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Abstract Coronary artery disease (CAD) is a complex human disease, involving multiple genes and

their nonlinear interactions, which often act in a modular fashion. Genome-wide single nucleotide

polymorphism (SNP) profiling provides an effective technique to unravel these underlying genetic

interplays or their functional involvements for CAD. This study aimed to identify the susceptible

pathways and modules for CAD based on SNP omics. First, the Wellcome Trust Case Control

Consortium (WTCCC) SNP datasets of CAD and control samples were used to assess the joint
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effect of multiple genetic variants at the pathway level, using logistic kernel machine regression

model. Then, an expanded genetic network was constructed by integrating statistical gene–gene

interactions involved in these susceptible pathways with their protein–protein interaction (PPI)

knowledge. Finally, risk functional modules were identified by decomposition of the network. Of

276 KEGG pathways analyzed, 6 pathways were found to have a significant effect on CAD. Other

than glycerolipid metabolism, glycosaminoglycan biosynthesis, and cardiac muscle contraction

pathways, three pathways related to other diseases were also revealed, including Alzheimer’s dis-

ease, non-alcoholic fatty liver disease, and Huntington’s disease. A genetic epistatic network of

95 genes was further constructed using the abovementioned integrative approach. Of 10 functional

modules derived from the network, 6 have been annotated to phospholipase C activity and cell

adhesion molecule binding, which also have known functional involvement in Alzheimer’s disease.

These findings indicate an overlap of the underlying molecular mechanisms between CAD and

Alzheimer’s disease, thus providing new insights into the molecular basis for CAD and its

molecular relationships with other diseases.

Introduction

Coronary artery disease (CAD) is the leading cause of morbid-
ity and mortality worldwide and has a strong genetic basis [1].
Advances in genome-wide association studies (GWAS) have
provided insights into lots of different genetic factors that con-

tribute to the disease. Since 2007, the Wellcome Trust Case
Control Consortium (WTCCC) and Framingham Heart Study
have achieved duplicated validation of 9p21, and identification

of 13 novel loci associated with CAD [2,3]. More similar stud-
ies have also been performed in different populations, leading
to the excavation of more CAD-related single nucleotide poly-

morphisms (SNPs) [4,5]. As a result, population-based studies
with thousands of patients and healthy controls included have
identified more than 50 CAD-associated genetic loci in total

[6–9].
However, all these studies did not take into account the

underlying genetic interplays or functional modules involved
in CAD. Therefore, the genetic basis of CAD has remained lar-

gely unknown due to the limited understanding of just a small
proportion of individual genetic variations. There is a develop-
ing consensus that genetic variations of CAD often function by

sophisticated interactions through a modular fashion rather
than individually [10]. With the improvement of computa-
tional methods, gene set-based association analysis (GSA)

aimed at evaluating the joint effects of a defined gene set by
quantifying the susceptibility or statistical significance of indi-
vidual functional units, e.g., pathways or biological processes,
associated with clinical phenotypes [11].

In general, the gene sets in GSA can be generated according
to the manually-curated pathways (e.g., KEGG pathways), or
gene lists related to specific functions. Based on the differences

in the theoretical models used, the pathway-based methods can
be classified into three categories, i.e., functional enrichment
analysis [12,13], topology-based analysis [14], and multivariate

statistical analysis. Hereinto, functional enrichment analysis is
the most widely used method for the identification of enriched
pathways related to the phenotype of interest due to its

straightforward statistical model. For instance, Ghosh et al.
[15] applied Reactome gene sets-based gene set enrichment
analysis (GSEA) to reveal novel associations between key bio-
logical processes and CAD. By contrast, topology-based meth-

ods were proposed based on the fact that biological pathways

are not simple lists of genes, but rather complex interactions
between genes with specific topology. A list of topology-

based methods and their applications have been reviewed pre-
viously [16]. However, so far, such methods are largely under
development and their applications on CAD have rarely been
reported. Instead, logistic kernel machine regression [17,18], a

semi-parametric regression model, is often used as the theoret-
ical framework for multivariate analysis of multiple genetic
variants in a gene set. It can be used to examine the significance

of a gene set that corresponds to specific functional units such
as pathways. By mapping the feature vector of genes or SNPs
to a phenotype similarity space that indicates the similarity

between people carrying these genes or SNPs, the logistic ker-
nel machine regression analysis considers the linear interac-
tions among the genes and thus shows advantage over the

classical GSEA,
In this article, we report the findings from genome-wide and

pathway-based analysis of a publicly-available GWAS dataset
provided by WTCCC. We first systematically assessed the

association of each KEGG pathway with CAD using the logis-
tic kernel regression model. Then, we constructed an expanded
genetic network by integrating gene–gene interactions involved

in these susceptible pathways with their protein–protein inter-
actions (PPIs). Finally, we identified the risk functional mod-
ules (subnetworks) for CAD by decomposing the built

genetic network.

Results

SNP set test identified CAD susceptible KEGG pathways

The raw WTCCC genotyping data for CAD contained 482,247
SNPs from 5000 individuals (3000 controls and 2000 CAD
patients). After data processing, 101,822 SNPs from 4864 indi-

viduals (2938 controls and 1926 CAD patients) were retained
for further analysis. We defined the SNPs annotated to the
genes of the same KEGG pathway as a SNP set. Hence, 276

pathway-based SNP sets were generated in total. These SNP
sets were tested by logistic kernel machine regression model
to evaluate whether they jointly (i.e., pathway-based) con-
tribute significantly to CAD risk. As a result, totally 6

pathways were identified to be significantly associated with
CAD (Bonferroni-adjusted P < 0.05; Table 1). These include
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glycerolipid metabolism, glycosaminoglycan biosynthesis, and
cardiac muscle contraction, as well as three disease-related
pathways, i.e., Alzheimer’s disease (AD), non-alcoholic fatty

liver disease (NAFLD), and Huntington’s disease.
Interestingly, potential correlation between some of these

pathways and CAD has been reported in previous studies.

For example, de las Fuentes et al. [19] performed a pathway-
based analysis of another independent GWAS dataset for the
Framingham Heart Study and identified glycerolipid metabo-
lism pathway to be significantly associated with CAD. In

agreement with this study, a previous report showed that the
level of serum triglyceride, a key element in glycerolipid meta-
bolism, could be used as an effective predictor for CAD risk

[20]. There is also evidence showing relevance of glycosamino-
glycan biosynthesis with CAD. Glycosaminoglycan is present
extensively in various cell types, to maintain the resilience

and permeability of vascular wall or play a key role in antico-
agulation and antihyperlipidemia [21]. Therefore, genetic vari-
ation in this pathway may cause dysfunction of blood vessels.

It is not surprising that cardiac muscle contraction (hsa04260)
was identified to be the risk pathway for CAD. Myocardial
contraction is an initial process of potential shift of cardiac
muscle cells, to produce longitudinal, radical, and rotational

motion. Li et al. [22] applied an ultrasonic imaging technique
and showed that cardiac muscle motion of CAD patients is sig-
nificantly different from that of health subjects at various

directions, implying the correlation between myocardial dys-
function and myocardial contraction in CAD patients.

Notably, our study revealed that three pathways related to

other diseases were linked with CAD. It has been reported that
among all kinds of fatty liver diseases examined, NAFLD
shows the strongest correlation with CAD [23], and NAFLD
patients have a higher risk for cardiovascular disease [24].

The correlation between AD, a chronic neurodegenerative dis-
ease, and CAD was also noticed because of occurrence of cog-
nitive impairment in CAD patients [25]. Nevertheless, there is

dearth of evidence supporting the relevance of CAD with
Huntington’s disease, a Mendelian neurodegenerative disorder
with autonomic dominant inheritance.

Taken together, most of the pathways identified in this
study have clear evidence supporting their involvement in the
underlying pathogenesis for CAD.

CAD-related genetic network analysis identified PIK3R1 and

APP as hub genes

Epistasis analysis of all SNP�SNP pairs within or across

the identified pathways was performed. Totally 186,640

SNP–SNP significant interactions (P < 0.05) were identified.
We then mapped the involved SNPs onto genes. By integrating
prior PPI knowledge, we constructed genetic networks using

121 unique genes and 149 gene�gene pairs. As shown in
Figure 1, most of these genes were connected to each other,
producing the largest sub-network with 95 unique genes and

135 edges. There were also 9 small sub-networks including
seven sub-networks with only one edge, one sub-network with
two edges, and one sub-network with three edges. Further-
more, there are three genes that were not linked to any other

genes at all due to the lack of PPI evidence.
We focused on the largest sub-network for the following

topological analysis. The connection degree distribution of

the largest sub-network (Figure 2) indicated that this network
is not a random network. Furthermore, Kolmogorov–Smirnov
(KS) test [26] showed that this network was a scale-free

Figure 1 Epistatic network for CAD

Epistasis analysis of all SNP–SNP pairs within or across the

significant KEGG pathways was performed. Totally 186,640

SNP–SNP significant interactions (P < 0.05) were identified using

PLINK. We then mapped the involved SNPs onto 121 genes and

genetic network containing 149 gene–gene pairs was constructed

by incorporating prior protein–protein interaction knowledge.

Kolmogorov–Smirnov test showed that this network was a scale-

free network with scaling exponent a= 3.0575 (P = 0.9345).

Table 1 Significant susceptible pathways for CAD

Pathway ID Pathway name P value Adjusted P value

hsa00561 Glycerolipid metabolism 7.57E�08 2.09E�05

hsa00532 Glycosaminoglycan biosynthesis 3.92E�13 1.08E�10

hsa05010 Alzheimer’s disease 3.59E�05 9.92E�03

hsa04932 Non-alcoholic fatty liver disease 1.60E�04 4.44E�02

hsa05016 Huntington’s disease 2.31E�05 6.37E�03

hsa04260 Cardiac muscle contraction 7.22E�05 1.99E�02

Note: Logistic kernel machine regression analysis was performed on SNP sets annotated to the same pathways for evaluation of significant KEGG

pathways (P< 0.05). To calculate adjusted P values, Bonferroni’s adjustment was conducted for the number of KEGG pathways evaluated. CAD,

coronary artery disease.
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network with an exponential parameter a= 3.023
(P = 0.884). Among all the genes, two genes, PIK3R1 and

APP, showed the highest connectivity, which are connected
with 11 (Bonferroni-adjusted P = 0.0041) and 12 other genes
(Bonferroni-adjusted P = 0.00088), respectively. These two

genes were thus defined as the hub genes.
PIK3R1 encodes the regulatory subunit a of phosphatidyli-

nositol 3-kinase (PIK3), which orchestrates a series of cell

function regulation, such as cell proliferation, cell differentia-
tion, apoptosis, and glucose transport [27]. PIK3 can be acti-
vated by angiotensin II, and the activated PIK3 plays a vital
role in vascular smooth muscle cells through angiotensin II

stimulated Ca2+ entry [28]. APP, which encodes b-amyloid
precursor protein, is generally recognized to be closely related
to AD [29]. Abnormal expression of APP can lead to dysfunc-

tion of endothelial cells due to cytotoxicity and damage
induced by long-term exposure to Ab peptide [30,31]. These
studies provide supporting evidence of PIK3R1 and APP on

the development of CAD.

CAD-related genetic network module analysis reveals the

involvement of various molecular functions

To identify the most compact functional subnetworks, we fur-
ther decomposed the largest network into smaller modular
units. We obtained totally 10 modules, which consist of 4–14

genes (Figure 3). The corresponding gene lists can be found
in Table S1. Interestingly, KS test revealed that all modules
were scale-free with P values ranging 0.8–1.0, except the small-

est one which only contained 4 genes (Table 2). The estimates
of the scaling exponent (a) of power law distribution, KS test-
ing statistics, and some other topological properties for each

module are also shown in Table 2.
To understand the function involvements of each module,

we performed a gene ontology (GO)-based enrichment analysis

using the database for annotation, visualization and integrated
discovery (DAVID). Only modules containing more than 10
genes were analyzed and the significantly-enriched GO terms

for each module are listed in Table 3. We found that different
modules had some characteristic functional involvements. For
examples, M3 and M5 were significantly enriched with the cel-

lular component of cytosol, M9 with cell nucleus, and M6 with
neuron related structures, indicating that these modules had
very different ‘working places’. In addition, these modules also

exhibited varied molecular functions. For instances, M3 was
linked to the lipid-related functions, M2 to peptidase activity,
and M6 to cell adhesion molecule binding activity. Notably,

M6 was also enriched with biological process neuronal activ-
ity, which could be the molecular bridge between AD and
CAD.

Among all these enriched GO terms, phospholipase C activ-

ity (GO: 0004629) and cell adhesion molecule binding (GO:
0050839) took special attention. Phospholipase C (PLC),
which is distributed widely in various tissues, is a key enzyme

in phosphatidylinositol signaling pathway [31]. There exist dif-
ferent isozyme types of PLC, including PLC-b, PLC-c, and
PLC-d. These isozymes possess conserved and specific

domains, and therefore PLC activation may be induced in var-
ious ways [32]. PLC-c is mostly activated through protein tyr-
osine kinases (PTKs). As a result, activated PLC-c would
induce a series of signal transduction, which may lead to

trans-activation of epidermal growth factor (EGF), a key ele-
ment in inhibition of vascular wall deposition and thromboge-
nesis [33,34]. Additionally, by mediating inter-cellular

interactions, cell adhesion molecules (CAMs) can regulate
multiple biological processes, such as signal transduction,
inflammation and immune responses, coagulation and tissue

repairing [35]. The changes in adhesion of vascular endothelial
cell surface, e.g., caused by injury, promote monocyte
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Figure 2 Frequency distribution of node connectivity for the

largest genetic network of CAD

Node distribution was analyzed for the largest subnetwork. Node

connectivity was counted as the number of interacting genes

according to significant SNP–SNP interactions. X axis indicates

node connectivity and Y axis indicates the frequency of specific

connectivity. The frequency of each degree is labeled on top of

each bar.

Figure 3 Modular partitions of CAD risk genes

Risk modules of CAD were obtained by network decomposition

with Newman algorithm. Gene nodes were sized by connectivity

and partitioned to Modules 1–10. Hub genes APP and PIK3R1

are labeled. Modules are color-coded and the detailed list of genes

in each module is provided in Table S1.
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adhesion. During the migration and transformation to macro-
phages, monocyte may stimulate lymphocytes to produce mul-

tiple cytokines, thus promoting proliferation of smooth muscle
and formation of fibrous plaque eventually [36].

Discussion

Studies of genetic variants in various molecular biological
processes will greatly promote our understanding of CAD

and its pathogenesis. In the present study, a pathway-based
approach is applied to identify the risk pathways and func-
tional modules for CAD. This study demonstrated that mul-

tiple pathways may be involved in the underlying molecular
processes for CAD, such as cardiac muscle contraction, glyc-
erolipid metabolism, and glycosaminoglycan biosynthesis.

Meanwhile, this study reveals that some other diseases, e.g.,
non-alcoholic fatty liver disease, Huntington’s disease, and
AD, may share molecular mechanisms with CAD. Further-

more, 2 hub genes, PIK3R1 and APP, and 6 risk functional
modules for CAD have been identified. Our findings are dif-

ferent from Liu’s study [37]. Using gene co-expression
network analysis, Liu et al. identified specific modules and

hub genes that are mainly related to membrane-associated
processes and hypertrophic cardiomyopathy pathway. The
possible reasons for the difference may be manifold, one of

which is the difference in the choice of omics data type. They
evaluated gene expression changes at mRNA level, whereas
we analyzed the genomic mutations within DNA sequences.

Overall, our study provides new insights into the molecular
basis for CAD and its molecular relationships with several
related diseases.

Genetic studies are traditionally based on single gene anal-

ysis, which poses tremendous challenges for elucidating com-
plicated genetic interplays involved in complex human
diseases. Modern pathway-based analysis allows a comprehen-

sive understanding of the molecular mechanisms underlying
complex diseases by considering the joint effect and integrality
as function unit of multiple genes. Extensive studies utilizing

pathway-based analysis have significantly advanced our capac-
ity to explore large-scale omics data that have been rapidly
accumulating in biomedical fields [38].

Table 2 The topological features of the risk modules for CAD

Module No. of nodes No. of edges Network diameter Scaling exponent KS statistic D P value

M1 9 10 5 3.051 0.1107 1

M2 12 13 4 2.421 0.0977 1

M3 10 12 6 2.801 0.1288 0.9994

M4 6 5 4 2.016 0.1763 0.9922

M5 12 12 6 2.560 0.0951 1

M6 11 12 5 2.965 0.1598 0.9868

M7 7 6 5 1.988 0.2286 0.8577

M8 10 12 3 3.139 0.0936 1

M9 14 16 5 1.868 0.1560 0.8849

M10 4 4 2 – – –

Note: CAD, coronary artery disease; KS, Kolmogorov–Smirnov.

Table 3 The GO terms enriched for each risk module for CAD

Module GO ID Category GO term Depth of GO hierarchy P value

M2 GO:0008233 MF Peptidase activity 4 2.08E�03

M3 GO:0005829 CC Cytosol 5 6.78E�03

GO:0004629 MF Phospholipase C activity 7 1.62E�02

GO:0003707 MF Steroid hormone receptor activity 4 4.02E�02

M5 GO:0031264 CC Death-inducing signaling complex 4 5.98E�04

GO:0005741 CC Mitochondrial outer membrane 5 4.75E�03

GO:0005829 CC Cytosol 5 3.20E�02

M6 GO:0007612 BP Learning 6 4.25E�03

GO:0035235 BP Ionotropic glutamate receptor signaling pathway 7 7.69E�03

GO:0060079 BP Regulation of excitatory postsynaptic membrane potential 6 3.59E�02

GO:0048169 BP Regulation of long-term neuronal synaptic plasticity 6 4.38E�02

GO:0030426 CC Growth cone 4 7.37E�04

GO:0008328 CC Ionotropic glutamate receptor complex 4 4.38E�03

GO:0030425 CC Dendrite 5 1.99E�02

GO:0050839 MF Cell adhesion molecule binding 4 2.16E�02

M8 GO:0005942 CC Phosphoinositide 3-kinase complex 4 1.82E�03

M9 GO:0044451 CC Nucleoplasm part 5 7.55E�05

GO:0005667 CC Transcription factor complex 4 8.80E�04

GO:0000790 CC Nuclear chromatin 6 4.99E�02

Note: CAD, coronary artery disease; MF, molecular function; CC, cellular component; BP, biological process. To count the depth of GO terms, the

depth of the root term in each category was taken as 1.
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Pathway-based approach has some advantages over the
conventional GWAS approach. The singe-locus analysis
widely used in GWAS is only capable of capturing a small por-

tion of susceptible SNPs with prominent marginal effects, leav-
ing the important genetic component, such as epistasis or joint
effects between multiple genes, undetected. Identifying the

complex interplays among multiple genes in the genome-wide
context is an essential task to systematically unravel the molec-
ular mechanisms underlying complex diseases. In this study,

we employed the newly-developed logistic kernel machine
regression model in the pathway-level analysis to capture the
joint effects of multiple genes involved in the pathways. In this
way, we are not only able to avoid the curse of ‘high dimen-

sionality and small sample size’ associated with analysis of
GWAS data, but also able to estimate the missing genetic com-
ponents and epistasis, thus helping elucidate the sophisticated

molecular interplays between or across the risk pathways for
CAD.

There are also limitations in this study. First, the whole

pathogenic process of CADmay involve a long cascade of mul-
tiple biological pathways. Ideally, the accumulative effects of
these risk pathways on CAD should be examined, which is

practically difficult to achieve because of the unpredictability
of joint action among different pathways and the possibility
of over-fitting. Second, we replaced missing genotypes with
the most frequent allele. Such simplification for data imputa-

tion could lead to expansion of major alleles, resulting in a
decreased minor allele frequency (MAF). On the other hand,
genotype imputation is a complex process in GWAS research,

which can address the failures occurring during genotyping
assay to some extent [39,40]. However, in practice, most impu-
tation methods require external reference panel of SNPs that

may introduce noise of genetic background, and the success
of imputation is largely determined by the patterns of linkage
disequilibrium (LD) [41]. In our analysis, the missing genotypes

were imputed after filtering SNPs and subjects with missing rate
P5%, which help restrain the expansion of major alleles.
Moreover, a gene-set-based method rather than a single-
locus-based method was applied in our further analysis, reduc-

ing the bias of single SNPs resulting from the imputation.
Third, in the epistatic analysis, we used the nominal P value
of 0.05 to identify the putative epistatic gene pairs, which could

lead to an inflated type I error. Correction for multiple tests is a
very complicated and challenging issue for the analysis of large-
scale GWAS data, especially for epistatic analysis because of

correlation of gene pairs or correlations stemming from LD.
To address this concern, we applied an additional criterion of
experimentally-confirmed PPI support for gene pairs, which
might alleviate the issue of the inflated type I errors to some

extent. Finally, this study only integrated GWAS data with
PPI data for genetic network analysis. Integrating more omics
data such as epigenetic or epidemiological data would help

illustrate the genetic, epigenetic, and environmental factors
for CAD, which is the focus in our future studies.

Materials and methods

Data sources

WTCCC genotyping data of 482,247 SNPs from 2000 CAD
subjects and 3000 health control subjects [42] were analyzed

in this study. For identification of susceptible pathways, 283
human pathways [43,44] were extracted and downloaded from
KEGG database. We removed the more general pathways that

contain several specific pathways, and ultimately included 276
KEGG pathways. Genetic information for mapping SNPs to
genes was extracted from Ensembl/GRCh37 [16]. Information

on PPIs was retrieved from the Human Protein Reference
Database (HPRD) [45] for genetic networking (epistatic inter-
actions). To enhance the reliability of the depicted genetic rela-

tionships, only experimentally-confirmed PPIs were taken as
the prior knowledge.

Data preprocessing

To improve the data quality, several data preprocessing proce-
dures were performed. First, SNPs were excluded if they did
not meet all the following criteria: (1) genotype missing

rate < 5%, (2) individual missing rate < 5%, and (3)
MAF> 0.01. Furthermore, all the included loci must meet
Hardy–Weinberg equilibrium (HWE) proportions

(P > 1 � 10�4) in the control group. Second, for loci with
missing values after the filtering above, missing genotypes were
replaced with the most frequent one. Third, to remove data

redundancy due to LD, only tag SNPs that were representative
in the corresponding genomic regions were utilized for the cur-
rent analysis. For identification of these tag SNPs, each indi-
vidual chromosome was scanned using the ‘moving window’

method in which the window size was set to 50 SNPs with step
length of 5 SNPs. The cutoff of LD r2 was set as 0.8. Finally,
SNPs were considered as mapped onto genes if these SNPs are

situated in the flanking regions spanning from 5 kb upstream
to 5 kb downstream of the genes, as described previously
[46]. All the data processing procedures were performed using

PLINK program [47] and R platform (http://www.r-project.
org/).

Identification of CAD susceptible pathways

Logistic kernel machine regression model was applied to iden-
tify the susceptible pathways related to CAD. Suppose that a
pathway contains p SNPs (their genotypes are denoted as zi�)
and Pðyi ¼ 1Þ be the probability of the ith subject being
affected (i.e., who has the disorder). This model can be
described as follows:

logitPðyi ¼ 1Þ ¼ a0 þ hðzi1; zi2; � � � ; zipÞ ð1Þ
where a0 is the intercept, and hð�Þ is a general function of p

SNPs contained in the pathway, which is often defined as a
positive, semi-definite kernel function Kð�; �Þ. In this study, this
kernel function is defined as

KðZi;Zi0 Þ ¼
Xp

j¼1

wjzijzi0 j ð2Þ

where the weight wi is calculated as described previously [48].
More intuitively, K(.,.) can be viewed as a function that mea-
sures the similarity between two individuals based on the geno-

types of the SNPs in the SNP set. There are three options for K
(.,.): the linear, Gaussian, and identical-by-state kernels. The
null hypothesis for testing a pathway is that its overall effect
is zero, i.e., H0: hð�Þ = 0. The significance of the pathway-

based SNP set was tested by Q statistics that follows a v2 mixed

354 Genomics Proteomics Bioinformatics 14 (2016) 349–356



distribution. To adjust for multiple pathways to be evaluated,

Bonferroni correction was applied and significance was
claimed if P � N< 0.05 (N is the number of pathways evalu-
ated). More details about the methods used are described

previously [48,49].

Genetic networking

To further elucidate the underlying interplays between multi-

ple genetic variants within a pathway or across different path-
ways, an expanded genetic network was constructed by
integrating statistical gene�gene interactions involved in the

identified susceptible pathways with their PPI knowledge.
First, a pairwise epistatic analysis was performed using
PLINK for the SNPs that were annotated to these susceptible

pathways. To avoid possible loss of some meaningful interac-
tions, all SNP pairs with P < 0.05 were retained and then
translated into putative gene–gene interactions. However, the
gene pairs that were finally used to construct the gene network

must have support from the HPRD PPI knowledge database.
After the gene network was built, its topological properties
(e.g., connectivity, betweenness, and cluster coefficient) were

examined. Network hub genes were identified by testing
whether the connectivity of a certain gene node was equal to
or greater than that expected based on a Poisson distribution

[25]. Finally, to analyze the network modularity, the Newman
algorithm [50] was used to decompose the network into the
most compact modules. These putative modules for CAD were

further investigated in terms of their topological properties and
functional involvements. All the aforementioned network
analysis and visualization were performed in R/igraph
package.

Function enrichment analysis

To characterize the functional involvement of the putative

modules for CAD, GO analysis was performed for each mod-
ule using DAVID [51,52] with the whole human genome genes
as background, and the gene list within each module as fore-

ground. To control false positive rate of significance of GO
terms, Bonferroni correction was used. In order to better char-
acterize the putative modules, we reported the GO terms with

node depth P4. The information for GO hierarchy was
retrieved from Bioconductor GO.db and the node depth for
each GO term was defined by the minimum distance between
target GO term and GO root term in the tree structure.
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