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Abstract The interindividual genetic variations in drug metabolizing enzymes and transporters

influence the efficacy and toxicity of numerous drugs. As a fundamental element in precision med-

icine, pharmacogenomics, the study of responses of individuals to medication based on their genomic

information, enables the evaluation of some specific genetic variants responsible for an individual’s

particular drug response. In this article, we review the contributions of genetic polymorphisms to

major individual variations in drug pharmacotherapy, focusing specifically on the pharmacoge-

nomics of phase-I drug metabolizing enzymes and transporters. Substantial frequency differences

in key variants of drug metabolizing enzymes and transporters, as well as their possible functional

consequences, have also been discussed across geographic regions. The current effort illustrates the

common presence of variability in drug responses among individuals and across all geographic

regions. This information will aid health-care professionals in prescribing the most appropriate

treatment aimed at achieving the best possible beneficial outcomes while avoiding unwanted effects

for a particular patient.
Introduction

Pharmacogenomics is the understanding of how individuals
differ in their response to drug therapy and the mechanisms

underlying variable drug response by utilizing genomics, pro-
teomics, transcriptomics, and metabolomics based knowledge.
Every individual has a different genetic makeup, which influ-

ences the risk of developing diseases as well as responses to
drugs and environmental factors [1]. Genomic differences
between individuals are present approximately every 300–

1000 nucleotides with over 14 million single nucleotide poly-
morphisms (SNPs) distributed throughout the entire human
nces and
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genome [2]. Therefore, identification of DNA variants that
most significantly contribute to the population variations in
each trait is one of the fundamental objectives of genetics [3].

The understanding of variations in interindividual drug
response behaviors has been greatly improved owing to the
rapid developments in pharmacogenomics over the last few

years. Each individual in a large patient population responds
differently, which possibly explains why a treatment that has
been proven efficacious in some patients often fails to elicit

adequate responses in others. Moreover, such treatment failure
in the affected patients may cause some serious side effects or
even lead to death, which is inductive of individual variability
in drug safety and efficacy. The causative factors for variations

in drug response are complex and multifold with direct or indi-
rect consequences. Among them, stably-inherited genetic fac-
tors are the major variables [4], whereas others include

environmental factors like chemicals and radiation exposure,
lifestyle factors like drinking, smoking and exercise, and phys-
iological factors like age, sex, liver and kidney function, preg-

nancy, and starvation [5]. It is evident from previous studies
that population variability in drug response is often larger than
intrapatient variability (within the same individual at different

time points) [6].
Drug response of individual patients is primarily deter-

mined by the pharmacokinetic and pharmacodynamic proper-
ties of prescribed drugs, which is directly or indirectly affected

by polymorphisms in drug metabolizing enzymes and trans-
porters. Different populations have varied allele frequencies
in genes of both drug metabolizing enzymes and transporters.

For precision medicine, the molecular and clinical information
is integrated in order to understand the biological basis of
disease and develop medications with better outcomes for

patients [7]. Therefore, precision medicine will help to improve
the selection of disease targets and lead to the identification of
patient populations that exhibit better clinical result at normal

doses [8].

Variations in drug response

It is well known that individuals vary significantly in their clin-
ical responses to administered drugs and the outcomes, which
can be inherited or acquired, are always patient-specific [9].

Such interindividual variation is often a challenge to optimiz-
ing a dosage regimen because most drugs are effective in only
25%–60% of patients [10]. Many patients are unable to fully

respond and benefit from the first recommended drug treat-
ment. For example, an average of 38%, 40%, 43%, 50%,
and 75% of patients who have depression, asthma, diabetes,
arthritis, and cancer, respectively, show no response to initial

treatments [11].
Different patients can respond differently to the same drug

and dose. Sometimes, the effective drug dose for a particular

patient may prove lethal to or result in therapeutic failure in
others (too low drug concentrations at normal doses), leading
to serious adverse effects or no effects at all. Continuous drug

monitoring is recommended when prescribing drugs with
known serious side effects and narrow therapeutic indexes to
avoid unexpected and undesirable outcomes [12]. The situation
can worsen if the patient takes other drugs and has other exist-

ing disease conditions due to possible drug–drug and drug–dis-
ease interactions [13]. For example, the daily warfarin dose
varies by up to 20- to 30-fold between patients in many disease
conditions where it is recommended for the treatment of
embolism and thrombosis [13]. Similar observation has also

been reported for dose-dependent individual variations in drug
response to simvastatin, an inhibitor of 3-hydroxy-3-methyl-
glutaryl-coenzyme A reductase (HMGCR) [14].

The recommended daily maximum dose of simvastatin for
the management of blood cholesterol levels is 40 mg. In a
cohort study of 156 patients, 95% of them showed reduced

levels of low-density lipoprotein (LDL) cholesterol, whereas
the remaining 5% exhibited no reduction was observed for
the remaining 5% of the patients, even at doses as high as
160 mg/day of simvastatin [15]. It is suggested that the genetic

polymorphisms in genes encoding ATP-binding cassette sub-
family G member 2 (ABCG2) and HMGCR contribute to
the interindividual difference in a dose-dependent manner

[14,16].
Contributing factors in interindividual drug responses

Individual-specific response to medication can be attributed to
many multifold and complex factors including the unique
genetic makeup (mutations such as SNPs, gene deletions,

and duplications). These genetic factors, as well as physiolog-
ical conditions (age, gender, body size, and ethnicity); environ-
mental influences (exposure to toxins, diet, and smoking); and

pathological factors (liver and renal function, diabetes, and
obesity) can work alone or in combination to influence drug
responses [17]. According to the hypothesis of Tang et al.

[18], various genetic factors contribute approximately 20%–
95% to determining the interindividual variability in drug
responses. Furthermore, individual variations in responses

related to genetic factors are often permanent, while those
influenced by other factors are mostly transient [6]. In support
of inheritance being a major determinant of drug response,
Vesell et al. [19] found relatively higher population variability

of a drug response among all the individuals in a population
than the intrapatient variability at different times.
Determinants of interindividual drug responses

Disease conditions of individuals used to be diagnosed based

on signs and symptoms, which may be indicative of several dif-
ferent diseases or somewhat related to the family history. In
the past, clinicians could only attempt to cure or treat disease
upon its onset [20]. Currently, more specific and precise diag-

nostic approaches have been developed to examine genes and
the genetic variants known to be associated with altered
interindividual drug response or specific diseased conditions.

Success of the Human Genome Project (HGP) has contributed
considerably in this context. Pharmacogenomics enables scien-
tists to assess specific genetic variants that may be responsible

for an individual’s particular drug response by identifying the
particular genetic loci involved [21]. Whole-genome SNP pro-
filing, haplotyping, multigene analysis, and gene expression

studies using biochips or microarrays [22,23] are recently used
to study individual responses to drugs at various levels and
could facilitate drug discovery and development [24].

Genetic polymorphisms may influence a drug’s effect by

altering its pharmacokinetics, pharmacodynamics, or both
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(Figure 1), which are two major determinants conferring the
interindividual differences in drug responses. Pharmacokinet-
ics deals with how much of a drug is required to reach its target

site in the body, while pharmacodynamics deals with how well
the targets such as receptors, ion channels, and enzymes
respond to various drugs [25,26]. Genetic polymorphisms in

drug transporters and phase-1 drug-metabolizing enzymes
can alter the pharmacokinetic and pharmacokinetic properties
of the administered drugs, their metabolites or both at the tar-

get site, resulting in variability in drug responses. Theoreti-
cally, variations at even a single base (SNPs) or sets of
closely-related SNPs (haplotypes) in genes involved in the
pharmacokinetic and pharmacodynamic pathways at any

stage could affect the overall drug response of an individual
[27,28].

Mutations in the gene coding regions could cause

alterations in gene expression or protein structure, leading to
variations in protein quantity and quality. In the case of
enzymes, such mutations affect both the protein function

and the rate and kinetic constants. Changes in drug-receptor
or drug–enzyme interactions due to structural alterations of
enzymes or receptors could also result in variations in drug

responses [6]. Polymorphisms in genes responsible for drug
transport can affect pharmacokinetic properties of an adminis-
tered drug and ultimately its plasma concentration as well as
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in genes related to these processes may result in mild to severe variati
concentrations in the target tissues. In addition, altered drug
response could also be attributed to reduced repairing capabil-
ity for mutations triggered by alkylating agents due to mal-

functioning of DNA repair enzymes [29]. Such protective
effect could be affected by genetic polymorphisms causing
altered protein structure or reduced expression in enzymes

responsible for glutathione biosynthesis [2].
Twin studies have provided evidence supporting the contri-

bution of genetic factors to individuals’ varied drug responses.

For instance, in the late 1950s, it was found that dizygotic
twins exhibited more metabolic variability than did monozy-
gotic twins for isoniazid metabolism [30]. Subsequent investi-
gations of halothane, antipyrine, and phenytoin metabolism

in twins revealed the major influence of genetic factors and
exposure to disease-favoring environment [31,32] .

Influence of polymorphisms in genes encoding phase-I

drug metabolizing enzymes

Cytochrome P450 2D6

Cytochrome P450 (CYP), which represents a large and diverse
group of heme-containing enzyme superfamily, is involved in
oxidative metabolism of structurally-diverse molecules like
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drugs, chemical, and fatty acids. The genetic polymorphism in
the genes encoding CYP members was firstly reported for
CYP2D6. The highly polymorphic CYP2D6 gene is located

on the chromosome 22q13.1, consisting of nine exons and
eight introns (GenBank accession No. NM 000106.5) [33,34].
More than 100 CYP2D6 genetic variants have been described

(http://www.cypalleles.ki.se/cyp2d6.htm) to date, resulting
from point mutations, duplication, insertions or deletions of
single or multiple nucleotides, and even whole-gene deletion.

Individuals carrying different CYP2D6 allelic variants have
been classified as poor metabolizers (PMs), intermediate
metabolizers (IMs), extensive metabolizers (EMs), and
ultrarapid metabolizers (UMs) according to the metabolic nat-

ure of the drugs and degree of involvement in drug metabolism
of these variants [35]. Although constituting only 2%–4% of
the total amount of CYPs in the liver, CYP2D6 actively

metabolizes approximately 20%–25% of all administered
drugs [36]. The drugs metabolized by CYP2D6 include tricyclic
antidepressants, serotonin reuptake inhibitors, antiarrhyth-

mics, neuroleptics, and b-blockers [35].
The extensive presence of polymorphism in the CYP2D6

gene significantly affects phenotypic drug responses. Up to a

10-fold difference in the required dose was observed in order
to achieve the same plasma concentration in different individ-
uals [37]. Dextromethorphan, debrisoquine, bufuralol and
sparteine are the probe drugs used for in vivo CYP2D6 pheno-

typing. According to the probe substrate metabolic capabilities
among the sampled individuals in a population, patients can
be categorized into the following four phenotypic groups:

poor, intermediate, extensive, and ultra-rapid metabolizers
(PMs, IMs, EMs, and UMs), respectively [38]. The interindi-
vidual phenotypic variations depend on the metabolic proper-

ties of the CYP2D6 allelic variants (Table 1). Simultaneous
presence of two null (non-functional) alleles in an individual
[39] confers a PM phenotype, whereas individuals with two

normally-functioning alleles [40] present with the EM pheno-
type. In addition, co-existence of a null allele with another
allele associated with reduced function [41,42] gives rise to
an IM phenotype, whereas presence of extra CYP2D6 gene

copies with normal activity confers the UM phenotype.
According to the CYP2D6 phenotype, the Caucasian popula-
tion comprises approximately 5%–10% PMs, 10%–17% IMs,

70%–80% EMs, and 3%–5% UMs [39]. The percentages of
PMs, IMs, EMs, and UMs differs among different ethnicities
due to the significant variability in the CYP2D6 allele distribu-

tion (Table S1 and Table S2).
Individuals with the UM phenotype can metabolize the

administered CYP2D6 substrates in much shorter time than
individuals with the IM or PM phenotypes [43]. This leads

to very low plasma drug levels with potential loss of drug
Table 1 CYP2D6 genotype-based phenotype groups of individuals

Phenotype Genotype

PM CYP2D6*3–*8, *11,*16, *18–*21, *

EM CYP2D6*2, *17 x 2, *27, *35, *39,

IM CYP2D6*10, *14, *17, *18, *36, *4

UM CYP2D6*2XN (N = 2, 3, 4, 5 or 13

Note: Classification is based on the metabolic capabilities of CYP2D6

dextromethorphan) among the sampled individuals in different population

metabolizer; UM, ultra-rapid metabolizer.
efficacy. Therefore, higher drug doses would be required to
attain effective drug concentrations, which could be fatal when
dealing with drugs with narrow therapeutic indexes. Notably, a

large number (approximately 10%–30%) of Saudi Arabians
and Ethiopians have been reported to have the CYP2D6*2XN
allele [44,45]. On the other hand, there is an opposite situation

for the individuals with the CYP2D6*3, *4, *5, and *6 alleles
(PM phenotype). These allelic variants lead to inactive
CYP2D6 enzymes [46–50]. As a result, the affected individuals

exhibit high plasma drug levels with increased risks of drug-
related side effects and therefore reduced drug dose should
be administered [51]. The allelic frequencies with clinical con-
sequences of CYP2D6*3 (3.3% in Sardinians), CYP2D6*4

(23%–33% in Polish and Faroese populations), CYP2D6*5
(5.9%–6.2% in Spaniards and African Americans), and
CYP2D6*6 (1.9%–3.3% in Faroese and Italians) were also cal-

culated in diverse populations (Table S2).
The prodrug tamoxifen is a selective estrogen receptor (ER)

modulator used to treat ER-positive breast cancer patients

[52]. Tamoxifen is actively catalyzed to endoxifen and 4-
hydroxytamoxifen by various CYPs with CYP2D6 acting as
the rate-limiting enzyme [53]. Plasma level of endoxifen in

UM patients is usually higher than that in PM and IM patients
due to the presence of multiple functional CYP2D6 copies [53].
The presence of CYP2D6 null alleles in high frequencies com-
monly contributes to the CYP2D6 PM phenotype in individu-

als, as is the case with the CYP2D6*4 (33%) in the Faroese
population [47]. In tamoxifen-treated surgically resected ER-
positive breast cancer patients, a much lower (0) prevalence

of moderate to severe hot flashes, together with a higher risk
of disease relapse, was reported in women with the
CYP2D6*4/*4 genotype than in patients with one or no

CYP2D6*4 alleles (20%) [54]. Codeine is a commonly pre-
scribed analgesic, which is converted to its active metabolite
morphine and acts at mu-opioid receptors to induce analgesia.

The affinity of morphine to mu-opioid receptors is 200-fold
stronger than that of codeine [55]. Interestingly, conversion
from codeine to morphine is also catalyzed by CYP2D6, which
has been proven as the key enzyme responsible for the anal-

gesic effect of codeine. The CYP2D6 phenotype is therefore
a critical determinant in opioid analgesia. According to
McLellan et al. [45], subjects with the PM phenotype can only

convert 10% of a codeine dose to morphine while approxi-
mately 40% and 51% conversion occurs in EMs and UMs,
respectively. Thus, in individuals with null allelic variants of

CYP2D6, codeine is not recommended as an analgesic because
of the minimal enzymatic conversion from codeine to mor-
phine. Conversely, a higher risk of morphine toxicity may
occur in patients with the UM phenotype owing to the rapid

conversion of codeine to morphine. The situation would be
Refs.

38, *40, *42, *44, *56, *62 [39]

*48 [40]

1, *47, *49–*51, *54, *55,*57 [41,42]

) [39,44,52,53]

enzyme on probe substrate (bufuralol, debrisoquine, sparteine, and

s. PM, poor metabolizer; IM, intermediate metabolizer; EM, extensive

http://www.cypalleles.ki.se/cyp2d6.htm
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more devastating in UMs who are lactating mothers because
the normal codeine dose can translate into fatal morphine con-
centrations into the breast milk [56]. In 2006, a case of a 13-day

newborn death was reported when the infant’s mother was
placed on the codeine therapy after delivery for pain manage-
ment of episiotomy [57]. There are also other cases reporting

that the routinely recommended codeine doses produced lethal
adverse effects in UM patients [56,58,59]. The CYP2D6 allelic
variants *10, *17, and *41 exhibit normal catalytic activity but

are sometimes associated with intermediate to low metabolic
activities [60]. In the Chinese population, the CYP2D6*10
allele has been found more common than other alleles (allelic
frequency of up to 65%) and it causes a greatly decreased

(but not deficient) enzyme activity [61].

CYP2C9

CYP2C9 is another important member of the CYP superfam-
ily. The gene coding for CYP2C9 is located on chromosome
10q24.2, and spans more than 55 kb in length. CYP2C9 consti-

tutes approximately 18% of the total CYP protein in the
human liver microsomes [62]. CYP2C9 metabolizes approxi-
mately 25% of clinically-administered drugs including anti-

inflammatory agents such as flurbiprofen, hypoglycemic agents
such as glipizide and tolbutamide, the anticoagulant S-
warfarin, and the anticonvulsant phenytoin [63,64]. More than
60 variant alleles have been identified for the CYP2C9 gene

(http://www.cypalleles.ki.se/cyp2c9.htm). Among them,
CYP2C9*2 (R144C) and CYP2C9*3 (I359L) are the most
common variants associated with highly-reduced CYP2C9

enzymatic activities in comparison with the wild-type allele
(CYP2C9*1) [65].

The CYP2C9*2 variant results in a markedly decreased

enzyme activity due to higher km value and lower intrinsic
clearance of drugs like S-warfarin [16]. The CYP2C9*2 allelic
variant has been reported with up to 25% allelic frequencies in

the Iranian population [66]. However, frequencies of heterozy-
gous CYP2C9*1/*2, homozygous CYP2C9*2 or CYP2C9*3
carriers were lower (0.1%–1%) in the Chinese and Japanese
populations compared with those in Caucasians and Iranians.

Caucasians have approximately 1% CYP2C9*2 and 0.4%
CYP2C9*3 homozygotes, respectively [67]. Furthermore,
approximately one-third of the Turkish population has either

the *1*2 or the *1*3 genotype, while more than 2% have the
*2*2, *2*3, and *3*3 genotypes [68]. In the Iranian and Pak-
istani populations, the prevalence of CYP2C9*2 and

CYP2C9*3 is greater than that in the other studied popula-
tions [66]. On the other hand, Chinese, Vietnamese, Korean,
Bolivian, and Malaysian populations have a CYP2C9*1 allelic
frequency variant of >90%, whereas allelic CYP2C9*2 vari-

ant was not detected in the Korean, Chinese, and Vietnamese
populations but occurs 1% in the Japanese. Furthermore, no
individuals from the South African and Zimbabwean popula-

tions have been reported to carry the CYP2C9*2 allele
(Table S1).

The interindividual and interethnic variations in the

CYP2C9 polymorphisms are clinically significant especially
in the patients on anticoagulation therapy with warfarin.
Warfarin is one of the most widely-prescribed oral anticoagu-

lants [13]. Clinically-available warfarin is a racemic mixture of
the R and S enantiomers, with the S-isomer exhibiting an
approximately 5-fold higher anticoagulant potency than the
R-isomer [69]. Inactivation of the active S-warfarin is almost
exclusively mediated by CYP2C9. Patients with high allele fre-

quencies of the CYP2C9 wild-type or CYP2C9*1 excrete the
S-warfarin normally from the body. In contrast, PMs who
have high allelic frequencies of the CYP2C9*2, CYP2C9*3,

or both have impaired S-warfarin-metabolizing capabilities
and, therefore, require lower drug doses to attain therapeutic
responses [70–73]. Thus, PMs have higher risks of internal

bleeding than individuals with higher CYP2C9*1 allelic
frequencies during warfarin therapy [69,72]. Although poly-
morphisms in genes encoding blood-clotting factors also
contribute to the bleeding risk and initial warfarin dose adjust-

ment requirements, CYP2C9 gene polymorphisms always
exert greater influence [74].

Both CYP2C9 and CYP2C19 are involved in microsomal

hydroxylation of phenytoin to its R and S enantiomers [75].
Therefore, CYP2C9 genotype is an important determinant
in in vivo phenytoin metabolic studies. Due to the narrow ther-

apeutic range of phenytoin, even minimal variations in
CYP2C9 activity can be clinically important [76]. In a study
on healthy Turkish individuals with already known CYP2C9

genotypes, Aynacioglu et al. [68] reported that subjects with
CYP2C9*1/*2, CYP2C9*1/*3, and CYP2C9*2/*2 genotypes
had significantly higher phenytoin serum concentrations and
lower levels of 5-(4-hydroxyphenyl)-5-phenylhydantoin

(phenytoin metabolite) than those with the CYP2C9*1/*1
genotype. Multiple studies have also shown that the
CYP2C9*3/*3 genotype is associated with reduced metabo-

lisms and altered pharmacokinetic properties of substrates such
as phenytoin, warfarin, losartan, and tolbutamide [77–80].

CYP2C19

The polymorphic CYP2C19, which is located on the chromo-
some 10q24 encodes another CYP family member. CYP2C19

can metabolize numerous routinely-administered drugs such
as anxiolytics (diazepam), proton pump inhibitors (omepra-
zole), anticonvulsants (S-mephenytoin), and antimalarial
biguanides [35,81–83]. Up to now, more than 35 CYP2C19

variants and approximately 2000 SNPs have been identified
(http://www.cypalleles.ki.se/cyp2c19.htm), with continuous
increase in SNP numbers reported. Among them, CYP2C19*2

and CYP2C19*3 are the most common variants that have been
studied extensively. Both of them are null variants and patients
carrying these variants are therefore categorized as PMs.

CYP2C19*2 is the most common allelic variant caused by a
single nucleotide alteration in exon 5 (G > A), resulting in
an abnormal splicing site and conferring reduced enzymatic
activities of CYP2C19 [83,84].

The CYP2C19*2 variant is found at a high allelic frequency
(30%) in South Indians, but occurs with the lowest frequency
(2.9%) in the Faroeses. In contrast, CYP2C19*3 is found at

higher allelic frequencies in the Japanese (approximately
13%) but lower (0) among the Italians, South Africans,
Greeks, European-Americans, and other populations (Tables

S1 and S2). Approximately 15%–25% of the Korean, Japa-
nese, and Chinese populations have been reported as PMs of
the anticonvulsant drug S-mephenytoin [85–87]. The activity

of omeprazole, a drug recommended for treating peptic ulcers
and gastroesophageal reflux diseases, was found to be highly

http://www.cypalleles.ki.se/cyp2c9.htm
http://www.cypalleles.ki.se/cyp2c19.htm
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patient CYP2C19 genotypes dependent [88]. Furuta et al. [89]
found that after a single dose (20 mg) of omeprazole [90], the
observed intragastric pH values were 4.5, 3.3, and 2.1 for

PMs, heterozygous EMs, and EMs individuals, respectively.
In another study, Schwab et al. [91] reported lower serum con-
centrations of lansoprazole, a proton pump inhibitor, and

lower rates of Helicobacter pylori eradication in Caucasian
EM patients following a standard dose of lansoprazole. The
individuals with the PM phenotype of CYP2C19 required

lower doses of the proton pump inhibitor lansoprazole for
beneficial therapy than that required by the patients with the
EM phenotype of CYP2C19 [92]. Both CYP2C19*2 and
CYP2C19*3 variant alleles of CYP2C19 are associated with

inactive enzyme production, which is evident from the various
population studies summarized in Table S1. Some drugs
strongly affected by CYP2C19 genotypes, and their labels

contain pharmacogenomic information are summarized in
Table 2.

CYP3A4 and CYP3A5

More than 50% of clinically-administered drugs are metabo-
lized by CYP3A4, which is the most abundant CYP enzyme

in the liver [93]. Therefore, polymorphisms in CYP3A4 are
of great concern in the study of interindividual altered drug
metabolisms and related ADRs [94]. More than 26 CYP3A4
variants have been identified (http://www.cypalleles.ki.

se/cyp3a4.htm) and most of these variants are responsible for
varied enzyme activities ranging from modest to highly
reduced catalytic efficiencies among the affected individuals

[35]. Comparatively, high frequencies of allelic variants of
the CYP3A4 gene (CYP3A4*2 and CYP3A4*3) were observed
in Caucasian whereas high frequencies of allelic variant

CYP3A4**18 were observed in Chinese people (Table S1).
The clinical consequences of different allelic variants of
CYP3A4 are still undefined for many substrates of CYP3A4.

Considering the relatively low frequencies, only small changes
in the enzyme activity have been caused by CYP3A4*16 and
CYP3A4*18 variants [95].

CYP3A5 is one of the factors that contribute to the com-

plexity of CYP3A4. With few exceptions, CYP3A5 can metab-
olize most drugs that are substrates of and metabolized by
CYP3A4. Although slower in most cases [96], the metabolic

activity of CYP3A5 is equal [97] to or even faster than that
of CYP3A4 in some cases [98]. In vivo studies revealed that
the metabolic rates for the drug that are metabolized by both

CYP3A4 and CYP3A5 are the sum of the activities of both
enzymes. Functionally active variants of CYP3A5 are
expressed in half of the African population and one-fourth
of Caucasians [99]. This may partially explain why human

studies of the CYP3A4 allelic variants do not agree with its
clinical effects [100]. An overview of the important conse-
quences of gene mutations of the CYPs is illustrated in

Figure 2.
CYP oxidoreductase (CYPOR) is the catalytic partner and

compulsory element to all CYP-mediated metabolisms. The

interaction between the CYP and CYPOR is essential for the
metabolic activities of CYPs [14]. CYPOR is required for elec-
tron transfer from NADPH to CYP via its FAD and FMN

domains, which is crucial for CYP catalytic activities
[101,102]. Therefore, CYPOR allele variants like POR*5,
POR*13 and POR*27 can indirectly alter the functional conse-
quences of CYPs [103–105]. For example, in POR*27 variant,
L577P mutation located in the NADPH-binding domain of

CYPOR [102] leads to decreased CYPOR activity, due to
changed helix and disrupted NADPH interaction [105],
whereas POR*5 (A287P) is associated with impaired ability

to accept electrons from NADPH [106]. Additionally,
POR*13 (Q153R) variant leads to severely-impaired steroid
biosynthesis in Antley–Bixler skeletal malformation syndrome

(ABS) [107]. Until now, more than 50 different variants of
the human CYPOR genes have been described (http://www.
cypalleles.ki.se/por.htm).

Effect of polymorphisms in genes encoding drug

transporters

A drug could produce a beneficial or toxic effect in a particular
patient. The nature and extent of the resulting effect is largely
dependent on the absorption, distribution, and excretion rates

of the drug. Drug transporters primarily control the movement
of all drugs and their active or inactive metabolites into or out
of cells. Therefore, polymorphisms of drug transporter genes

can modify the absorption, distribution, and excretion rates,
and ultimately safety and efficacy of the administered drugs.
The ABC and solute-carrier (SLC) transporters are two super-

families of transport proteins are ubiquitous membrane-bound
transport proteins that are involved in the absorption, distri-
bution, and elimination of drugs [92].

ABC transporters often transport drugs and other sub-

stances against the concentration gradient using ATP as an
energy source [108]. In ABC transporter superfamily of drug
transporters, 49 genes have been identified, which are divided

into seven subfamilies from ABCA to ABCG (http://nutri-
gene.4t.com/humanabc.htm). The impact of some important
polymorphisms on the drug transport activities of various

ABC transporters is summarized in Figure 3. In addition,
approximately 360 genes have been identified in the SLC
superfamily and are classified into 46 subfamilies (http://

www.bioparadigms.org/slc/menu.asp). Among them, members
of the organic anion transporter (OAT), organic anion trans-
porting polypeptides (OATP), and organic cation transporter
(OCT) subfamilies are of particular significance in drug dispo-

sition [109]. In addition, polymorphisms in genes encoding
SLCO, SLC22, and SLC47 family members within the SLC
superfamily have key roles in modulating drug transport activ-

ities of the corresponding transporters (Figure 4).

ABCB1

The ABCB1 gene, also known as the multidrug resistance 1
(MDR1), encodes a P-glycoprotein (Pgp), which is involved
in the cellular efflux of numerous chemotherapeutic agents,
physiological metabolites, and carcinogens [110]. ABCB1 is

highly polymorphic with allelic variants found in varied fre-
quencies in different populations (Table S3). ABCB1 polymor-
phisms were identified firstly by Kioka et al. [111] in different

cancer cell lines in 1989 and subsequently by Hoffmeyer et al.
[112] and other researchers [113–116]. As an efflux transporter,
ABCB1 is detected on the surface of epithelial cells, preventing

intestinal absorption, protecting fetus and brain from xenobi-

http://www.cypalleles.ki.se/cyp3a4.htm
http://www.cypalleles.ki.se/cyp3a4.htm
http://www.cypalleles.ki.se/por.htm
http://www.cypalleles.ki.se/por.htm
http://nutrigene.4t.com/humanabc.htm
http://nutrigene.4t.com/humanabc.htm
http://www.bioparadigms.org/slc/menu.asp
http://www.bioparadigms.org/slc/menu.asp


Table 2 CYP2C19 genetic polymorphisms with their clinical consequences

Drug Therapeutic class CYP2C19 phenotype Clinical significances Refs.

Lansoprazole,

omeprazole

Gastroenterology PM Increased half-life leading to high cure rates in individuals with

PM genotypes, which is reversed in EMs

[83,84]

Diazepam Psychiatry PM Extended sedative effect due to increased half-life in PMs [81–83]

Clopidogrel Cardiology PM or IM Increased threat of frequent stroke, stent thrombosis, and myocardial

infarction in PMs due to reduced conversion of parent drug to active

metabolite. Reduced antiplatelet activity associated with increased

threat of bleeding disorder in CYP2C19*17 patients

[173–176]

Note: PM, poor metabolizer; IM, intermediate metabolizer; EM, extensive metabolizer.
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otic exposure and facilitating renal and hepatobiliary excre-
tions [117]. Interestingly, overexpression of the ABCB1 gene

in cancer cells induced resistance to chemotherapeutic agents
[110].

Distribution of some allelic variants appears to be ethnicity-

dependent. For instance, SNP 3435C > T occurs at high
frequencies (60%–72%) in Asians but low (34%–42%) in
Caucasians. The substrate-dependent effects of Pgp on

pharmacokinetic and pharmacodynamics properties remain
obscure due to controversial studies on digoxin disposition.
For example, for patients with a mutant allele (3435C > T)
that were administered a single oral dose of digoxin, Sakaeda

et al. [118] reported lower serum concentrations of digoxin,
whereas higher plasma digoxin levels were observed by
Verstuyft and her colleagues [119]. The haplotype

1236C > T/2677G > T/3435C > T was detected with high
frequency (up to 56%) in Asians [120]. Kimchi-Sarfaty et al.
[121] found that patients carrying this haplotype exhibited nor-

mal transporter properties although the transporter inhibition
by small modulators was affected. The conflicting results of
these studies could be indicative of additional polymorphisms
yet-to-be-identified other than the studied mutations or might

reflect the complex disposition pathways of the substrate drugs
in the studied subjects. For example, cyclosporine, a CYP3A4
substrate that is a widely-used immunosuppressant in patients

with liver, kidney, or heart transplants, is also transported by
ABCB1 [122]. Similarly, fexofenadine and digoxin can be
simultaneously transported by OATP and ABCB1. Letour-

neau et al. [123] studied the transport activity of ABCB1 with
R230Q, R633Q, R1056Q, R723Q, T73I, S1512L, S92F,
T117M, A989T, or C1047S nonsynonymous SNPs by using

different substrates (methotrexate, leukotriene C-4, and estra
diol-17-b-glucuronide). However, they failed to find any signif-
icant effect of the aforementioned variants on either gene
expression levels or transport functions. Conversely, a 50%

reduction in transport activity was observed in the A989T vari-
ant [124]. Compared to Asians and Caucasians, the
3435C > T allele occurs lowly in Africans, and it has been pro-

posed that this low frequency of the MDR1 3435T allele might
be associated with the reduced incidence of renal carcinoma in
African populations [124]. On the other hand, the MDR1

3435C allele might have a protective role in parkinsonism
patients with a known history of pesticide exposure [125].

ABCC1 and ABCC2

As the important ABC members, both ABCC1 and ABCC2
are involved in the transport and excretion of several
chemotherapeutic agents, toxicants, and organic anion
molecules [128]. Glutathione cotransporter is essential for
both of them to transport some substrates such as estrone

sulfate [126]. In non-Hodgkin lymphoma patients treated
with doxorubicin, significant associations between the
G671V variant and a V188E-C1515Y haplotype of ABCC2

and G671V variant with 28% allelic frequency in Caucasians
have been reported [127,128]. V417I is another widely dis-
tributed variant in ABCC2 (Asians 13%–19%, Africans

14%, and Caucasians 22%–26%) that has been extensively
studied for its role in drug resistance development in cancer
and human immunodeficiency virus type 1 (HIV-1)-infected
patients [129–131].

ABCG2

Similar to ABCC1, ABCG2 was first discovered in

multidrug-resistant cell lines [132], which is also known as
the breast cancer resistance protein (BCRP), mitoxantrone
resistance protein (MXR) or placenta-specific ABC protein

(ABCP) [133]. ABCG2, which is expressed in the epithelial
cells of the small intestine, lung, kidney, sweat glands, colon,
and placenta, is essential for intestinal absorption and biliary

excretion of drugs and their metabolites and xenobiotic
[134]. More than 80 polymorphisms of the ABCG2 gene
have been identified [135]. Among them, SNP C421A in
the variant (p.Q141K) has been found to be associated with

the reduced expression and altered substrate specificity
ABCG2 [136].

The C421A is widely distributed in many ethnicities with

frequencies of 27%–35% in Asians, 9%–14% in Caucasians,
and 1%–5% in Africans (Table S3). Gefitinib, the inhibitors
of epidermal growth factor receptor (EGFR) tyrosine kinase,

are substrates of ABCG2. In cancer patients who were trea-
ted with gefitinib, presence of C421A was related to
increased drug accumulation and higher prevalence of
drug-induced grade 1 or 2 diarrhea [137,138], when com-

pared to patients with wild type allele. In another study,
Sparreboom et al. [139] reported a 300% elevation in plasma
levels of the anticancer drug diflomotecan in individuals with

the heterozygous C421A genotype when the drug was
administered intravenously [139]. Presence of C421A also
affects the pharmacokinetic and therapeutic effects of rosu-

vastatin in Chinese and Caucasians. Tomlinson et al. [16]
reported the significant influence of C421A in reducing
LDL cholesterol levels in a gene- and dose-dependent man-

ner in Chinese patients with hypercholesterolemia [16].
Therefore, a systemic analysis of polymorphisms of ABC
transporters would be essential to enhance the understanding
of the genetic impact on pharmacotherapy.
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OATPs

OATPs are a large family of membrane-bound influx trans-
porters that are responsible for the cellular uptake of a wide
range of endogenous and exogenous substances including bile

salts, hormones, and clinically administered drugs such as
antibiotics, cardiac glycosides, and anticancer agents [140].
There are 11 human OATP transporters, among which

OATP1A2, OATP1B1, OATP1B3, OATP2B1, and OATPC
are involved in drug pharmacokinetics [138]. In particular,
the OATPC*5 and OATPC*9 allelic variants are associated

with a reduced uptake of OATPC substrates such as estrone
sulfate and estradiol-17-b-D-glucuronide [141]. High plasma
levels of pravastatin and repaglinide have been reported in

subjects carrying the OATPC*5 allele [140–143].
On the other hand, OATP1B1, OATP2B1, and OATP1B3

are mainly expressed on the hepatocyte sinusoidal membrane,
which can facilitate the hepatic drug uptake [138]. OATP1B1 is

encoded by SLCO1B1 and is essential for the hepatic uptake of
the simvastatin active metabolite, simvastatin acid [144]. Six
important SNPs identified in the SLCO1B1 gene with their
allelic frequencies and functional consequences in Asian, Afri-

can and Caucasian have been discussed in Table S3. Among
them, the 521T > C variant of the SLCO1B1 is associated
with reduced OATP1B1 activity, which is responsible for the

higher blood concentrations of simvastatin acid, as well as
the consequently increased toxicity and reduced efficacy of
simvastatin [145]. In addition, OATP1B1*15 was associated

with increased plasma concentrations of pravastatin and 7-
ethyl-10-hydroxycamptothecin (irinotecan active metabolite),
whereas OATP1B1*17 variant is linked with an increased
cholesterol synthesis mediated by pravastatin [146–148].

OCTs

OCTs are proteins encoded by the SLC22A family and in

humans, which are present in the basolateral cell membrane
of the renal proximal tubule [149]. Three isoforms, OCT1,
OCT2, and OCT3, have been identified in humans [150–152]

and OCT2 is highly expressed in the kidneys. OCTs mediate
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the cellular uptake of a wide range of structurally-different

organic cations including clinically-administered drugs such
as metformin and procainamide [150]. Metformin, a therapeu-
tic agent used to treat type 2 diabetes mellitus, is predomi-

nantly renally excreted [153]. The OCT2 270S variant has
been associated with low activity while the 270A variant
induces high activity of OCT2 [153,154]. Patients with type 2
diabetes who are homozygous for the 270A variant exhibit a

significantly higher renal clearance and lower plasma concen-
tration of metformin than those with the homozygous 270S
variant [153–155]. On the other hand, allele variants G401S,

R61C, G465R, and M420del are associated with lower
OCT1 activities, which are responsible for the significantly
increased renal clearance and reduced glucose-lowering effects

of metformin in healthy subjects [156].
Influence of genetic polymorphisms of drug metabolizing

enzymes or transporters on drug–drug interactions

Effects of one drug are modified by other concomitantly
administered drugs due to drug–drug interactions, which
may be attributed to the altered pharmacokinetic or pharma-

codynamic properties of one drug induced by the coadminis-
tered drug. The polymorphisms in drug metabolizing and
transporter genes are an important risk factor of drug–drug

interactions and varied interindividual drug responses [157].
These polymorphisms can lead to decreased levels of a drug-
metabolizing enzyme in an individual, which may cause severe
adverse drug reactions following the coadministration of

enzyme inhibitors [158,159]. Among the CYPs, CYP2C9,
CYP2C19, and CYP2D6 are involved in the metabolism of
approximately 40% of routinely administered drugs [160].

Different CYP allelic variants significantly contribute to the
variability of an individual’s susceptibility to drug–drug
interactions and drug-metabolizing capacities [161]. Different

drugs interact with the CYP metabolic machinery differently.
The metabolism of some drugs by CYP enzymes is extremely
specific, for example, metoprolol is primarily metabolized by
CYP2D6 [162], whereas other drugs such as warfarin may be

simultaneously metabolized by several CYPs including
CYP2D6, CYP3A4, and CYP1A2 [163]. Polymorphisms
related to the altered expression of drug metabolizing and

transporter genes will ultimately affect the therapeutic effects
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of administered drugs [73,164]. When a drug is metabolized by
more than one CYP metabolic pathway and the administered
drug acts by inhibiting or inducing CYPs, genetic polymor-

phisms could redirect the metabolism of drugs via other
CYP routes [162]. This could lead to drug–drug interactions.
For example, antifungal voriconazole is actively metabolized

by CYP3A4 and CYP2C19, whereas ritonavir strongly inhibits
CYP3A4 while inducing CYP2C19 metabolic activities
[165,166]. When CYP2C19 PM patients are treated with

voriconazole and ritonavir, up to 461% increased AUC of
voriconazole was observed, since the patients were unable to
metabolize voriconazole owing to reduced CYP2C19 and
CYP3A4 activities [167,168]. In another case, the antiplatelet

activity of clopidogrel was reduced when it was administered
with proton pump inhibitors such as esomeprazole and
omeprazole owing to the inhibition of CYP2C19 [169],

whereas an increased activity of clopidogrel was anticipated
in the presence of rifampicin and aspirin [170]. Clopidogrel is
a prodrug that needs oxidative activation in vivo by CYP1A2,

CYP2B6 and CYP2C19 for its anti-platelet activity [171].
Genetic polymorphisms in CYP2C19, CYP1A2, 2B6*6, and
CYP3A5*3 were found to be associated with the varied degree

of drug–drug interactions for clopidogrel, due to its highly-
complex pharmacokinetics and variable drug response as com-
pare to other anti-platelet drugs [172–176].

Mutations in the drug transporter genes also contribute to

drug–drug interactions and adverse drug reactions. HMGCR
inhibitors such as atorvastatin, rosuvastatin, and pravastatin
are actively transported by OATP1B1 and ABCG2 [147].

The concomitant administration of cyclosporine (a potent
inhibitor of OATP1B1 and ABCG2) with statins like rosuvas-
tatin and pitavastatin will result in higher plasma levels of sta-

tins, leading to rhabdomyolysis [177]. Digoxin is potently
cleared by MDR1, therefore its coadministration with vera-
pamil, clarithromycin, or talinolol that inhibits MDR1 trans-

port activity leads to increased plasma levels due to
decreased renal clearance of the drug [178,179].
Conclusions

The genetic variations of CYPs and transporters have been
described in diverse populations. In this review, we review

the different allelic variants that are responsible for altered
drug activities in diverse geographic regions. Some populations
exhibited extremely high frequencies of allele variants that are

associated with several significant clinical consequences.
Taking advantage of pharmacogenomics, researchers have
assessed some specific genetic variants responsible for the
particular drug responses of individuals.

Whole genome SNP profiling, haplotyping, multigene analy-
sis, and gene expression studies by biochip ormicroarrays are all
in place to study drug responses of individuals, which would aid

in drug discovery, development, and individualized treatments.
Given the common variability in drug responses among
patients, the optimization of dosage regimen at the individual

level is not an easy task. Comprehensive appreciation of the con-
tributing factors associated with interindividual and interethnic
differences in medication responses is a must for the develop-
ment of precision medicine, and help health-care professionals

in recommending the proper treatment with the best possible
beneficial outcomes while preventing unwanted drug effects in
the particular patients. The development of clinical practice
strategies based on accurate genotype testing will facilitate the
enhanced understanding of altered drug responses and drug–

drug interactions. Furthermore, the development of more reli-
able biomarkers based on polymorphisms in genes responsible
for the adverse events will hopefully create strategies for admin-

istering drugs based on the genotype and phenotype of patients,
to minimize unwanted drug reactions.
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