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Abstract Human immunodeficiency virus-1 (HIV-1) mainly relies on host factors to complete its

life cycle. Hence, it is very important to identify HIV-regulated host proteins. Proteomics is an excel-

lent technique for this purpose because of its high throughput and sensitivity. In this review, we

summarized current technological advances in proteomics, including general isobaric tags for rela-

tive and absolute quantitation (iTRAQ) and stable isotope labeling by amino acids in cell culture

(SILAC), as well as subcellular proteomics and investigation of posttranslational modifications.

Furthermore, we reviewed the applications of proteomics in the discovery of HIV-related diseases

and HIV infection mechanisms. Proteins identified by proteomic studies might offer new avenues

for the diagnosis and treatment of HIV infection and the related diseases.
Introduction

Human immunodeficiency virus (HIV)/acquired immune defi-
ciency syndrome (AIDS) remains one of the major infectious

diseases affecting global health [1]. Great efforts and pro-
gresses have been made in the last decade. In particular, the
application of antiretroviral therapy renders the HIV infection

a chronic disease rather than a fatal one [2]. To inhibit HIV
replication, almost all antiretroviral drugs target viral proteins,
including reverse transcriptases, proteases, and integrases [3].

Although anti-HIV drugs are successful, the undesirable side
effects and high cost are still big obstacles to the broad appli-
cations in AIDS patients [4]. Moreover, the virus quickly

adapts and becomes resistant to these drugs [5], making it
almost impossible to completely eradicate the virus because
of HIV reservoirs [6]. Therefore, it is imperative to develop

novel approaches and new therapeutic targets.
HIV-1 encodes only nine viral proteins (18 mature proteins)

and thus it mainly depends on host cellular machinery to com-
plete its life cycle [7]. So far, various host proteins have been

found to play key roles during the HIV-1 life cycle [8,9]. For
example, HIV can enter target cells by interacting with cluster
nces and
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of differentiation-4 (CD4) [10] and coreceptors C–C chemo-
kine receptor type 4 (CCR4) or CCR5 [11], as well as Golgi
transport proteins [12]. Moreover, lens epithelium-derived

growth factor (LEDGF) [13] and karyopherin [12] have been
defined as HIV-1 integration proteins, whereas cyclin-
dependent kinase 9 (CDK9)/cyclin T1 [14] and mediator com-

plex 28 [12] contribute to HIV transcription. Furthermore,
tumor susceptibility gene 101 [15] participates in HIV-1 bud-
ding. Therefore, these host proteins would be the targets for

anti-HIV drugs [16]. For example, the CCR5 coreceptor is tar-
geted by maraviroc, one type of drugs preventing the entry of
HIV [17].

Although some targets have been identified by protein or

genetic methods, our knowledge of HIV infection is still very
limited because of the complexity of the HIV�host interac-
tions and the host responses to infection. To discover cellular

factors related to HIV-1 infection, high-throughput
approaches, including genomic technologies [8,17,18], and pro-
teomic approaches [19–30], have been used. Given proteins are

the ultimate effectors of most cellular functions proteomic
approach is deemed to be one of the best ways to identify cel-
lular factors related to HIV-1 infection and has already been

widely used [31,32]. Furthermore, proteomic technology can
specially analyze protein posttranslational modifications
(PTMs) occurring after viral infection [22,33–36]. In the cur-
rent review, we summarized recent technological advances in

proteomics and new discoveries implicating biomarkers of
Figure 1 Summary of current proteomic technologies and their applic
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HIV-induced diseases and molecular mechanisms involved in
HIV infection over the last 5 years.

Technological advances

In the recent years, many proteomic technologies have been

applied to investigate HIV infection (Figure 1). These include
2-dimensional electrophoresis (2DE), stable isotope labeling
such as isobaric tags for relative and absolute quantitation

(iTRAQ) or stable isotope labeling by amino acids in cell cul-
ture (SILAC), and label-free technologies (Table 1). In order to
detect less abundant proteins, subcellular organelle separation
can be performed before general proteomic studies. In addi-

tion, affinity purification�mass spectrometry (AP�MS)
has been widely used to determine which proteins are involved
in HIV�host interaction [19–21]. Furthermore, newly-

developed technologies for PTM studies [22,23] have also been
used in the study of HIV infection.

Subcellular proteomics

HIV enters host cells through interacting with the proteins in
plasma membrane, replicates in nucleus through integrating

to host DNA, and transfers from cell to cell through exosome
or cell fusion [58]. Therefore, lots of host cells and factors are
involved during HIV life cycles. Some proteins related to HIV
ations in the study of HIV infection

proteomics are available for discovering diagnosis biomarkers and

les such as body fluid, cells, and tissues. BALF, bronchoalveolar

ge; PBMC, peripheral blood mononuclear cells; MDM, monocyte-

l electrophoresis mass spectrometry; SDS-PAGE, sodium dodecyl

relative and absolute quantitation; TMT, isobaric mass tagging;

posttranslational modification; AP-MS, affinity purification-mass



Table 1 New advances in HIV proteomic studies

Technique Advantage Disadvantage Refs.

Gel-based methods Samples processed ex vivo; able to quantify

isoforms/PTMs

Lower throughput and labor-intensive;

limited to pair-wise comparisons

[36–44]

SILAC Stable incorporation into all proteins Limited to cultured cells or animal tissues

only

[45,46]

Stable 18O-labeling Samples labeled ex vivo Limited to pairwise comparisons [47]

ICAT Samples labeled ex vivo Only peptides with cystine residues able to be

labeled

iTRAQ Able to label up to eight samples in a single

experiment; suitable for all kinds of samples

Co-selection of peptides by mass spectrometer

leading to reporter ion intensity suppression

[48–53]

Label-free quantitation No labeling required; able to analyze

individual samples

Requiring good replication for mass

spectrometry and sophisticated software for

data interpretation

[19,54,55]

MRM/SRM Absolute targeted quantitation and high

throughput

Difficult to identify consistent peptides to

track for quantitation

[56]

TMT Able to label up to ten samples in a single

experiment; suitable for all kinds of samples

Co-selection of peptides by the mass

spectrometer leading to reporter ion intensity

suppression

[55,57]

Microarray High throughout; samples processed ex vivo Requiring many kinds of antibodies;

expensive

[27]

AP-MS Direct study of protein–protein interaction Unable to find different proteins unless

combined with other technologies

[19–21]

Note: HIV, human immunodeficiency virus; SILAC, stable isotope labeling by amino acids in cell culture; ICAT, isotope-coded affinity tag;

iTRAQ, isobaric tags for relative and absolute quantitation; MRM/SRM, multiple/selective reaction monitoring; TMT, isobaric mass tagging;

AP-MS, affinity purification-mass spectrometry; PTM, posttranslational modification.
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infection have been identified by subcellular proteomic studies
(Figure 2). For example, HIV Vpu protein can downregulate

expression of sodium coupled neutral amino acid transporter
1 (SNAT1) [55], and group-specific antigen (Gag) can regulate
expression of tumor susceptibility gene 101 protein (TSG101)

and vinculin [39,60].

Plasma membrane proteins
The plasma membrane proteins have important roles in HIV
entry and budding; therefore represent potential targets for
anti-HIV drugs. A SILAC-based proteomic study has shown

that compared to naı̈ve T cells, expression of more than 100
plasma membrane proteins including SNAT1 and serine incor-
porators 3 and 5 (SERINC3/5) is down-regulated in HIV-

infected T cells [55]. This study has also demonstrated that
HIV interferes with immune metabolism of the infected host
T cells by antagonizing SNAT1-mediated alanine transport
through Vpr [55].

Exosomes
Exosomes are nanometer-sized vesicles in which many genes,
proteins, and RNA are packed [61]. These packaged materials
are important in regulating HIV pathogenesis, such as viral
entry, budding, and trafficking [62,63]. Using a SDS–polyacry-

lamide gel electrophoresis (PAGE)-based proteomic analysis,
Kadiu et al. discover that microvesicles (averaged 300 nm in
diameter) and exosomes (about 60 nm in diameter) facilitate

viral infection through regulating a range of cell surface recep-
tors, such as cluster of differentiation 14 (CD14), CD44R5,
and vinculin [39]. Therefore, exosomes can regulate HIV-1
infection through the proteins packed in exosomes. On the
other hand, the proteins packed in exosomes such as tetraspa-

nins, flotillin, and TSG101 are also targeted by HIV-1 [60].

Nuclear proteome
HIV achieves the viral DNA integration into host DNA and
replication in the host cell nucleus [64]. To discover how the
host nuclear proteome is involved in HIV replication, Jarboui

et al. have overexpressed Tat, the gene encoding HIV tyrosine
aminotransferase, in the Jurkat T cells and performed a
nuclear proteomic study by integrating MS and SILAC [45].

As a result, they identified 49 differentially-expressed proteins.
Among these proteins, expression of STAT3, zeta-chain-
associated protein kinase 70 (ZAP70), and casein kinase 2a
(CK2a) is verified to be upregulated in the nucleus of Tat-
overexpressing cells, while no change has been detected in
cytoplasm or whole cell fractions for these three proteins.
Pathway and network analyses further reveal that Tat expres-

sion specifically results in the nuclear enrichment of proteins
participating in ribosomal biogenesis and protein homeostasis,
such as cyclophilin B (CypB), and heat shock protein 90

(HSP90) [45]. Moreover, DeBoer et al. [65] report that 13
(e.g., DEK) and 38 nuclear proteins (e.g., dermcidin) are
uniquely expressed in HIV-infected and uninfected C8166-45

T cells, respectively.

AP-MS

An interaction network between HIV and human proteins
has recently been defined by using AP�MS analysis [66].



Figure 2 Summary of the identified proteins involved in HIV life cycle and subcellular localizations up- and down-regulations reviewed in

this work

Many host proteins get involved during HIV life cycle. Host proteins showing upregulated expression and downregulated expression upon

HIV infection are indicated with " and ;, respectively. The image was modified from [59]. Vpu, viral protein U; SNAT1, sodium coupled

neutral amino acid transporter 1; CD, cluster of differentiation; PIC, pre-integration complex; TSG101, tumor susceptibility gene 101

protein; HIV, human immunodeficiency virus; Gag, group-specific antigen; STAT3, signal transducer and activator of transcription 3;

ZAP70, zeta-chain-associated protein kinase 70; CK2a, casein kinase 2a; RT, reverse-transcription.
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This network contains 497 HIV�human protein–protein
interactions (PPIs) involving 435 individual human proteins

in HIV-infected HEK293 and Jurkat cells [66]. Following
this study, Emig-Agius et al. [67] integrated the aforemen-
tioned PPI network with interfering RNA (RNAi) screening

data. Consequently, they generate a PPI map of 40
HIV�human protein complexes associated with HIV infec-
tion, including proteins involved in transcription, transla-

tion, DNA replication and repair, as well as cytoskeletal
regulation.

Post-translational modifications

Post-translational modifications (PTMs), as generally enzy-
matic modification of proteins during or after protein biosyn-
thesis, have very important functions in cell signaling including

response to viral infection. When HIV-1 enters host cells, it
activates host cell signaling pathways by regulating protein
PTMs [33,36,68]. Below, we discuss four main PTMs.

Phosphorylation
To unravel the signaling events induced by HIV-1 entry, a

SILAC-based quantitative phosphoproteomic study has been
performed for human primary CD4+ T cells infected with
HIV-1 [33]. The authors have identified 239 phosphorylation
sites from 175 proteins after HIV infection. These proteins,
including the serine/arginine repetitive matrix 2 (SRRM2, also

known as SRm300), function in HIV receptor binding and
mRNA splicing, among others. Another iTRAQ-based pro-
teomic study has lately been reported to characterize the phos-

phorylation patterns in HIV-infected and uninfected brain
parietal cortex (with or without encephalitis). In this study,
they identified 112 phosphorylated proteins and 17 novel phos-

phorylation sites [34]. Higher phosphorylation levels in neuro-
filament medium polypeptide (NEFM) and myelin basic
protein (MBP), etc. have been detected in HIV infection [34].

Glycosylation
Glycosylation, as a main PTM, has essential roles in HIV

infection and vaccine development [69]. The glycoproteins
secreted from HIV-infected T cells can help us understand
the interaction between HIV and host. A glycoproteomic study
focusing on N-glycosylated peptides was conducted on plasma

samples from HIV patients and found that 59 human glyco-
proteins were related to HIV infection, including galectin-3-
binding protein, L-selectin, and neogenin [70].

Acetylation
Acetylation of host proteins is essential for HIV-1 assembly

and budding in the lipid raft microdomains of plasma
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membrane. The acetylation process can be mediated by HIV
proteins, such as Gag [71]. Colquhoun et al. [22] obtained
103 and 174 acylated proteins using myristic acid azide and

palmitic azide (which are incorporated in a manner analogous
to natural acyl-Co-A) enrichment methods, respectively, of
which 27 and 45 proteins were found to be expressed differen-

tially in HIV-1 infected vs. uninfected CEMx174 cells.

Recent findings in the proteomic study of HIV-

associated disorders

Due to its high throughput and sensitivity, proteomics has

become a useful tool in identifying biomarkers and drug
targets of HIV-related diseases (Figure 3 and Table 2).
Figure 3 The body map showing different HIV-associated disorders a
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Table 2 Potential biomarkers of HIV-related diseases

Protein

S100A9

MMP9

FGF2, MMP2, NGAL, heptoglobin, hemopexin, lactoferrin

EGF

MHC-a, RyR1

Ig jV-III chain
AHSG, APOF, APOC1

ApoB

ApoA1

Note: HIV, human immunodeficiency virus; S100A9, S100 calcium binding

factor; NGAL, neutrophil gelatinase-associated lipocalin; EGF, epidermal

RyR1, ryanodine receptor 1; AHSG, alpha-2-HS-glycoprotein; APOF, ap

A-1; ApoB, apolipoprotein B; HAND, HIV-associated neurocognitive

cardiovascular disorders; HRC, HIV-related cancer; HRF, HIV-related fa
HIV-associated neurocognitive disorders

HIV-associated neurocognitive disorders (HAND) are com-
mon in HIV-infected patients because HIV can enter the cen-
tral nervous system (CNS) and cause systemic damage, such as

protein expression changes. These differently-expressed pro-
teins in cerebrospinal fluid (CSF) after HIV infection might
be potential biomarkers for the diagnosis and treatment of
HAND [76]. As reviewed by Price et al. [19], targeted,

hypothesis-driven, and non-targeted exploratory discovery
methods and proteomic technologies have been used to dis-
cover HAND-related proteins. Chemokine (C–C motif) ligand

2 (CCL2), monocyte chemoattractant protein 1 (MCP-1),
C-X-C motif chemokine 10 (CXCL10), interferon gamma-
nd the reported proteins

-related lung disorder; HAND, HIV-associated neurocognitive

elated renal disease; ApoA1, apolipoprotein A-1; AHSG, alpha-2-

n C-1; CCL2, C–C motif chemokine 2; CXCL10, C-X-C motif
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Regulation mode Associated disease Ref.

Negative HAND [72]

Negative HAND [72]

Positive HRRD [73]

Negative HRRD [73]

Positive HRCD [74]

Positive HAND [54]

Positive HRC [75]

Negative HRF [37]

Positive HRF [37]

protein A9; MMP, matrix metalloproteinase; FGF, fibroblast growth

growth factor; MHCa, myosin heavy chain cardiac muscle a isoform;

olipoprotein F; APOC1, apolipoprotein C-1; ApoA1, apolipoprotein

disorders; HRRD, HIV-related renal disease; HRCD, HIV-related

tigue.
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induced protein 10 (IP-10), t-tau, and other proteins have been
reported to be related to HIV infection [77]. In another study,
the Ig jV-III chain was found to consistently respond to three

HAND diagnosis biomarkers that are related to HIV neural
disease severity, including HIV RNA, immune activation
(neopterin), and axonal injury [54]. Similarly, by using

iTRAQ-based proteomics, protein S100-A9 and
metalloproteinase-9 (MMP9) are found to be associated with
inflammation and cognitive impairment induced by HIV.

Thus, these proteins could be potential targets for HAND
treatment [72].

HIV-related cancers

The rate of HIV-related cancers (HRCs), such as Hodgkin’s
lymphoma (HL), has increased in recent years, due to the pro-
longed lifespan of HIV patients with the implementation of

antiretroviral therapies [78]. Varnum et al. performed a pro-
teomic analysis in plasma samples from HIV-infected patients
with (n= 22) and without HL (n = 14). They discovered 57

novel candidate biomarkers related to HL, such as alpha-2-
HS glycoprotein (AHSG), aminopeptidase B (AMPB), and
apolipoprotein C-1 (APOC1) [75]. These proteins could be

potential biomarkers for early detection of HL.

HIV-related cardiovascular disorders

When HIV infects host cells, HIV proteins can cause cardiac

dysfunction, such as cardiac stress and arrhythmia by working
together with host HIV-regulated proteins [79]. For example,
increased level of sCD4 is associated with rapid progression

of carotid athereosclerosis [79]. An increasing number of
HIV-infected individuals are reported nowadays to develop
HIV-related cardiovascular disorders (HRCDs) despite a sig-

nificant reduction in the viral load after antiretroviral therapy.
People living with HIV infection are 50% �100% more likely
to develop HRCDs than people without HIV infection [80–82].

In HIV-infected cell lines, 12 proteins have been found to be
over-expressed in the plasma membrane or endoplasmic retic-
ulum membrane, including myosin heavy chain cardiac muscle
aisoform (MHC-a) and ryanodine receptor-1 (RyR1) [74].

These proteins may be used for early diagnosis or as therapeu-
tic targets for heart disease in HIV-infected individuals.

HIV-related fatigue

HIV-related fatigue (HRF) is a general symptom in HIV-
infected patients, being reported in about 55%–65% of

patients even after initiation of antiretroviral therapy [83,84].
One proteomic study performed in clinical plasma demon-
strated that apolipoprotein B (ApoB) has a negative relation-

ship with fatigue severity in highly active antiretroviral
therapy (HAART)-treated patients, whereas ApoA1 is posi-
tively related to fatigue severity in naive HIV-infected patients
[37].

HIV-related lung disorders

HIV is difficult to remove when infection occurs in the lung

[85]. Thus, individuals infected with HIV are prone to develop
chronic HIV-related lung disorders (HRLDs) [35]. Bron-
choalveolar lavage fluid (BALF), which is directly connected
to lung lesions, is helpful for discovering the pathogenesis of

HIV-related pulmonary diseases. Using shotgun proteomic
analysis combining with principal component analysis,
Nguyen EV [86] profiled the proteome in BALF samples from

HIV patients, and revealed 87 differentially-expressed proteins
(such as Afamin and alpha-1-acid glycoprotein 1) compared to
that of healthy control subjects [86].

HIV-related renal disease

HIV-1 infected children are at high risk for developing HIV-

related renal diseases (HRRDs), which are found in 41% of
patients on initial presentation [87]. Proteomics can also pro-
vide new clues regarding early detection of HIV-related renal
diseases, and target proteins for treatment. Perazzo et al. [73]

found that orosomucoid, transferrin, and fibroblast growth
factor-2 (FGF-2) are specific biomarkers for HIV-associated
renal diseases in children.

Mechanisms of HIV infection

HIV–host interaction

HIV-1 contains 9 genes which are either structural (Env, Gag,

and Pol), regulatory (Tat and Rev), or accessory (Nef, Vif, Vpr,
and Vpu) [7]. HIV depends mainly on host factors to complete
its life cycle [58]. Identification of the host factors employed by

HIV is very useful for understanding the viral invasion and
host defense strategies. As summarized by Luo et al. [32],
many proteomic methods have been used to identify HIV–host

protein interactions, including AP-MS and quantitative pro-
teomic approaches. Using these methods, the proteins, such
as ubiquitin, homeodomain-containing transcription factors,
and myeloid ectopic integration site (MEIS) have been discov-

ered to interact with or be regulated by HIV [32]. Moreover, in
recent years, many proteomic studies have been performed to
identify interacting host�HIV proteins, such as Gag interact-

ing with microtubule-associated protein 4 (MAP4) and lysyl-
tRNA synthetase (KARS) (summarized in Figure 4).

HIV Gag

In CD4+ T cells, HIV-1 buds from plasma membrane through
its Gag protein targeting the host proteins in plasma mem-

brane [88]. Using a proteomic approach, 22 host kinases have
been identified to interact with HIV-1 Gag [21]. Gag p6 can be
phosphorylated by atypical protein kinase C (aPKC) to regu-
late the incorporation of viral protein regulatory (Vpr) to

HIV-1 virions [21]. An AP-MS-based study identified
cytoskeletal network proteins (e.g., MAP4) and tRNA syn-
thetases (e.g., KARS) interact with Gag [20]. Additional stud-

ies have also reported the identification and verification of
DEAD-box helicase 17 (DDX17) and ribosomal protein S6
(RPS6) for their interaction with Gag [89]. Interestingly, Y-

box binding protein 1 (YBX1) has been detected through affin-
ity enrichment combined with sequential window acquisition
of all theoretical fragment ions (SWATH)-MS technology

and verified by immunoblotting to be a candidate protein



Figure 4 Virus-host interactions summarized in this work

The red, green and blue squares indicate the up-regulated, down-regulated, and interactive proteins of host, respectively. MAP4,

microtubule-associated protein 4; KARS, lysyl-tRNA synthetase; DDX17, DEAD-box helicase 17; RPS6, ribosomal protein S6; PSGL, P-

selectin glycoprotein ligand 1; Gag, group-specific antigen; Pol, DNA polymerase; Vif, virion infectivity factor; Vpr, viral protein

regulatory; Vpu, virus protein U; Rev, regulator of expression of virion proteins; Env, envelope glycoprotein gp160; Tat, tyrosine

aminotransferase; Nef, neferine; HSP90b, heat shock protein 90-beta; STAT3, signal transducer and activator of transcription 3; pRb,

retinoblastoma-associated protein; CK2a, casein kinase II subunit alpha; ALG-2, apoptosis-linked gene-2; EHD4, EH domain-containing

protein 4;; EIF5A-1, eukaryotic translation initiation factor 5A-1; GLUD2, glutamate dehydrogenase 2; AK2, adenylate kinase 2; HK,

hexokinase; G6PD, glucose-6-phosphate dehydrogenase; PKM2, pyruvate kinase M2; FH, fumarate hydratase; TKT, transketolase.
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interacting with matrix protein, a cleavage product of Gag pre-
cursor, in HIV-1 infection [19]. As reviewed by Mariani et al.

[90], CD4+ T cell or macrophages expressing CD63, CD81,
CD82, CD9, P-selectin glycoprotein ligand 1 (PSGL), CD43,
or CD44 can all interact with Gag [90].

HIV Nef

HIV-1 Nef is a main pathogenic protein of HIV and can accel-
erate the development of AIDS [91]. Nef promotes nanotube

formation and possibly microvesicle secretion as well [45]. To
identify Nef-regulated host proteins, Bregnard et al. have per-
formed a proteomic study based on difference-GE and iTRAQ

for comparative analysis between the proteomes of wild-type
and Nef-deleted viruses. They find that compared to wild-
type, Ezrin, apoptosis-linked gene-2 (ALG-2), CD81, and

EH-domain containing 4 (EHD4) are enriched in Nef-deleted
virions [53]. Analysis of the exosomes from U937 cells infected
by HIV-1 overexpressing Nef revealed that expression of 47
microRNAs (microRNAs) was affected. These miRNAs tar-

geted several genes for inflammatory cytokines and other path-
ways that are involved in HIV pathogenesis [92]. Using 2DE-
MS technology, Saxena et al. [41] report that Nef downregu-

lates the expression of 6 proteins in cells overexpressing
HIV-1 Nef, such as cyclophilin A and eukaryotic translation
initiation factor 5A-1 (EIF5A-1) isoform B [41].
HIV Tat

Tat is an important regulatory protein functioning in HIV-
1 replication [93]. A subcellular proteomic study integrating
MS and SILAC reports that upon Tat expression, levels of

49 proteins, including HSP90b, STAT3, retinoblastoma
protein (pRb), and CK2a, are altered in the nucleolus of
Jurkat T cells. Bioinformatic analysis has revealed that

Tat mainly regulates nucleolar enrichment of proteins
that are involved in ribosomal biogenesis and protein
homeostasis [45].
HIV-1 Vpr

Vpr is essential for macrophage infection by HIV-1 [94].
Barrero et al. performed a SILAC analysis to characterize

the Vpr-responsive proteins in macrophages. They
demonstrated an increase in expression of glycolytic and
citrate pathway enzymes, such as hexokinase (HK),

glucose-6-phosphate dehydrogenase (G6PD), pyruvate
kinase M2 (PKM2), and fumarate hydratase (FH). On
the other hand, reduced levels of key mitochondrial

enzymes including glutamate dehydrogenase 2 (GLUD2),
adenylate kinase 2 (AK2), and transketolase (TKT) were
also observed [46].
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HIV regulation of host T cells

CD4+ T cells are main targets for HIV infection. As reported
by Navare et al. [48], 266, 60, and 22 differentially-expressed
proteins (P � 0.05) have been detected in CD4+ T cells 4 h,

8 h, and 20 h post HIV infection, respectively. The alteration
in expression of these proteins occurs long before de novo pro-
duction of viral proteins. The most significantly affected cellu-
lar functions according to GO analysis were reportedly protein

synthesis (early upregulation) using DAVID software analysis,
followed by downregulation of proteins involved in cell prolif-
eration, DNA repair and recombination, as well as mainte-

nance of T cell immune function [48].

HIV regulation of host macrophages

Macrophages, other than CD4+ T cells, are another type of
cells targeted by HIV. To identify specific proteins in
monocyte-derived macrophages that are infected by HIV, Li

et al. have performed SWATH-MS in conjunction with
bioinformatics analyses and identified differentially-expressed
proteins, such as U12-type spliceosomal complex and catalytic
step 2 spliceosome. Among them, expression of 420 proteins is

significantly changed after HIV-1 infection, especially nucleic
acid-binding and regulatory proteins [19].

HIV resistance mechanisms

HIV-exposed seronegative (HESN) individuals likely possess
an inherent HIV resistance mechanism [95]. Identification of

endogenous factors related to HIV resistance may be helpful
in the development of new microbicides and treatments.
Many studies have focused on HIV resistance in HESN

women. Stein et al. has reported a large-scale study
involving HIV-infected sex workers including 102 HESN
women (HESN group) and 100 high-risk HIV-
susceptible female sex workers (control group) subjects

[96]. Comparative proteomic analysis reveals that myxovirus
resistance protein 2 (MX2) is significantly overexpressed in
HESN women. Further experimentation shows that MX2

expression could be regulated by using the long-acting
contraceptive Depo-Provera [96]. In another study,
iTRAQ-based proteomics of HESN individuals and two

control groups (low-risk HESN and HIV-positives) has
revealed that in the control groups, expression of serine pro-
teinase inhibitor A5 (serpinA5) is upregulated, whereas
expression of myeloblastin, a serine protease, is downregu-

lated in the cervicovaginal fluid, suggesting a balance
between serine proteases and their inhibitors in HIV resis-
tance [50]. In addition, a label-free proteomic study has also

been reported for paired salivary (n = 10) and rectal lavage
(n= 10) fluid samples from healthy and HESN individuals,
and detected 72 proteins with known immune functions,

including mucins, cathelicidin, and serpins, which have
defined roles in HIV defense [97]. Similarly, overexpression
of cytochrome C, DnaJ homolog subfamily B member 1

(DNAJB1), poly(U)-specific endoribonuclease, etc. have also
been detected in cationic protein-depleted secretions of
cervicovaginal fluid and R5 tropic primary isolates of HIV
subtype A [98].
HIV reservoirs

Despite effective and highly active antiretroviral therapies,
HIV cannot be completely eliminated due to the presence of
viral reservoirs [99]. Thus, it is of utmost importance that pro-

teins involved in HIV reservoirs should be discovered. As
reviewed by Ciuffi et al. [100], many technologies, including
transcriptomics and proteomics, have been used to identify
the factors such as NF-kB, neogenin, and galectin-3-binding

protein of HIV reservoirs. Moreover, MS-based proteomics
has played strong positive roles in virological investigations
for better understanding of the molecular mechanism con-

tributing to HIV reservoirs [100]. Using MS-based proteomics,
proteins related to HIV reservoirs have been identified, such as
protein phosphatase-1 and small molecule activator of protein

phosphatase-1 [101]. We also find that the expression levels of
macrophage-capping protein (CAPG) and vesicular integral-
membrane protein 36 (VIP36) are altered in the plasma mem-

brane of A7 cells (unpublished data).
Remarks

Proteomics is a promising technology for HIV infection
research and could provide rich information on HIV–host
interactions, and mechanisms underlying HIV pathogenesis,

aiding in diagnosis of HIV-related diseases and new drug
development [102]. Using proteomic technology, lots of new
proteins related to HIV infection have been discovered. These

include CD14, CD44R5, vinculin, S100 calcium binding pro-
tein A9 (S100A9), ApoA1, and FGF-2. Technological
advances have greatly improved the throughout and sensitiv-
ity of proteomics. For instance, up to 8 samples can be ana-

lyzed per run of iTRAQ and about 5000 proteins can be
quantified in one run as well (Table 1). Undoubtedly, there
are still some technical and biological challenges associated

with proteomic studies. For example, there must be enough
sample amounts for proteomic study (at least 100 cells
[103]). Efforts in improving the sensitivity are imperative to

boost the discovery of the molecular mechanism used by
the HIV to take over the host cell, mechanisms of host
defense, and potential biomarkers for HIV-related diseases.
Furthermore, it is also necessary to verify the identified pro-

teins in large number of clinical samples before any potential
translational applications.
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