopore
with speed determined by the motor protein. Once the HP
adapter is reached, a protein (the ‘‘hairpin protein”) allows

the complementary strand of the DNA to be passed through
the nanopore in a similar manner. Base-calling can then be
performed. If information from only one strand is used, the

base-calling is termed 1-directional (1D); whereas a 2D
base-calling is performed, if information from both strands
is incorporated, which results in higher base quality.

On the membrane with nanopores incorporated, a voltage

can be applied to drive DNA through the pore and an ion
current flow can be measured. When a DNA molecule passes
through the nanopore, a change of the current in pattern or

magnitude can be observed and characterized. The current in
the nanopore is measured by a sensor several thousand
times per second, and the data streams are passed to a

microchip called the application-specific integrated circuit
(ASIC). Finally, data processing is carried out by the
MinKNOW software, which deals with data acquisition and

analysis.
The current MinION flowcell has 512 channels, allowing up

to 512 independent DNA molecules to be sequenced simulta-
neously [13]. Each channel is connected to four wells and
can provide data from one of the four wells at a time. The per-
formance in terms of data production (i.e., the number of
reads produced) varies from channel to channel, since some

pores are more active than others. Data from a typical run
are shown in Figure 2B. Channels in red produced up to 126
reads, whereas some channels (those shown in black) produced

zero reads. In order to reduce noise, the raw current measure-
ments are processed and converted into a sequence of ‘events’,
each with a mean value for the current and an associated

variance and duration. The so-called ‘‘squiggle plot” shown
in Figure 2C shows the raw current measurements over time.
As DNA passing the pore can contribute to the change in
the ion current, base-calling is performed on 5-mers or

6-mers. There are 45 = 1024 possible combinations and
46 = 4096 when 5-mers or 6-mers are used, respectively. An
optimal path, shown in Figure 2D, is searched through a

hidden Markov model (HMM) of successive 5-mers
(or 6-mers) using the Viterbi algorithm [15].

Currently, MinION flowcells have 2048 wells—4 for each

of the 512 channels. At the beginning of a run, the 4 wells
in each channel are tested using a procedure called ‘‘Mux”.
During this process, each of the four wells in a channel is

ranked in terms of activity, with the most active one being
placed in a group ‘g1’, the second most active placed in a
group ‘g2’, and so on. At the start of a 48-h run (the default
run time), each active channel starts taking data from its

‘g1’ well and continues to do so for the first 24 h. The
remaining 24 h are then equally distributed between the
other 3 groups: at the end of each period, each channel

switches to the well contained in the next group. The tran-
sition between g1 and g2 pores is clearly visible in Figure 3A,
where the throughput suddenly increases 24 h after the start

of the run. The read length profile is shown in Figure 3B.
The protocol for the default 48-h MinION run described
here is defined in a combination of Python scripts that are

launched at the start of a run. While the original protocol
ensures a good performance, some members of the MinION
Access Program (MAP) community have already started to
test new settings and procedures by customizing these

scripts. An example of this customization aimed at
increasing a flowcell throughput has been made publicly
available for the MAP community by John Tyson (Modified

MinKNOW scripts, personal communications).
Data formats and base-calling

For data analysis, most bioinformatics tools take FASTA or
FASTQ files as input, where base-calling has already been
done during the sequencing process or off line with the

sequencer. For new platforms in their early stages, however,
original raw data files may be useful for some applications.
Currently, the MinION outputs one FAST5 file per read

[13]. Much like the h5 file format adopted by PacBio, the
FAST5 file format is based on the hierarchical data format
5 (HDF5) standard (https://www.hdfgroup.org). FAST5 files

have a hierarchical structure, meaning that they can store
both the metadata associated with a read, along with the
events (such as aggregated bulk current measurements) pre-
processed by the sequencing device. Each read is produced

by one of the MinION’s 512 channels, and the metadata
associated with each read are stored in a unique FAST5 file.

https://www.hdfgroup.org


Figure 2 Flow of Oxford Nanopore sequencing process

A. Library preparation schematic for the genomic DNA sequencing kit (SQK-MAP-003). B. 512 channels with different levels of activity

in a flowcell are shown in different color (most active channels are in red). C. ‘‘Squiggle plots” of fluctuating electrical signals, which can be

translated into DNA bases. D. 5-mers decoding from event information and alignment of 1D and 2D base calls.
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To ensure the unique identity of each read name, a combina-

tion of information such as experiment name and batch,
channel, as well as file numbers is used.

Currently, base-calling is carried out in the Amazon cloud,

rather than on the local computer linked to the sequencing
device. The cloud-based Metrichor [16] is used with the data
from each run. This service analyzes the FAST5 files generated

by the sequencing software after uploading and returns with
the analysis results attached. The current workflow comprises
of a number of steps. First, the registered current values for
a molecule are analyzed, in order to determine which levels

of current correspond to the template strand and which
correspond to the complementary strand. This stage is also
needed to remove the current values related to the adapters.

Next, statistical models trained by ONT are used to establish
the relationship between 5-mers and current levels. Differences
between the model and the observed current levels are then

computed. Finally, two 1D sequences may be obtained for
each molecule, from which one 2D sequence is constructed if
possible. After base-calling has been carried out, Metrichor
classifies the reads into two ‘read classes’: ‘pass’ and ‘fail’.
The data in the raw FAST5 file and the metadata and

base-calls returned by Metrichor are combined into a base-
called FAST5 file, which can be downloaded to a directory
chosen by the user.

The procedure of base-calling can be briefly described as
follows. (i) Template and complement events are processed
separately and then used for 1D base-calling. (ii) If the ratio

of template sequence length to complement sequence length
after base-calling is between 0.5 and 2.0, 2D base-calling is
attempted. (iii) If the 2D base-calling is successful a 2D read
is produced. (iv) A quality score (Q-score; developed by

ONT) is computed in order to quantify the 2D read quality.
The FAST5 is put into a ‘‘pass” directory, if the 2D read has
a mean Q-score > 9; whereas all other FAST5 files are put

into a ‘‘fail” directory. Therefore, the ‘‘fail” directory includes
FAST5 files that have: (a) 2D reads with mean Q-scores 6 9
(in addition to template and complement reads); (b) 1D

template and complement reads for which 2D base-calling
was not achieved [either the ratio is too big (>2.0)/too small
(<0.5) or 2D base-calling failed]; and (c) only a template
read.



Figure 3 Time course of base throughput and read length

distribution

A. The throughput of bases with time generated using Poretools

[23]. B. Distribution of read length using data from one flowcell

run [13].
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The reads classified as ‘pass’ can normally be considered the
high-quality reads from the experiment. At the time of writing,

there are two sequencing kits: SQK-MAP005 (using 5-mers)
and SQK-MAP006 (using 6-mers). The first notable difference
between these two kits is the sequencing speed, which is

doubled from �30 bp/s for SQK-MAP005 to �75 bp/s for
SQK-MAP006, likely resulting in increased yields. However,
its effect on base quality remains to be quantified, as an

increase in speed may also increase the chance of missing
events (transitions between signal levels). As a result, it
could potentially increase the number of base deletions after
base-calling. The second difference between these two methods

is that the number of possible kmer combinations during base-
calling has been increased from 45 to 46, meaning that the
expected ionic current in each event is estimated to account
for the influence of 6 neighboring bases instead of only 5 bases.
Therefore, complications in quality profiles could be intro-
duced due to these changes. Although the overall impact

on data quality remains to be justified, earlier results from
Nick Loman (http://lab.loman.net/2015/09/24/first-sqk-map-
006-experiment/) suggest that the accuracy of the assembly is

much better with SQK-MAP006 data. Most of this improve-
ment is due to better representation of homopolymer
sequences after base event polishing using Nanopolish [17].

It should be noted that the kit SQK-MAP006 is relatively
new, and thus all data presented in this review article are
generated using SQK-MAP005.

ONT has released several versions of flowcells, where data

quality and throughput vary significantly [18]. The release of
version R7+ flowcells to the MAP community received pos-
itive feedback from different users who were using them for

different applications. Norris et al. [18] compared the data
quality of different flowcell versions. Using R7 flowcells,
the average base accuracy was only 67.4% for the reads pro-

duced, with 24.2% mismatched bases, 7.5% insertions, and
8.3% deletions. However, after upgrading to the newer ver-
sion R7.3, the average base accuracy was increased to 86%,

with 9.7% mismatches, 4.2% insertions, and 4.4% deletions,
demonstrating a dramatic improvement. It should be noted
that the accuracy metrics are computed from alignments of
the base calls to the reference, and different alignment meth-

ods sometimes produce slightly different estimates. Popular
aligners for ONT reads include BWA-MEM [19] (parameters
‘-� ont2d’) and LAST [20] (parameters ‘-s 2 -T 0 -Q 0 -a 1’),

as suggested by Nick Loman (personal communication,
2015).

With the improved utility and quality of the MinION data,

performance reproducibility of flowcells has been assessed by
the MinION Analysis and Reference Consortium (MARC).
This investigation is necessary because the variation in how

much success individual users have with the MinION and
the wide range of usage of the device make it difficult to deter-
mine the cause of this variation from individual sequencing
runs. In the paper presented by the MARC (also known as

MAP) [13], a control strain of Escherichia coli K-12 was used
by five laboratories from different countries to generate data.
Each participating laboratory used QIAGEN Genomic-tip

20/G to extract DNA from approximately 4 � 109 log-phase
cells. The day after extraction, a library was prepared using
the Genomic DNA Sequencing Kit SQK–MAP005, following

the protocol issued by ONT. Sequencing was carried out at
each participating laboratory. Despite slight variations in
performance being observed, in general there was consistency
with regard to base error rate, throughput, and read length

[13].
For a rapidly-developing new sequencing technology, col-

lective efforts with community involvement are important.

An initial lack of tools for the analysis of data led to the
development of a series of bioinformatics packages for explor-
ing the native FAST5 data produced by the Metrichor real

time analysis platform. Poretools [21] and poRe [22] were
developed to convert and visualize the raw data, NanoOK
[23] was developed to assess quality, yield, and accuracy of

the data, whereas minoTour [24] can monitor reads produced
by the sequencing process in real time. Table 1 lists a number
of tools [17] for dedicated nanopore data analysis with various
applications. Genome scaffolding tools such as SSPACE-

http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/
http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/


Table 1 List of analysis tools developed for Oxford Nanopore data

Name Applications Link Ref.

BWA Fast nanopore data tuned alignment tool https://github.com/lh3/bwa [19]

GraphMap Mapper for long and error-prone reads https://github.com/isovic/graphmap [25]

LAST Nanopore tuned alignment tool http://last.cbrc.jp/ [20]

LINKS Software tool for long read scaffolding https://github.com/warrenlr/LINKS/ [26]

marginAlign Tools to align nanopore reads to a reference https://github.com/benedictpaten/marginAlign [27]

minoTour Real time analysis tools http://minotour.nottingham.ac.uk/ [24]

nanoCORR Error-correction tool for nanopore sequence data https://github.com/jgurtowski/nanocorr [28]

NanoOK Software for nanopore data, quality and error profiles https://documentation.tgac.ac.uk/display/NANOOK/NanoOK [23]

Nanopolish Nanopore analysis and genome assembly software https://github.com/jts/nanopolish [17]

nanopore Variant-detection tool for nanopore sequence data https://github.com/mitenjain/nanopore [27]

Nanocorrect Error-correction tool for nanopore sequence data https://github.com/jts/nanocorrect/ [29]

npReader Real-time conversion and analysis of nanopore reads https://github.com/mdcao/npReader [30]

poRe Tool for analyzing and visualizing nanopore data https://sourceforge.net/p/rpore/wiki/Home/ [22]

PoreSeq Error-correction and variant-calling software https://github.com/tszalay/poreseq [31]

Poretools Nanopore sequence analysis and visualization software https://github.com/arq5x/poretools [21]

SSPACE-LongRead Genome scaffolding tool http://www.baseclear.com/genomics/bioinformatics/basetools/

SSPACE-longread

[32]

SMIS Genome scaffolding tool https://sourceforge.net/projects/phusion2/files/smis/ [33]
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LongRead [32] and SMIS [33] are also included in the table as
they are not complete pipelines for de novo assemblies. Full

details of assembly pipelines will be discussed in the next
section.
De novo genome assembly

One of the technical advantages of TGS data is the read
length, which offers great prospects for genome assembly.

Generally, assemblers are based on several different types
of algorithms, such as greedy, overlap-layout-consensus
(OLC), de Bruijn graph (DBG), and string graph (reviewed

by Henson et al. [34]). While early assemblers usually used
the OLC paradigm for assembling Sanger sequencing reads,
modern assemblers use DBG paradigm for assembling

SGS short reads. Although the DBG approach is faster,
OLC-based algorithms perform better for longer reads with
higher base error rates [35]. Therefore, assemblers designed

for long PacBio and ONT reads are mainly pipelines based
on OLC approaches.

To make a de novo OLC-based assembly, there are nor-
mally three basic stages in the process: preassembly, consensus

buildup, and consensus polishing. The goal of preassembly
data processing is to generate long and accurate sequences
by correcting base errors. Seed reads (a subset of the sequenc-

ing reads) are selected based on the read length distribution.
Each single read is then mapped to the seed reads to generate
a consensus sequence for the mapped reads, resulting in long

and accurate fragments of the target genome. The computa-
tion in this step is very intensive as it involves all-vs-all raw
read mapping and base error correction. The next step is the
consensus building from the overlapping reads. There are

options available when selecting assembly algorithms, but
OLC assemblers offer clear advantages for de novo assembly
using multi-kb long reads. For genomes with repeats of any

length, a single long error-corrected read could simply bridge
the gaps of unique sequences and ensure that the consensus
building process continues without interruption. When design-
ing a de novo genome sequencing project, reasonable read cov-

erage (50–60�) is needed to generate sufficient coverage of
reads that uniquely anchor the longest repeat regions in the
genome assembly. For preassembled reads, there could be base

errors in the repetitive regions, where raw base errors are
coupled with repeats. Errors such as indels and substitutions
in the preassembled reads could also be easily passed on to

the consensus. Therefore, there is a need for consensus
polishing for assemblies produced from TGS data. To
significantly reduce the remaining number of errors in the
draft assembly, a quality-aware consensus algorithm

could be implemented to use the rich quality scores embedded
in PacBio bas.h5 files or the event-by-event raw ion currents in
ONT MinION FAST5 files. The Quiver [36] algorithm

processes four different per-base quality values (QV scores)
available in the PacBio bas.h5 files, which represent the
intrinsically calculated error probabilities for inserted, deleted,

substituted and merged base calls in single pass reads. For the
MinION platform, the final polishing of the assembly
can be performed using Nanopolish, developed by Loman
et al. [17], which improves the assembly base quality by

re-evaluating and maximizing the probabilities for each base
according to the raw ion currents of the events, accessible in
the FAST5 files.
Loman, Quick, and Simpson pipeline

With a similar level of base errors in sequencing reads, assem-
bly pipelines for MinION data use the same strategies as those
successfully used for PacBio single molecule long reads. The
Loman, Quick and Simpson (LQS) pipeline [17] presents an

excellent example on how a high quality assembly could be
produced from nanopore sequencing data by following the
steps of preassembly data processing, overlap detection,

consensus generation, and finally contig base polishing using
the event data. The FASTA sequences for reads are extracted

https://github.com/lh3/bwa
https://github.com/isovic/graphmap
http://last.cbrc.jp/
https://github.com/warrenlr/LINKS/
https://github.com/benedictpaten/marginAlign
http://minotour.nottingham.ac.uk/
https://github.com/jgurtowski/nanocorr
https://documentation.tgac.ac.uk/display/NANOOK/NanoOK
https://github.com/jts/nanopolish
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https://github.com/mdcao/npReader
https://sourceforge.net/p/rpore/wiki/Home/
https://github.com/tszalay/poreseq
https://github.com/arq5x/poretools
http://www.baseclear.com/genomics/bioinformatics/basetools/SSPACE-longread
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using Poretools [21] and converted to the format expected by
alignment tool DALIGNER [37]. Potential overlaps between
the reads are detected from the DALIGNER alignments. Mul-

tiple alignments are computed using the partial-order align-
ment (POA) software [38], where data inputs are single reads
and their overlaps. The use of partial-order graphs leads to

consensus sequences with better quality in the presence of
indels. To achieve better results, the base error correction pro-
cess needs to be run multiple times, using the corrected reads as

the new input. It has been reported that error correction
increased the mean identity percentage from 80.5% to 95.9%
after the first iteration, and again to 97.7% on the second iter-
ation [17]. After two rounds of base-error correction, the reads

can be assembled using v8.2 of the Celera Assembler [39] from
which a draft assembly can be obtained. One of the most inter-
esting features in the LQS pipeline is its stand-alone tool

Nanopolish, which polishes the contig sequences in the draft
assembly using the ion current information registered by the
MinION device. The polishing procedure starts with the initial

draft assembly and modifies each 5- or 6-mer by introducing
substitutions, insertions, deletions, and substrings sampled
from the 2D base-called reads. A probabilistic model of the

nanopore sequencing process is then used to evaluate whether
the modifications to the kmer words increase the probability of
the electric signal data observed during the collection of
MinION reads. The aforementioned process of modification

and evaluation needs to run iteratively until no more improve-
ments could be seen in the assembly. In the tested example, the
E. coli K-12 MG1655 chromosome was assembled into a single

4.6-megabase contig. The assembly reconstructs correct
gene order and shows 99.5% nucleotide identity after consen-
sus polishing using a probabilistic model of the signal-level

data.

PacBio Corrected Reads assembler and Canu

The PacBio Corrected Reads (PBcR) assembler (http://wgs-
assembler.sourceforge.net/wiki/index.php/PBcR) is the first
pipeline using hierarchical assembly method (correct, overlap,

assemble), which demonstrates that noisy long reads can be
used for assembly after base error correction. The hierarchical
genome-assembly process (HGAP) [40] was developed for

PacBio long reads with inputs of PacBio-specific h5 files [41],
which are different from the signal-level data generated by
the MinION device. However, when raw sequencing data are

converted into FASTQ/FASTA files, alignment tools such as
the basic local alignment with successive refinement (BLASR)
[42], DALIGNER (https://github.com/thegenemyers/
DALIGNER) or Celera Assembler could be used to compute

multiple alignments for base error correction and overlap
detection followed by consensus layout. Fast and sensitive
mapping of error-prone long sequencing reads is crucial and

computational demand on multiple alignments is high. Over
the past few years, PBcR has gained significant performance
improvements in assembling bacterial genomes [43,44],

middle-sized Drosophila melanogaster and Arabidopsis thaliana
genomes [45], and more recently human genomes [46,47],
thanks to the implementation of a new, faster algorithm called
MinHash alignment process (MHAP) [45]. MHAP employs a
probabilistic approach to overlap-based assembly of long
reads. To speed up the assembly of gigabase-sized genomes,
the MinHash represents long and sparse text as seeded

sequences or a string of information as a set of fingerprints,
in such a way that the assembly process is carried out with
more compact data using fewer computational resources. Lat-

est efforts have led to the development of a new assembler
Canu (https://github.com/marbl/canu), which follows the
same strategy and method of those used in PBcR, but offers

higher speed and better usability. The first version of Canu
was released at the end of 2015.
Falcon assembler

The Falcon [48] assembler developed by Jason Chin from
PacBio is another pipeline adopting the strategy of HGAP.

It shares many features with PBcR, such as raw reads overlap-
ping for base error correction using DALIGNER and overlap
filtering. The major difference lies in its contig consensus

generation. Given the overlapping data, a string graph is
constructed from the dataset to represent the connections of
those reads with overlaps, where a path is a connection
between the reads and an edge is a connected read. Due to

genome polymorphism and sequencing errors, graph edge
reduction is carried out to remove complexity. The consensus
step to create draft contigs is to find a single path correspond-

ing to each contig graph and then to generate sequences
accordingly. There are continued efforts to make Falcon a
polyploidy-aware assembler and new algorithms have been

designed to reconstruct comprehensive haplotypes. For simple
graphs where the incoming and outgoing edges are unique, a
contig is generated in a straightforward way. In the case that

a contig graph is not a simple path, a primary contig is
generated first with the end-to-end path that has the most
overlapped bases. Furthermore, in a multiple path graph, if
an alternative path is different from the primary one is possi-

ble, another contig is constructed, which is called an associated
contig. Identity comparison between primary and associated
contigs can reveal genome polymorphism. When associated

contigs are induced by sequencing error, there will be a high
identity between the alternative contig and the primary contig
(>99% most of time). In the case where there are true struc-

tural polymorphisms, primary contigs and associated contigs
are separated, each representing a different haplotype from
the genome.

Miniasm assembler

Read error correction is the most CPU-intensive stage of the

whole assembly process, and assemblies on gigabase-sized gen-
omes are still out of reach for many projects due to high
sequencing costs and large computational requirements. The

Miniasm [49] assembler developed by Heng Li takes a different
approach to deal with noisy long reads by skipping the step of
read error correction completely. The alignments are per-

formed based on all-vs-all read mapping and the resulting
alignment file is saved for further processing of assembly
graphs. For each read, the first step is to obtain an approxi-

http://wgs-assembler.sourceforge.net/wiki/index.php/PBcR
http://wgs-assembler.sourceforge.net/wiki/index.php/PBcR
https://github.com/thegenemyers/DALIGNER
https://github.com/thegenemyers/DALIGNER
https://github.com/marbl/canu


272 Genomics Proteomics Bioinformatics 14 (2016) 265–279
mate estimate of read coverage, which is achieved by finding
the longest contiguous region covered by three good mappings.
The second stage is to use the coverage information to find the

good regions again but with more stringent thresholds. A
string graph is then computed to store mapped reads, remove
weak overlaps, and collapse short bubbles. With a pileup of

overlapped reads, the algorithm simply searches for the best
path and then concatenates pieces of reads to generate the final
unitig sequences. Without base error correction, the per-base

error rate of the contigs is similar to that of the raw input
reads. Miniasm is the fastest assembler examined in this paper,
taking only a few minutes for a bacterial-sized genome. For a
dataset of Caenorhabditis elegans sequenced at 45� coverage,

it only takes 9 min for Miniasm to assemble the genome using
16 CPU cores, achieving an N50 size of 2.8 megabases. Effi-
cient memory usage and high speed in assembly are due to

the use of its own hash table-based aligner, minimap [50].
Algorithmically, minimap combines the reduced representa-
tions of MHAP using sparse fingerprints and the kmer sorting

and sorted lists merging of DALIGNER. Working directly on
noisy uncorrected reads, one major concern of Miniasm is how
to distinguish the sources which lead to low-identity matches

between two noisy reads: is the low identity caused by the
stochastically-higher base error rate on reads, or because reads
come from two recent segmental duplications? At high read
coverage, assembly pipelines using base error correction such

as LQS, PBcR, Canu, and Falcon sometimes offer an
advantage in separating high error rate from duplications/
repeats.
Hybrid assemblers

The NGS platforms such as Illumina’s HiSeq and MiSeq have
played a dominant role in genomic research and applications.
It is foreseeable that short read data will continue to be a very
important part of data sources for years to come. Different

algorithms have been explored for genome assembly and many
pipelines have been developed for various applications [7,34].
With the emergence of TGS, some assemblers start to include

long reads into the pipeline to improve assemblies primarily
generated from short reads. Typical examples of hybrid assem-
blers are ALLPATHS-LG [51], Celera Assembler’s PacBio

corrected reads pipeline (pacBioToCA [52]), SPAdes [53],
Table 2 List of assemblers for Oxford Nanopore MinION long reads

Assembler name Algorithms Error correction Link

LQS DALIGNER, Celera OLC Nanocorrect,

Nanopolish

https

PBcR HGAP or BLASR, Celera OLC PBcR http:

Canu MHAP, Celera OLC Canu https

Falcon String graph, Celera OLC Falcon https

Miniasm OLC None https

ra-integrate OLC None https

ALLPATHS-LG de Bruijn graph ALLPATHS-LG https

SPAdes de Bruijn graph SPAdes http:

Note: LQS, Loman, Quick and Simpson; PBcR, PacBio Corrected Reads

alignment with successive refinement; MHAP, MinHash alignment proces
and SSPACE-LongRead [32]. Assessment and evaluation on
these hybrid methods have been reported by Utturkar et al.
[54], Liao et al. [55], and Sović et al. [56]. ALLPATHS-LG

takes a unique approach, in that, in addition to long reads,
it also incorporates Illumina paired-end reads of two libraries:
one with short overlapped fragments, and one with long

jumps. Like pure Illumina assembly, short insert read pairs
are merged into single ‘‘super-reads” for unipath graph gener-
ation and the mate pair ‘‘jumping” reads are used to fill the

gaps in the unipath graph. PacBio reads are subsequently used
in order to form consensuses and to patch gaps. While
SSPACE-LongRead is mainly a genome scaffolding tool,
SPAdes is now capable of hybrid assembly, thanks to a recent

update which adds support for taking short and long reads as
inputs. Another application of this method on mixed datasets
from the yeast genome has been reported by Goodwin et al.

[28], who develop a base error correction tool on the ONT
reads using Illumina MiSeq reads. The subsequent steps in
overlap detection and consensus computation are similar to

PBcR.
There are a few assembly pipelines developed or adapted

specifically for nanopore sequencing data, as shown in Table 2.

Evaluation of assembly methods and tools is difficult as the
nanopore sequencing platform is still in the early stages of
development and data sources are limited. Sović et al. [56]
has presented a comparison report on hybrid and non-hybrid

methods for de novo assembly from MinION E. coli reads.
Evaluated on five assembly pipelines including LQS, Falcon,
PBcR, ALLPATHS-LG, and SPAdes, the assembly quality

and continuity varies with read depth and tools used. How-
ever, lack of PacBio data for comparison is one of the weak
points in the study.

To assess the performance of assemblers and the effect of
data characteristics on genome assembly, we selected 5 data-
sets and 6 assemblers for a comparison study. The datasets

include both MinION and PacBio reads at different coverages
(Table 3). The 20� MinION reads are a subset of 48� reads
from [13], while the 20� PacBio reads were selected from a
set of 25� E. coli K12 MG1655 reads downloaded from

http://wgs-assembler.sourceforge.net/wiki/index.php/PBcR.
The Illumina MiSeq reads were sequenced by Goodwin and
her colleagues [28]. To achieve the best assembly, we either

tested the parameters ourselves or followed suggestions from
other users. A file containing information about how we ran
Ref.

://github.com/jts/nanopolish [17]

//wgs-assembler.sourceforge.net/wiki/index.php/PBcR –

://github.com/marbl/canu –

://github.com/PacificBiosciences/falcon [48]

://github.com/lh3/miniasm [49]

://github.com/mariokostelac/ra-integrate/ [56]

://www.broadinstitute.org/software/allpaths-lg/blog/?page_id=12 [51]

//bioinf.spbau.ru/spades [53]

; HGAP, hierarchical genome-assembly process; BLASR, basic local

s; OLC, overlap-layout-consensus.

http://wgs-assembler.sourceforge.net/wiki/index.php/PBcR
https://github.com/jts/nanopolish
http://wgs-assembler.sourceforge.net/wiki/index.php/PBcR
https://github.com/marbl/canu
https://github.com/PacificBiosciences/falcon
https://github.com/lh3/miniasm
https://github.com/mariokostelac/ra-integrate/
https://www.broadinstitute.org/software/allpaths-lg/blog/?page_id=12
http://bioinf.spbau.ru/spades


Table 3 Datasets of MinION, PacBio, and MiSeq used for assembly comparison

Platform Dataset No. of bases No. of reads Mean read length Longest read N50 Coverage (�) Identity (%)

MinION 48� reads 225,086,343 30,364 7413 45,588 8931 48.5 91.41

20� reads 92,524,457 12,555 7370 45,588 8867 19.9 91.03

PacBio 25� reads 116,263,784 13,124 8859 42,279 14,159 25.0 91.64

20� reads 90,335,723 10,154 8897 42,279 14,046 19.5 91.54

MiSeq 1263� reads 5,862,970,443 25,758,933 228 302 300 1263 >99.99

Note: The reads with lower 20� coverage are subsets of 48� for MinION and 25� for PacBio platforms, respectively. Matching identities for the

three sets of data were estimated using the reference assembly.
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the pipelines is provided as a supplementary file (SF1) and is
available at [ftp://ftp.sanger.ac.uk/pub/users/zn1/ont/ont-
comparison.pdf]. Mismatches, short indels, and average

identity with respect to the reference were estimated using
the dnadiff tool from MUMmer [57]. As shown in Table 4,
compared with the reference sequence, no global misjoin errors

were found in any of the reported assemblies. LQS produced
the assemblies with highest consensus base quality before
polishing, while the fastest assembler was Miniasm, which

omits the process of base error correction on raw sequencing
reads. Based on the selected datasets, however, the overall win-
ner is the Canu assembler in terms of contig continuity and
computational resources used. Consensus base accuracy in

the nanopore assemblies is notably lower than in those using
the PacBio reads, likely due to the misrepresentation of
homopolymers in the ONT reads. In order to increase the
Table 4 Assembly assessment using different tools for three types of r

Data source Assembly tool No. of assembled bases No. of contigs

48� MinION reads LQS 4,636,840 2

Falcon 4,562,630 1

Canu 4,574,127 1

PBcR 4,567,749 1

Miniasm 4,544,438 1

SPAdes 4,638,974 1

20� MinION reads Falcon 4,137,874 23

Canu 4,546,300 1

PBcR 4,398,520 35

Miniasm 4,526,673 17

SPAdes 4,639,128 3

48� MinION reads

with Nanopolish

LQS 4,685,134 2

Miniasm 4,666,535 1

Canu 4,654,817 1

25� PacBio reads Falcon 4,621,993 2

Canu 4,663,990 1

PBcR 4,638,751 2

Miniasm 4,830,837 1

SPAdes 4,638,975 1

20� PacBio reads Falcon 4,036,562 47

Canu 4,637,297 1

PBcR 4,456,708 32

Miniasm 4,777,699 9

SPAdes 4,638,975 1

Note: The SPAdes assemblies were obtained using both long and short r

MinION or PacBio. Take the dataset 48� MinION as an example, the SPA

reads, while the assembly of Falcon was generated from MinION reads on
accuracy level, a polishing process using Nanopolish [17] could
be run. Figure 4A shows the under-representation of
homopolymers (TTTTT, AAAAA, CCCCC and GGGGG)

for the 5 assemblies including Miniasm, Falcon, PBcR, LQS,
and Canu, compared to the reference assembly. It is of note
that the under-representation problem is significantly

improved after Nanopolish has been run (Figure 4B). This is
also shown in the improved Nanopolished assembly accuracies
(Table 4).

As shown in Table 4, the hybrid assemblies are only from
SPAdes, which uses both long (ONT or PacBio) reads and
Illumina short reads. SPAdes assemblies have a higher base
accuracy than the nanopore- or PacBio-only assemblers, due

to the use of highly accurate Illumina reads. On the other
hand, the excellent continuity of the SPAdes assemblies is
attributed to the use of the long reads. When running SPAdes
eads at different levels of coverage

N50 No. of mismatches No. of indels Identity (%) CPU time (h)

4,624,206 1677 41,646 99.06 8662

4,562,630 2606 102,872 97.70 16.2

4,574,127 760 73,623 98.39 20.2

4,567,749 982 80,325 98.22 46.4

4,544,438 173,356 330,040 88.90 0.05

4,638,974 255 31 99.99 19.1

2,693,898 4608 107,781 97.29 1.6

4,546,300 2141 94,233 97.90 6.8

1,021,865 1824 88,269 97.95 10.0

2,921,034 173,127 326,625 88.89 0.01

3,108,521 254 31 99.99 24

4,672,162 903 18,464 99.58 375

4,666,535 16,153 51,954 98.54 2540

4,654,817 1155 18,730 99.57 434

4,196,046 457 10,898 99.75 1.4

4,663,990 20 3903 99.91 2.8

3,746,511 48 3368 99.93 7.2

4,830,837 81,535 432,590 89.33 0.02

4,638,975 254 30 99.99 19

145,816 459 12,422 99.68 0.8

4,637,297 90 7736 99.83 2.6

239,659 114 6260 99.86 5.8

917,934 75,726 419,198 89.46 0.01

4,638,975 254 30 99.99 18.9

eads, while other assemblies used only one type of long reads, either

des assembly was obtained using 48� MinION reads as well as MiSeq

ly.



Figure 4 Counts of 5-mers from the reference and the assembly

before and after polishing using event data

A. Counts of 5-mer homopolymers before event polishing.

B. Counts of 5-mer homopolymers after Nanopolish using event

data.
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on the pure MiSeq data, the assembly is still very accurate

(99.99%), but is very fragmented, with 318 contigs and an
N50 of 170 kb.

Other applications

Diagnostic application

When disease outbreaks occur, it is important to be able to
rapidly obtain genome sequences in order to assess the pat-

terns of viral evolution, to investigate transmission chains, or
to validate diagnostic assays [58–61]. It would be difficult to
use a Sanger sequencer or find an NGS platform that could

match the MinION in terms of its rapid deployability and reli-
ability under field conditions. Additionally, in some places it
may not be feasible, perhaps for political or logistical reasons,
to export samples to laboratories capable of performing the
required analyses. The compact MinION device therefore

offers fantastic opportunities to sequence the genome quickly
in these less favorable locations and conditions. The device
can be used immediately upon arrival in the outbreak area,

as it does not require any special setup or calibration proce-
dures. More importantly, the device can be used as a rapid
diagnostic tool for management of outbreaks of various dis-

eases due to the rapid data turnaround. Quick et al. [60]
reported a landmark diagnostic investigation during the Ebola
outbreak in Guinea, west Africa. In order to extract enough
DNA for the study, the designed sequencing protocol used a

targeted reverse transcription-PCR, and DNA sequences were
amplified to cover the Ebola virus (EBOV) genome. A real-
time genomic surveillance system was developed for the

various tasks of sequencing, which consisted of three MinION
devices, four laptop computers, and consumables. In total,
they made 148 MinION runs, covering 142 samples. Rapid

turnaround is the key for such projects. It was reported that
it only took 15–60 min to perform the sequencing process, with
the whole workflow completed in less than 24 h, including

amplification, library preparation, and MinION run. The
study itself and the protocol developed has well demonstrated
the potential of nanopore sequencing in areas where sequenc-
ing would not otherwise have been possible. Future diagnostic

support could revolutionize the ability of the researchers work-
ing in the public health sector to perform sequencing during
future disease outbreaks. Other diagnostic applications have

also been reported, including prediction of antibiotic resistance
by sequencing the genomes of Staphylococcus aureus and
Mycobacterium tuberculosis [62]; real-time strain typing and

analysis of antibiotic resistance [63]; and aneuploidy detection
in prenatal and miscarriage samples with sequencing reads
generated in less than 4 h [64] just to name a few. Please visit

https://publications.nanoporetech.com for an up-to-date list
of applications and publications using ONT sequencing.
Structural variation

Structural variation (SV), as an important type of genetic vari-
ants, includes insertions, deletions, duplications, inversions,
and large-scale structural rearrangements. Currently, variants

of sizeP 50 bp in length are all considered as SVs [65–68]. Dri-
ven by constant advances of sequencing technologies, various
analysis methods have been developed to identify SVs. While

substitutions and short indels could be detected relatively
easily by read alignment, identification of SVs in large size is
difficult when using NGS short sequencing reads. Dealing with
such situation often needs to employ indirect evidence such as

disturbance of read mapping, mapping coverage, and mapping
breakpoints. There is rich literature on method development
and data collections for SVs [69,70]. As the NGS market is

dominated by the Illumina pair-end sequencing [68], algo-
rithms developed and datasets archived for SVs are mainly
for Illumina short reads. With advances in single-molecule

sequencing, however, efficient identification of SVs could be
substantially enhanced in the genomics community, as long
read sequencing platforms such as PacBio and Oxford Nano-

pore are playing an increasingly important role in genome
sequencing.

https://publications.nanoporetech.com
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To demonstrate nanopore sequencing’s ability to detect
SVs, Norris et al. [18] designed an experiment to see how well
a set of 10 well-characterized SVs could be detected. These

SVs included 2 interstitial deletions, 4 translocations, and 4
inversions. SNP microarrays and whole-genome sequencing
(WGS) were first used to identify these SVs, which were con-

firmed by PCR and Sanger sequencing across the junctions
afterward. Barcodes were used to generate libraries for all 12
PCR amplicons (10 SV samples + 2 control samples), which

were then multiplexed in one MinION flowcell run. In total,
this run produced 2.5 megabytes of sequence bases with 3987
2D reads from 194 of 512 channels. The reads were 640-bp long
on average, which is about the full length of the PCR products.

Although the yield was low and the base error rate was high
(86%), all 10 SVs were correctly detected with a wild-type sam-
ple that are confirmed to contain no variation serving as con-

trol. As the authors noted in the paper, the identification of
exact breakpoints is still challenging. Although the SVs
detected were all of the correct type, their locations were impre-

cise, being shifted by a few bases. Improvements are obviously
needed, either in the development of bioinformatics tools, or in
the reduction of base errors from the sequencing instrument.
Differences between the PacBio and ONT sequencing

platforms

Notably, there are a number of differences between PacBio
and ONT platforms even in terms of sequencing methods.
While the PacBio platform relies on the method of

sequencing-by-synthesis, in which single molecules of DNA
Table 5 Under-represented and over-represented 5-mers of the E. coli

Group

Template reads C

Kmer
Occurrence/100 bp

Diff Kmer
O

in Ref in Templ in

Under-represented AAAAA 0.247 0.086 �0.161 CGCCA 0

TTTTT 0.251 0.093 �0.158 AAAAA 0

CGCTG 0.258 0.104 �0.155 TTTTT 0

GCTGG 0.279 0.148 �0.132 CACCA 0

CGCCA 0.288 0.168 �0.120 CCAGC 0

CCAGC 0.288 0.180 �0.108 CGCTG 0

GCCAG 0.280 0.173 �0.107 GCCAG 0

CTGGC 0.278 0.178 �0.100 CAGCA 0

CAGCA 0.262 0.168 �0.095 CTGGC 0

CGGCA 0.222 0.129 �0.093 TGGCG 0

Over-represented ACCCC 0.040 0.136 0.096 ACCCC 0

CCCCG 0.055 0.149 0.093 CCCCG 0

CCCCC 0.033 0.122 0.089 CCCCA 0

CCCCA 0.064 0.138 0.075 CCTAG 0

CCTAG 0.003 0.075 0.072 CTGAG 0

GCCCC 0.062 0.131 0.069 TACCC 0

CTCCC 0.039 0.107 0.067 CCTAA 0

TCTAC 0.048 0.113 0.065 GACCC 0

TCCCC 0.056 0.121 0.065 TCCCC 0

TACCC 0.073 0.138 0.064 TCCTA 0

Note: Poretools was used to extract FASTA sequences for template, comp

reads of the E. coli data [13] and of the reference assembly were calculated se

Biostring. Frequencies of each 5-mer occurrence in reads per 100 bp were

reference assembly; Templ, template read; Compl, complement read.
polymerase are observed as they synthesize a single molecule
of DNA, nanopore-based technologies detect DNA bases by
monitoring the transit of a DNA molecule through a hole

and measuring variation in electric currents or optical signals.
During SMRT sequencing, subreads can be generated, result-
ing in multiple base coverage on a given base. For nanopore

sequencing, however, the base coverage from data stream for
each pore is either 1 or 2 (1D or 2D read), as described in detail
earlier in this review. One striking feature of nanopore

sequencing is the under-representation of common homopoly-
mers in the raw reads. If 5-mers are used for base-calling, the
maximum length for homopolymers will be 5 bp, i.e., there are
no 6-mers or longer homo-kmers such as AAAAAA or

TTTTTT in the data, since additional bases identical to the
ones in the initial 5-mer would not cause a change in the ion
current when passing through the pore. Table 5 lists under-

represented and over-represented 5-mers for a sequencing
dataset of E. coli [13]. However, most of the missing
homopolymers can be recovered from the event data by

Nanopolish [17]. It can be seen from Figure 4A that the copy
numbers of the 5-mers TTTTT and AAAAA are significantly
lower than that of the reference sequences for all the assem-

blies. After Nanopolish, the copy numbers for these 5-mers
are increased, which become close to those seen in the refer-
ence (Figure 4B). For G- and C-rich 5-mers like GGGGG
and CCCCC, it appears that Nanopolish could over-correct

them, resulting in more copies of G- or C-rich 5-mers than
actual (Figure 4B).

We outline below other major differences between ONT

and PacBio platforms in terms of instrument size, read accu-
racy, and read length.
data

omplement reads 2D reads

ccurrence/100 bp
Diff Kmer

Occurrence/100 bp
Diff

Ref in Compl in Ref in 2D

.288 0.092 �0.196 TTTTT 0.251 0.047 �0.204

.247 0.055 �0.192 AAAAA 0.247 0.058 �0.189

.251 0.065 �0.186 CAAAA 0.170 0.111 �0.058

.184 0.054 �0.130 AAAAT 0.195 0.138 �0.057

.288 0.162 �0.126 AAAAG 0.132 0.081 �0.051

.258 0.135 �0.123 CGCCA 0.288 0.239 �0.049

.280 0.157 �0.122 TAAAA 0.145 0.097 �0.048

.262 0.140 �0.122 TGGTG 0.185 0.138 �0.048

.278 0.159 �0.119 CGCTG 0.258 0.213 �0.046

.275 0.163 �0.112 GCCAG 0.280 0.238 �0.042

.040 0.143 0.103 CAAAT 0.105 0.164 0.059

.055 0.134 0.079 GGGGT 0.039 0.074 0.035

.064 0.128 0.065 CCCAA 0.047 0.080 0.033

.003 0.066 0.063 TGAAT 0.121 0.154 0.033

.050 0.112 0.063 GAAGG 0.094 0.127 0.033

.073 0.136 0.062 CGGGG 0.054 0.087 0.032

.026 0.087 0.061 ACCGT 0.123 0.155 0.032

.040 0.100 0.060 CGTGA 0.102 0.134 0.032

.056 0.115 0.059 GAAGC 0.124 0.156 0.032

.013 0.071 0.058 AGGCA 0.093 0.124 0.031

lement, and 2D reads from the FAST5 files. The 5-mer counts of the

parately using the oligonucleotide frequency function of the R package

calculated and differences in reads relative to Ref are indicated. Ref,
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(1) Device size. PacBio platforms are bulky and require a

large initial investment. This means that it could only
be feasible for them to be owned and operated by large,
established sequencing centers. Furthermore, they

require a reasonably high level of support throughout
the entire sequencing process, again meaning that they
are far better suited to sequencing centers, where this
kind of support will already be in place. Nonetheless,

PacBio platforms have relatively low operating costs
when assessed on a per-sample basis. On the other hand,
the MinION platform sits in direct contrast, being both

far smaller and requiring a lower initial investment than
PacBio platforms, making them more accessible to smal-
ler laboratories. Furthermore, the MinION’s applica-

tions in real-time sequencing allow for a more general
analysis on the samples than that offered by PCR.

(2) Read lengths. The read length from both the PacBio and
MinION platforms can be increased by experimental

methods, say, for example, by increasing the fragment
sizes of the input DNA. Table 3 shows the read lengths
of MinION and PacBio data used for our assembly com-

parison. It can be seen that the mean read length from
PacBio is longer than that from MinION. It should be
noted that the actual length obtained may vary from

run to run, depending on a number of factors, such as
DNA samples, quality, and library preparation meth-
ods. The longest full length MinION 2D read aligned

to reference can be over 45 kb [13]. Nanopore sequenc-
ing technology is less likely to have inherent limitations
in terms of potential read length, as it is not based on
synthesis. When assessed by the proportion of their

lengths fully aligned with the reference sequences, reads
obtained from the MinION outperform short reads [76],
therefore having a higher probability that a sequence

can be aligned to a given region of the genome.
(3) GC bias. For ONT, 1D reads from the MinION sequen-

cer have reported base accuracy of 65%�75%, while

higher quality 2D reads have base accuracy at 80%�
88% [11–13]. The base error rates for PacBio reads are
slightly better, reportedly in the range of 10%�15%
[14]. It is common to observe sequencing difficulties in

the GC-biased regions, where base accuracy is lower
and read coverage is associated with higher variation
or less representation, comparing to non-GC-biased

regions. Both Ashton et al. [11] and Karlsson et al.
[72] observed higher error rates in G/C mononucleotide
repeats and therefore further evaluation of the MinION

system’s ability to sequence extremely GC-rich regions is
needed.
Discussion and future prospects

The MinION device and the data produced using it have had a
number of reported successful applications in disease surveil-
lance, such as the Ebola outbreak in west Africa [60,61]. For

this purpose, the real-time feature is critical in order to swiftly
establish progression patterns by monitoring the spread of a
disease. The fast output data streamed by the device is a cur-

rent squiggle, not a DNA sequence string. To speed up data
collection for analysis, Loose et al. [71] developed a method
which can map the squiggle data directly to a reference
sequence in ‘squiggle space’. To achieve a desirable read depth
for a given analysis, it would take 49 min to carry out the stan-
dard base-calling technique. However, the desired read cover-

age is obtained in just 15 min using squiggle mapping. This
increase in speed would make big differences in medical envi-
ronments. On another front, David et al. [73] have developed

an open source base-caller for offline data processing, which
could have profound impact on applications at places where
there is a lack of stable electricity supply and reliable internet

access.
Library preparation plays an essential role in determining

the quality and usability of the data produced by the MinION,
and much effort is going into making the process automated

and reproducible. A MinION Starter kit includes a library
preparation kit, which prepares purified genomic DNA, ampli-
cons, or cDNA ready for loading onto the MinION in less

than 2 h. As different applications require different lengths
of DNA to be sequenced, users are able to obtain different
read length profiles using different library preparation meth-

ods. ONT is developing VolTRAX—a small device designed
to convert an original biological sample into a form ready
for use in a nanopore sequencing device without the need for

human intervention. The device can be directly connected to
the MinION sequencer. However, quality of the data,
usability, and flexibility of VolTRAX remain to be fully
tested by the community. For most applications, traditional

library preparation kits are routinely selected on extracted
DNA.

Current applications of ONT data are mainly on small gen-

omes for variation detection, genome assembly, etc. Analysis
on large genomes, however, is still limited by the relatively
low throughput offered by the MinION device. Although

not officially released on the market, ONT has announced a
new platform, PromethION [74]. This is a stand-alone bench-
top sequencer that is computationally powerful enough to be

used for very high throughput real-time analyses. Additionally,
PromethION is, like the MinION, able to use the cloud-based
analysis service Metrichor. There are 48 flowcells incorporated
in PromethION, making it equivalent to 48 MinIONs. Fur-

thermore, there are 3000 nanopores in the nanopore sensor
array contained inside each flowcell, giving the instrument
144,000 nanopores in total (281 times the number found in

MinIONs). Signal processing is carried out by an
application-specific integrated circuit (ASIC) within the device.
Multiple samples can be processed separately in different flow-

cells. It is worth noting that PacBio has also announced a new
high-performance platform, Sequel [75], which is expected to
launch in late 2016. The total throughput per SMRT cell will
initially range 5–10 GB (about 7 times the current throughput),

with initial average read lengths of 8–12 kb.
In early March 2016, ONT revealed plans for potential

update on MinION technology [76]. The chemistry will change

from R7 to R9, by using an E. coli pore protein CsgG. A new
base-caller is being developed and it is moving away from the
current HMM-based base-caller to neural network-based base-

caller. With these improvements, it aims to achieve a 10%
error rate in 1D data and a Q20 for 2D data. In late May
2016, ONT announced SmidgION [77], an iPhone-powered

sequencer, which has 256 channels per flowcell and the device
is expected to be available in late 2017. The introduction of
these high-performance sequencing platforms and devices for
automatic library preparations makes it easier to achieve
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de novo assemblies for human-sized genomes at a more afford-
able price. Moreover, availability of the even smaller device
SmidgION will speed up applications in monitoring disease

outbreaks and real-time species identification. For the PacBio
data, a few de novo human assemblies have been reported
[46,47], and computational work is being undertaken to speed

up the assembly process. For the ONT data, a significant
challenge lying ahead is to develop efficient algorithms, not
just for optimizing the use of computational resources for

large genomes, but also for obtaining assemblies with high
base accuracy using reads with under-represented and over-
represented homopolymers.
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