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Abstract With the technology development on detecting circulating tumor cells (CTCs) and cell-

free DNAs (cfDNAs) in blood, serum, and plasma, non-invasive diagnosis of cancer becomes

promising. A few studies reported good correlations between signals from tumor tissues and CTCs

or cfDNAs, making it possible to detect cancers using CTCs and cfDNAs. However, the detection

cannot tell which cancer types the person has. To meet these challenges, we developed an algorithm,

eTumorType, to identify cancer types based on copy number variations (CNVs) of the cancer found-

ing clone. eTumorType integrates cancer hallmark concepts and a few computational techniques

such as stochastic gradient boosting, voting, centroid, and leading patterns. eTumorType has been

trained and validated on a large dataset including 18 common cancer types and 5327 tumor

samples. eTumorType produced high accuracies (0.86–0.96) and high recall rates (0.79–0.92) for pre-

dicting colon, brain, prostate, and kidney cancers. In addition, relatively high accuracies (0.78–0.92)

and recall rates (0.58–0.95) have also been achieved for predicting ovarian, breast
nces and
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luminal, lung, endometrial, stomach, head and neck, leukemia, and skin cancers. These results sug-

gest that eTumorType could be used for non-invasive diagnosis to determine cancer types based on

CNVs of CTCs and cfDNAs.
Introduction

Non-invasive detection of cancer is becoming possible with the
development of technologies on capturing circulating tumor

cells (CTCs) and cell-free DNAs (cfDNAs) in blood, serum,
and plasma [1–3]. However, it is still challenging to get accu-
rate abnormal signals on cancer genomes, as CTCs and
cfDNAs are rare in blood samples. For example, there are

about 1–100 CTC(s) per 109 blood cells [4], resulting in the
generation of false negatives, false positives, or biased signals
due to the amplification procedure [5,6]. Moreover, hundreds

of depths of a cancer genome are usually needed to achieve
good accuracy and coverage for mutation calling [7], causing
difficulty in getting a large amount of data for early-stage

patients which would need even more sequencing depth to cap-
ture signals reliably. Thus, copy number variation (CNV)
attracts more attention, because CNV signals could be

detected with relatively low-depth sequencing of samples. Fur-
thermore, CNV detection has a low burden in cost because
CNVs usually involve a segment of chromosomes with rela-
tively strong intensity, especially for amplification [2]. There-

fore, it is very promising to diagnose and detect cancer at
early stages based on CNVs. Technologies for CTC cell cap-
ture is being developed. We could easily detect and capture

CTCs in blood samples even for people without diagnosis of
cancer, but might not determine cancer types just based on
CTC cell biology, because CTCs are usually identified insensi-

tively by isolating non-blood cells and epithelial cells for solid
cancers. Cancer type could be potentially determined based on
the genomic information of the CTCs, which would help the
clinicians to decide the proper organs of cancer patients for

further check. Therefore, we developed a novel algorithm,
eTumorType, to determine cancer types based on the CNVs
of tumors, which could be applied on the data of CTCs.

It is well known that there are multiple clones within a
tumor, including a founding clone and several sub-clones
[8,9]. The founding clone is the most recent founder cancer cell

of a tumor. All the genomic changes such as somatic mutations
and CNVs that occur in the founding clone will be carried on
in all the cancer cells of that tumor. Thus, CNVs of a founding

clone will be found in CTCs as well. Therefore, the analysis
based on the CNVs of cancer founding clone would reflect
the result on CTC genomic data. Thus, eTumorType is
designed to model the CNVs in cancer founding clones. As a

popular tool for evaluating the purity and ploidy of tumor
cells, ABSOLUTE identifies somatic CNV segments belonging
to the founding clone and sub-clones as well using CNVs [10].

Furthermore, a primary feature of cancer is proliferation of
cancer cells, involving a multitude of highly-regulated oncoge-
nes, to which genomic amplification contributes greatly [11].

Moreover, the genomic amplification is more likely to be
detected than deletion as genes only have two copies to lose
whereas could reach 4.4 copies and more by amplification

[12]. Apparently, amplification signals would be easier and
more accurately identified. Therefore eTumorType will focus
on modeling of the genomic amplifications.
Robustness is always the most important consideration in

developing algorithms. To deal with this issue, methods based
on the stochastic mechanisms have been developed. For exam-
ple, multiple survival screening (MSS) has been developed to

achieve robustness by screening random gene sets and random
datasets and then selecting genes with higher probability of
contributing to robustness. In cancer samples, these genes
are often cancer hallmark-associated genes [13,14]. However,

MSS has been proposed and validated using gene expression
data with continuous values. Random forest (RF) is a popular
ensemble method of constructing decision trees using boot-

strap samples and random features, and then classifying with
a strategy based on these trees [15]. ada is also an ensemble
method, which integrates the stochastic gradient boosting with

a stochastic mechanism and refinement on the training set in
each boosting step, thus able to generate the ensemble at a
higher speed [16]. Both RF and ada are suitable to analyze

continuous data and discrete values.
In this study, we developed a computational algorithm,

eTumorType, by modeling CNVs in the founding clone (i.e.,
genomic amplifications) of the cancer hallmark-associated genes

(i.e., one of the key factors for reaching robustness inMSS) using
ada, considering that CNVs are often presented as discrete val-
ues and ada shows advantage in speed using the stochastic gra-

dient boosting procedure. Furthermore, we also applied a
combinatory signature set approach in eTumorType [13,14].
Multiple cancer hallmark-derived models were employed and

the centroid of the number of them supporting each cancer type
prediction was generated and then used for predicting cancer
types for a given sample based on the correlation coefficient

between them. Finally, a leading pattern-weighted correlation
method was developed in the eTumorType. eTumorType was
validated using 2133 (40% of 5327) samples, indicating that it
is able to successfully discriminate 14 out of 18 common cancer

types with high accuracy and power (recall rate). We hope that
this tool could be used for cancer diagnosis based on the CNVs
of captured CTCs or cfDNAs in blood samples in the future.
Method

SNP data

SNP 6.0 microarray data of tumors for 18 cancer types were

collected from The Cancer Genome Atlas (TCGA) database
(Table 1). Given their genetic differences, the luminal and basal
subtypes of breast cancer were treated as different cancer

types. On the other hand, colon and rectum cancers were inte-
grated together as one cancer type, since they have similar
genomic profiles [12].

Detection of somatic CNVs

The segmentation files annotated based on the reference genome

of hg19 were downloaded from TCGA. These files were used as
inputs to the GISTIC 2.0 [17] in the GenePattern online platform



Table 1 Cancer types and sample sizes in the somatic founding clone CNV profile

Cancer Abbreviation No. of samples

Ovarian serous cystadenocarcinoma OV 538

Breast invasive carcinoma (luminal subtype) LUMINAL 531

Colon adenocarcinoma/rectum adenocarcinoma COAD/READ 513

Glioblastoma multiforme GBM 467

Kidney renal clear cell carcinoma KIRC 415

Lung squamous cell carcinoma LUSC 403

Uterine corpus endometrial carcinoma UCEC 401

Lung adenocarcinoma LUAD 395

Head and neck squamous cell carcinoma HNSC 335

Brain lower grade glioma LGG 244

Thyroid carcinoma THCA 203

Stomach adenocarcinoma STAD 177

Bladder urothelial carcinoma BLCA 151

Prostate adenocarcinoma PRAD 149

Cervical squamous cell carcinoma and endocervical adenocarcinoma CESC 149

Breast invasive carcinoma (basal subtype) BASAL 91

Skin cutaneous melanoma SKCM 83

Acute myeloid leukemia LAML 82

Note: CNV, copy number variation.
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[18]. The output of the software is a gene-based GISTIC score
profile, which was used to evaluate the copy number changes

for genes. A gene is defined as amplified with the GISTIC score
>0.3, [19]; otherwise, this gene is defined as a non-amplified.
We used 1 and 0 to represent amplified and non-amplified,

respectively, for genes in the CNV profile of each sample.

Identification of somatic founding clone CNVs

ABSOLUTE is used to identify aberrational chromosome seg-

ments involved in the founding clone or sub-clones in the tumor
tissues [10]. Of note, because ABSOLUTE may fail to detect
CNVs in some samples due to the poor quality of data, we only

retained the samples which have CNV profiles generated by
ABSOLUTE. The CNV profiles were filtered by the output
from ABSOLUTE to generate the somatic founding clone

amplification profiles, which were used for the subsequent anal-
ysis. The dataset was randomly split into three subsets with pro-
portions as 60%, 20%, and 20% for the training set, the

validation set, and the test sets, respectively. The cancer types
and the corresponding sample sizes are summarized in Table 1.

The eTumorType algorithm

There are three layers in the eTumorType algorithm (Figure 1):
(1) building cancer-pair-wise gene ontology (GO) ada models
(GO-ada models) based on 12 cancer hallmark-associated

GO terms, each of which contains a set of discriminating
amplified cancer hallmark-associated genes; (2) voting cancer
type of either one or another using the GO-ada models, getting

the centroid of the number of GO-ada models voting for each
cancer type prediction, and then making a centroid-based cor-
relation prediction; and (3) finally, making a leading pattern-

weighted correlation prediction.

Constructing pair-wise cancer hallmark-based ada models

The cancer hallmark-associated genes were collected based on

GO annotations of genes for cancer hallmarks [20–22]. In this
study, six cancer hallmarks were selected: apoptosis, cell adhe-
sion, cell cycle, cell proliferation, phosphorylation, and

immune response.
Significant differentially amplified genes (DAGs) between

any two cancer types were identified using fuzzy analysis clus-

tering with R package on the training set. For a given pair of
cancer types, the DAGs of each selected cancer hallmark were
used to construct ada predictive models for discriminating can-
cer types. Considering the effect of sample size on the statisti-

cal significance and the expectation of sufficient DAGs, a
composite approach was employed: (1) if the sample sizes of
both cancer types are smaller than 200, a loose P value of

0.01 based on Fisher’s exact test was set for statistical signifi-
cance; (2) if the sample size of one cancer type is smaller than
200, but that of the other cancer type is larger than 200, the P

value threshold was set to 0.005; (3) if the sample sizes of both
cancer types are larger than 200, the P value cut-off was set to
0.001. Here the number of 200 was chosen considering the
sample size distribution of the training sets for the 18 cancer

types examined. For the eleven, three, and four cancer types,
each contains >200, <100, and 100–200 samples, respectively.
The DAGs were grouped based on cancer hallmarks they are

belonging to. If a gene belongs to multiple cancer hallmarks,
it was assigned to multiple gene groups. The selected genes
annotated in the six cancer-hallmark GO terms were retained

for the subsequent analysis. For each GO term, we ranked
its genes based on the product of amplification degree and
amplification difference between two cancer types (i.e., gene

A ranks higher than gene B if the score of A is higher than that
of B). The top-30 and top-100 genes were tried for constructing
models that classify the two cancer types using the ada R pack-
age [16]; the models are denoted as GO-ada models. We

reported the results using the top-100 genes in this manuscript.
Finally, 12 ada models were constructed for discriminating
each pair of cancer types.

A centroid-based correlation prediction

This part contains voting cancer types of either one or another

using GO-ada models, and getting the centroid of the number



Figure 1 Scheme of the eTumorType algorithm

Pair-wise GO-ada model: the CNV profiles (rows for genes and columns for samples) for cancer type 1 (cancer 1) and cancer type 2 (cancer

2) were used to select significant DAGs. DAGs associated with six cancer hallmarks as annotated with GO terms were retained and 12 GO

sets were selected (see Method) and input into ada R package to build GO-ada models. Average number of GO-ada models for a sample:

for a given sample, the numbers of GO-ada models favoring each cancer type prediction were constructed as a matrix based on all the

12 � C2
18 models and then the vector of average number of GO-ada models was created. Next, cancer-type centroid matrix was built by

collecting the centroid vector of average number of GO-ada models for all the 18 possible cancer types (the rows of the matrix) on each

cancer type (the column of the matrix) data of the training set. Centroid-based prediction: for a given new sample, the vector of the

average number of GO-ada models favoring each cancer type prediction was calculated and then used for evaluating its correlations with

the centroid vector of each cancer type (column of the cancer-type centroid matrix). The correlation coefficients were ranked and the 3 top-

ranked cancer types were selected as the final prediction. Leading pattern-weighted prediction: the same procedure as the centroid-based

prediction was performed except that the weighted correlation replaced the simple correlation (see Method). GO, Gene Ontology; CNV,

copy number variation; DAG, differentially-amplified gene.
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of GO-ada models voting for each cancer type. The procedure
of building GO-ada models based on 12 GO terms produced

12 GO-ada models for each pair of cancer types, and thereby

12 � C2
18 models were created in total (Figure 1). For a given

sample, a prediction matrix (18 � 18) was generated by these
models, which is composed of the number of GO-ada models

predicting the sample as the cancer types listed in the rows.
For example, for the comparison between cancer type 1 and
cancer type 2, 10 of the 12 GO-ada models between them pre-
dicted the sample to be cancer type 1, while the other two mod-

els predicted it to be cancer type 2 (Figure 1). Then, a vector of
the average numbers of GO-ada models for all possible cancer
types was generated alongside the rows of the matrix. The

rankings of cancer types in the vector indicate their probability
that the cancer type a sample could be considered as. That is,
the higher average number of GO-ada models voting for a
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particular cancer type when compared with the other 17 cancer
types, the higher probability the cancer type being this partic-
ular cancer type. Next, a matrix was created by collecting the

vectors of all training samples belonging to a cancer type,
which is composed of 18 possible cancer types and samples.
Thereafter, a centroid vector for all possible cancer types on

the matrix was generated by calculating the centroid of average
number of GO-ada models for each row of the matrix using
the pamr R package (https://cran.r-project.org/web/pack-

ages/pamr/index.html). Finally, a cancer-type centroid matrix
was created by pooling the centroid vectors for all cancer types
together, which is 18 possible cancer types � 18 cancer types
included in the training set (Figure 1).

For the prediction of a new sample, the vector of average
number of GO-ada models voting for each possible cancer
type was firstly created based on the predictions using all mod-

els (the method is mentioned above). Secondly, the correlation
coefficient between it and the centroid for each cancer type (the
cancer-type centroid matrix) was calculated. Thirdly, the cor-

relation scores for all possible cancer types were ranked; a
higher ranking suggests a higher probability that the given
sample might belong to that cancer type (Figure 1). In this

study, a strategy of top-ranked candidate set was proposed
to improve the reliability of cancer type prediction. We took
1–3 top-ranked cancer types as a final prediction for the given
sample. For example, for a luminal breast cancer sample, if the

luminal breast cancer type was included in the top-3 cancer
types, we considered the prediction to be correct. The proce-
dure of evaluating accuracy and power (recall rate) was: (1)

if the true cancer type for a sample is included in the top-
ranked candidate set, the true cancer type was assigned to
the sample; if not, the top-1 cancer type would be taken; and

(2) the accuracy and power for each cancer type prediction
was calculated as # (true predictions)/ # (all predictions) and
# (true predictions)/ # (true cancer type samples).
Leading pattern-weighted correlation prediction

In the training set, the average number of GO-ada models vot-
ing for a cancer type is likely to be high for some of the cancer

types but low for some other cancer types (Figures 2; S1–S4).
For example, lung squamous cell carcinoma (LUSC) samples
got high average numbers of GO-ada model voting for ovarian

serous cystadenocarcinoma (OV), lung adenocarcinoma
(LUAD), head and neck squamous cell carcinoma (HNSC),
and LUSC itself, but very low votes for thyroid carcinoma

(THCA) and acute myeloid leukemia (LAML) (Figure 2).
We took this information to improve the prediction perfor-
mance. First, for each cancer type in the training set, a cluster-
ing analysis of all 18 cancer types was performed using the

cluster R package (pam function) based on the matrix com-
posed of the average numbers of GO-ada models voting for
each cancer type for all samples. The clustering analysis could

group the cancer types into clusters based on criterion of sim-
ilar average number of GO-based models. Then, the average
number of GO-ada models was estimated for each cluster.

Next, two clusters with the highest and lowest average num-
bers were taken as the most similar and the most dissimilar
cancer type groups, respectively. In order to limit the influence

of taking the similarity and dissimilarity among cancer types
for the prediction, the numbers of possible cancer types for
the two categories need to be controlled. For details, based
on the matrix mentioned above for each cancer type, we
screened a set of pre-defined 3, 4, 5, and more clusters for eval-

uating the sizes of the leading up-/bottom-clusters. Based on
the results, the maximum numbers of 5 and 3 for the leading
up-/bottom-clusters, respectively, were used in this study

(Table S1). We also observed that changing the sizes (maxi-
mum numbers) slightly to 4 and 2 did not change accuracy
and power much.

Next, the weighted correlation analysis was performed.
Briefly, a high (2, 3, 4, and 5) and low (0.1, 0.2, and 0.3)
weights were assigned to leading up-/bottom-patterns, respec-
tively; the weight of 1 was set for the other cancer types. The

setting of 3 for the leading up-patterns showed a relatively bet-
ter performance on accuracy and power in the validation set
(the final validation was done in the test set). For the leading

bottom-patterns, the performances for the various settings
were similar. The results reported in this study were based
on the weights of 3 and 0.1 for the leading up-patterns and

leading bottom-patterns, respectively. Finally, the correlation
scores were ranked and used for predicting cancer types.

Results

An overview of eTumorType

Eighteen common cancer types containing 5327 samples from
TCGA were included in this study (Table 1). CNVs of the

founding clones were generated using the SNP 6.0 data of
tumors and software tools including GISTIC 2.0 and ABSO-
LUTE (see Method). To properly construct and validate

eTumorType, we split the whole dataset into the training, val-
idation, and test sets, with the proportions of 60%, 20%, and
20%, respectively. To develop an algorithm (eTumorType)
that is able to predict cancer types based on CNVs of the

founding clones, we took a cancer hallmark approach, because
cancer hallmarks are able to capture the most important genes
that are closely related to cancer biology [23]. This approach

has been successfully used to identify high accurate and robust
gene expression-based biomarkers for breast and colon cancers
[13,14,19,24]. In addition, we focused on the modeling of

CNVs of tumor founding clones in eTumorType.
As shown in Figure 1, we used cancer hallmark-associated

GO terms composed of discriminating amplified genes to con-

struct predictive models that are able to discriminate a pair of
cancer types. Twelve GO terms were selected based on six can-
cer hallmarks (see Methods) to generate GO-ada models on
the training set for each pair of cancer types (Figure 1). For

a given sample, all the GO-ada models were used to vote which
cancer types that sample could belong to. Then, we counted
the number of votes for each cancer type (i.e., voting profile).

For a given cancer type, we averaged the voting numbers of
each cancer type for the voting profiles of all the samples of
that cancer type. We found that the average numbers of GO-

ada model voting for cancer types were very similar among
the training, validation, and test sets for each cancer type
(Figures 2; S1–S4). To show this stability, the centroid of the
average numbers of GO-ada model voting for each cancer type

across samples for a cancer type was evaluated for each possi-
ble cancer type and then compared among the three datasets
(see Methods). The results showed very similar centroid

https://cran.r-project.org/web/packages/pamr/index.html
https://cran.r-project.org/web/packages/pamr/index.html


Figure 2 The average number of GO-ada models voting for possible cancer types for LUMINAL, LAML, LUSC, and HNSC datasets

The average numbers of GO-ada models voting for possible cancer types are shown by the boxplots. The box displays the range of 25th

percentile and 75th percentile. The circles represent the values lower than 10th percentile or greater than 90th percentile. The abbreviations

of cancers are explained in Table 1.
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patterns, for example, 16 out of 18 cancer types had high cor-
relation coefficients (>0.96), while LAML and skin cutaneous
melanoma (SKCM) got relatively lower correlations of 0.93

and 0.89 (Table 2). These results indicate that predicting cancer
types using founding clone CNVs of cancer hallmark-
associated genes performs stably across different sample pop-

ulations, and therefore contributes to robustness.

Predictions using eTumorType

We first conducted a centroid-based correlation prediction (see
Method) for the samples in the validation and test sets. A sam-
ple could be predicted to a set of cancer types (see Method).

When considering the top-1 cancer type alone, only five cancer
types were observed with accuracy of �0.80 in the validation
Table 2 Correlation coefficients of centroids among the training, valid

Cancer Training vs. validation T

LUSC 1 1

LUMINAL 0.99 0

GBM 0.99 1

KIRC 1 0

LGG 0.99 0

OV 1 0

THCA 0.99 0

COAD/READ 0.99 0

HNSC 0.98 0

UCEC 0.99 0

CESC 0.97 0

LUAD 0.99 0

PRAD 0.97 0

BLCA 0.97 0

BASAL 0.96 0

STAD 0.96 0

LAML 0.97 0

SKCM 0.92 0

Note: The abbreviations of cancers are explained in Table 1.

Table 3 Accuracy and power of centroid-based cancer type prediction

Cancer
Training set

Accuracy Power A

OV 0.76 0.76 0

LUMINAL 0.73 0.51 0

LUAD 0.66 0.56 0

LUSC 0.59 0.82 0

COAD/READ 0.79 0.59 0

GBM 0.77 0.81 0

UCEC 0.46 0.10 0

THCA 0.29 0.86 0

STAD 0.53 0.43 0

LGG 0.71 0.64 0

PRAD 0.62 0.71 0

KIRC 0.74 0.49 0

HNSC 0.57 0.49 0

CESC 0.50 0.73 0

LAML 0.66 0.98 0

BLCA 0.62 0.56 0

BASAL 0.33 0.93 0

SKCM 0.52 0.74 0

Average 0.60 0.65 0

Note: The abbreviations of cancers are explained in Table 1.
set, but none in the test set (Table 3). When considering the
3 top-ranked cancer types, the prediction accuracies were
improved greatly (Table 4). For example, the accuracy and

power (recall rate) for breast invasive carcinoma, luminal sub-
type (LUMINAL) samples were 0.81 and 0.55 for the valida-
tion set when choosing the top-1 cancer type (Table 3),

whereas they were respectively improved to 0.93 and 0.73 when
choosing the 1–3 top-ranked cancer types (Table 4). For stom-
ach adenocarcinoma (STAD) prediction, the accuracy and

power were dramatically improved from 0.62 and 0.51 to
0.81 and 0.63, respectively (Tables 3 and 4). These results sug-
gest that selecting the top-3 cancer type candidates would lead
to a more reliable diagnosis, and more importantly, consider-

ing multiple possibilities can also be beneficial to patients as
it is still able to guide examinations and would lead to detect
ation, and test sets for various cancer types

raining vs. test Validation vs. test Minimum

1 1

.99 0.99 0.99

1 0.99

.99 0.99 0.99

.99 1 0.99

.99 0.99 0.99

.99 0.99 0.99

.99 0.98 0.98

.99 0.98 0.98

.98 0.99 0.98

.97 0.99 0.97

.99 0.97 0.97

.98 0.97 0.97

.96 0.98 0.96

.96 0.98 0.96

.97 0.97 0.96

.93 0.97 0.93

.89 0.96 0.89

using top-1 selections

Validation set Test set

ccuracy Power Accuracy Power

.82 0.89 0.72 0.72

.81 0.55 0.60 0.42

.75 0.68 0.65 0.42

.67 0.91 0.51 0.73

.89 0.70 0.66 0.46

.86 0.89 0.74 0.81

.70 0.35 0.40 0.13

.35 0.85 0.27 0.93

.62 0.51 0.38 0.39

.73 0.71 0.46 0.47

.69 0.73 0.39 0.50

.80 0.64 0.73 0.39

.61 0.64 0.36 0.36

.51 0.63 0.28 0.43

.71 0.75 0.44 0.41

.54 0.47 0.39 0.23

.34 0.72 0.30 0.72

.47 0.41 0.36 0.50

.66 0.67 0.48 0.50



Table 4 Accuracy and power of centroid-based cancer type prediction using top-3 selections

Cancer
Training set Validation set Test set

Accuracy Power Accuracy Power Accuracy Power

OV 0.84 0.93 0.86 0.94 0.78 0.92

LUMINAL 0.93 0.80 0.93 0.73 0.88 0.66

LUAD 0.89 0.76 0.81 0.81 0.90 0.59

LUSC 0.82 0.98 0.76 0.98 0.77 0.95

COAD/READ 0.93 0.83 0.92 0.79 0.83 0.65

GBM 0.94 0.90 0.90 0.91 0.89 0.87

UCEC 0.92 0.35 0.85 0.43 0.78 0.50

THCA 0.48 0.93 0.46 0.88 0.46 0.98

STAD 0.90 0.72 0.81 0.63 0.66 0.64

LGG 0.91 0.94 0.78 0.82 0.77 0.88

PRAD 0.78 0.93 0.76 0.83 0.68 0.93

KIRC 0.91 0.92 0.87 0.80 0.86 0.77

HNSC 0.86 0.85 0.71 0.78 0.68 0.75

CESC 0.74 0.91 0.65 0.80 0.63 0.73

LAML 0.83 0.98 0.81 0.81 0.81 0.76

BLCA 0.80 0.81 0.74 0.57 0.65 0.43

BASAL 0.59 1.00 0.48 0.83 0.52 0.89

SKCM 0.85 0.94 0.67 0.59 0.67 0.75

Average 0.83 0.86 0.77 0.77 0.73 0.76

Note: The abbreviations of cancers are explained in Table 1.
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the cancer with high probability. Of note, the interpretation of
the prediction results is that a sample is most likely to be any of
the three cancer types. However, clinically it is useful, as the

predictions allow furthering checking only three cancer sites.
For example, the CNVs identified by sequencing of CTCs from
a patient (the cancer type is unknown, but the CTCs are cap-

tured in blood) could be used for predicting three possible can-
cer sites using eTumorType. Clinicians could further check the
patients to find out which of the three cancers could be. This

will be time-saving when searching the cancer sites.
The centroid-based correlation prediction showed that

some cancer types had similarity, leading to the failure of rank-
ing in top 1, which could be taken into account to shrink down

the cancer type possibilities and then able to improve predic-
tion. For example, the LUSC samples got higher numbers of
GO-ada models voting for OV, LUAD, HNSC, and LUSC,

but very lower votes for THCA and LAML (Figure 2). This
result indicates that the LUSC samples have higher chance
to be predicted as the former four cancer types, but lower

chance to be predicted as the latter two cancer types. There-
fore, if these two leading patterns were given weights, the pre-
diction accuracy might be boosted.

By applying the leading pattern-weighted correlation pre-
diction, the prediction performance was significantly improved
(Table 5). For some cancer types, both prediction accuracy and
power were increased. For example, in the validation set, for

colon adenocarcinoma/rectum adenocarcinoma (COAD/
READ), the accuracy and power of the prediction was
enhanced from 0.92 to 0.94 and from 0.79 to 0.88, respectively;

similar results were obtained for the test set (Tables 4 and 5).
In addition, similar results were observed for glioblastoma
multiforme (GBM), THCA, STAD, and kidney renal clear cell

carcinoma (KIRC). On the other hand, for some other cancer
types, the predictions were increased in either accuracy or
power only. For example, the prediction for LAML in the

validation set was improved from 0.81 to 0.92 for accuracy
but decreased from 0.81 to 0.69 for power, with similar
observations noticed in the test set. Usually, the trade-off
between accuracy and power is inherent in prediction models,
like the prediction for LAML. The improvements on both

indices for COAD/READ suggest that the leading pattern-
weighted correlation prediction works very well for this cancer
type. That is, the selected leading patterns accurately evaluated

its similarity and dissimilarity to the other cancer types in the
leading up-patterns and bottom-patterns, thereby working effi-
ciently in the prediction for true samples. On the other hand,

the increase in accuracy but decrease in power for LAML indi-
cates that the leading patterns enhanced the ability of filtering
false samples but lowered down the competing power against
cancer types sharing similarity with resulting in losing more

true samples.
In summary, the prediction performances for the cancer

types of COAD/READ, GBM, brain lower grade glioma

(LGG), prostate adenocarcinoma (PRAD), and KIRC were
increased significantly, from 0.85 to 0.92 and from 0.83 to
0.87 on average for accuracy and power, respectively, in the

training set. The corresponding increases in the test set were
from 0.81 to 0.90 and from 0.82 to 0.86 on average for accuracy
and power, respectively. In the validation set, the prediction

performances for the cancer types of OV, LUMINAL, LUAD,
LUSC, uterine corpus endometrial carcinoma (UCEC), STAD,
HNSC, LAML, and SKCM were increased moderately, from
0.80 to 0.84 and from 0.74 to 0.79 on average for accuracy

and power, respectively. For the test set, the accuracy and
power on average were from 0.77 to 0.83 and from 0.72 to
0.76. In total, these cancer types accounted for 14 of 18 types

analyzed in this study. Therefore, the leading pattern-
weighted correlation is able to discriminate cancer types.
Discussion

eTumorType integrates the traits favoring robustness including
cancer hallmarks composed of DAGs, stochastic algorithm of



Table 5 Accuracy and power of leading pattern-weighted correlation prediction of caner types using top-3 selections

Cancer
Training set Validation set Test set

Accuracy Power Accuracy Power Accuracy Power

OV 0.90 0.94 0.83 0.93 0.80 0.93

LUMINAL 0.93 0.97 0.85 0.88 0.83 0.85

LUAD 0.96 0.86 0.91 0.87 0.82 0.70

LUSC 0.85 0.98 0.80 0.96 0.78 0.95

COAD/READ 0.96 0.95 0.94 0.88 0.87 0.79

GBM 0.97 0.91 0.92 0.92 0.92 0.89

UCEC 0.94 0.73 0.81 0.58 0.84 0.66

THCA 0.80 0.98 0.62 0.90 0.56 0.98

STAD 0.98 0.89 0.81 0.71 0.80 0.67

LGG 0.97 0.97 0.91 0.82 0.90 0.88

PRAD 0.94 0.94 0.93 0.87 0.96 0.87

KIRC 0.96 0.98 0.91 0.84 0.86 0.88

HNSC 0.93 0.90 0.81 0.91 0.80 0.76

CESC 0.78 0.93 0.67 0.73 0.65 0.73

LAML 1.00 0.96 0.92 0.69 0.91 0.59

BLCA 0.93 0.89 0.76 0.63 0.71 0.40

BASAL 0.90 0.96 0.67 0.67 0.70 0.78

SKCM 0.94 0.94 0.83 0.59 0.92 0.69

Average 0.92 0.93 0.83 0.80 0.81 0.78

Note: The abbreviations of cancers are explained in Table 1.
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ada, voting mechanism based on the screening of cancer type
comparisons, and a further centroid generation. For a given

cancer type, the centroids of average number of GO-ada voting
for each cancer type were stable across the training, validation,
and test sets. In general, eTumorType performs well in the pre-

dictions. The current predictive models have been constructed
based on the 18 common cancer types, because they have rela-
tively larger sample sizes in TCGA. For other cancer types,

when their sample numbers get large enough, we will refine
our models to include them in the future. This is the limitation
of the current predictive models. However, eTumorType is cap-
able of discriminating cancer types, which is beyond the current

studies on CTC or cfDNA data, as the majority of these studies
only focused on finding features (e.g., CNV, mutation, micro-
RNA, methylation, and gene expression) associated with speci-

fic cancer types [25–30]. To our best knowledge, no such
algorithms have been developed so far. Our algorithm enables
discriminating cancer types for CTCs and cfDNAs, which will

be useful in early diagnosis of cancers in the near future.
The number of input genes affects the performance of GO-

ada voting. When using the top-30 genes, the predictions for
OV, LUAD, COAD/READ, GBM, KIRC, HNSC, and

LAML samples had relatively good performance with the
accuracy of 0.87 and power of 0.81 on average in the valida-
tion set and the corresponding values in the test set were

0.86 and 0.76. On average, the leading pattern-weighted corre-
lation method led to prediction accuracy and power of 0.78
and 0.73 for all cancer types in both the validation and the test

sets, which were around 4% and 6% less than the predictions
using the top-100 genes.

In general, inclusion of the leading patterns improved the

prediction. However, there was trade-off between accuracy
and power when predicting some cancer types. This could be
attributed to the inaccurate selection of the leading patterns.
In our future work, we will improve the accuracy of selection

and investigate the weights of the leading patterns in favor of
reducing the trade-off.
Previously, we suggested that genomics and systems biology
research should be conducted at sub-clonal and founding clo-

nal levels [31,32]. In this study, the founding clone CNVs were
used not only for facilitating a smooth application of the
method to CTC and cfDNA data, but also for getting insight

for the early detection of cancer types. The formation of the
founding clone represents cancer occurrence and cancer devel-
ops faster thereafter [9]. Therefore, signals derived from sub-

clones cannot be much helpful for early detection.
Many studies have focused on somatic mutation-based bio-

marker discovery for cancer detection. However, somatic CNVs
may have advantages as they have strong signals [12], whereas

cancer genomes have rare somatic mutations, which are not
common between tumor samples of even a same cancer type
[33,34]. In the meantime, the cost is much lower for CNV detec-

tion than mutation detection by genome sequencing, leading to
the increasing tendency of measuring genome-level CNVs.
Therefore, using CNVs could be a reliable and feasible option

for early detection of cancer. The non-invasive manner of
CTC capturing is a further advance for early cancer detection.
Our eTumorType for discriminating cancer types is developed
to fulfill this task by reliably identifying cancer type candidates.

The good performance of the method for majority of the 18
common cancer types in this study holds promise for it.

Non-invasive cancer biomarker discovery has been studied

on CTCs and cfDNAs in blood, serum, and plasma. Studies
have reported similarity of CNVs in CTCs and cfDNAs with
primary tumors [35–38]. These results support the applicability

of eTumorType on CTC and cfDNA data. Nevertheless, there
are issues needed to be considered. First, the rate of false neg-
ative of CNV detection is large [5,35], which might not detect

enough DAGs to reach a good performance. Second, isolating
rare CTCs and cfDNAs is challenging, especially for the early
detection of cancer. Moreover, the necessary step of amplify-
ing rare CTCs and cfDNAs makes it worse because biases

and errors might be introduced [6,39]. Furthermore, there
are analyses showing the discordance between CTCs and
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primary tumors. For example, 48% of 62 metastatic breast can-
cers were reported discrepant between CTCs and the primary
tumors on gene expression of 35 CTC-specific genes; 24% of

patients had discrepant expression of the estrogen receptor
[40]. The difference in signal intensities for genesmight also indi-
cate the discrepancy of CNVs between CTCs and primary

tumors even for those detected as aberrations in both materials.
Due to the inconsistent conclusions, searching biomarkers or
models for early detection should be ideally performed based

onCTCs and cfDNAs. However, this needs improved technolo-
gies and large datasets, which could be available in the future.
Our study is likely to be a simulation for this task by comprehen-
sively considering the founding clone CNVs and possibly small

number of CNVs. The single-cell sequencing technology is
promising to increase the resolution and make cancer genome
sequencing data cleaner, which might make it easier to analyze

the data. With the development of the related technologies, we
believe that non-invasive cancer diagnosis would be accom-
plished in the near future.

Conclusion

In this study, we developed eTumorType, which enables the

identification of cancer types for CTCs or cfDNAs in blood,
based on CNVs in the tumor founding clone. This application
could be used for the early detection of 18 common cancers.

The approach of using the tumor founding clone, in which
genomic changes will be carried onto every cancer cells of
the tumor, helps us to capture the most important genomic

variations for that tumor. The cancer hallmarks considered
in eTumorType allow capturing the genomic variations which
are most likely to be associated with cancer development and

progression, thereby contributing to robustness. Furthermore,
to improve the prediction performance of eTumorType in clin-
ical diagnosis, we developed a leading pattern-correlation
method, which increased the prediction accuracy and power.

The analysis performed in 5327 tumor samples of 18 cancer
types provides a reliable evaluation of the algorithm. We hope
eTumorType prediction would shed light on non-invasive early

diagnosis of cancer types in the future.
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