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Abstract Enhancer-derived RNAs (eRNAs) are a group of RNAs transcribed by RNA polymerase

II from the domain of transcription enhancers, a major type of cis-regulatory elements in the

genome. The correlation between eRNA production and enhancer activity has stimulated studies

on the potential role of eRNAs in transcriptional regulation. Additionally, eRNA has also served

as a marker for global identification of enhancers. Here I review the brief history and fascinating

properties of eRNAs.
Introduction

The explosive growth of next-generation sequencing (NGS)
technologies has revolutionized the studies to comprehensively

interrogate the transcriptionally active fraction of the genome.
NGS has not only made it possible to exhaustively catalog the
transcripts from coding sequences (i.e., genes), but also has
facilitated the discovery of many RNA species that do not

serve as template for protein synthesis [1]. Over the past dec-
ade, many studies have shown that several classes of non-
coding RNAs (ncRNAs), including microRNAs (miRNAs)

and long ncRNAs (lncRNAs), play diverse biological roles
such as post-transcriptional regulation of mRNA stability
and epigenetic control of chromatin activity [2,3]. These stud-

ies have greatly enriched our understanding of the composition
and functional operation of the genome.
Of the ncRNA family, a latecomer and somewhat uncon-

ventional member is the enhancer-derived RNAs (eRNAs),
which are transcribed at the loci of enhancers [4] (Figure 1).
Like other cis-regulatory elements (CREs) such as promoters

and insulators, enhancers contain binding sites—DNA
sequence motifs varying in length between 6 bp and 20 bp—
of various transcription factors (TFs) [5]. Through binding
with several TFs, each enhancer acts as the nucleating site to

form large multi-protein complexes to activate transcription
[4]. Recent studies suggest that the human genome harbors
millions of enhancers that can be activated at different devel-

opmental stages and in various tissues and cell types [1].
While enhancers and TFs are the primary players of gene

regulation, other factors capable of chemically modifying

DNA and histones are gradually being incorporated into the
overall scheme of gene regulation, many of which modulate
the accessibility of chromatin to allow for direct contact

between TFs and enhancers [6]. Thus far, a number of enzymes
with the ability to add or remove methyl-, acetyl- and
phosphor-groups to DNA and histone tails are being deemed
as critical gene regulators [7]. It is generally thought that

involvement of these factors impinges additional layers of
nces and
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Figure 1 eRNA and transcriptional activation

A typical gene is associated with two types of cis-regulatory elements: one proximal (the promoter) and the other distal (the enhancer) to

the transcription start site of the gene. Except for house-keeping genes, a gene’s transcriptional activity is usually ‘‘off” when its enhancer

(s) is inactive (A). However, when an enhancer is activated by transcription factors, it can loop toward the promoter and turn ‘‘on” the

transcription of the gene (B). Previously, both enhancers and promoters were classified as non-coding elements, yet recent studies indicate

that active enhancers are bi-directionally transcribed to eRNAs. eRNA, enhancer-derived RNA.
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regulation, and thus improves the specificity of gene expression
patterns [8]. Nevertheless, how a multitude of factors with

varying degrees of overlapping functions are integrated into
singular transcription outputs still presents a conceptual block
for molecular biologists who are interested in understanding

the nuisances of gene regulation [4]. It is in this ever increas-
ingly complex picture that the eRNAs unexpectedly showed
up, raising the question of whether they are a missing piece

of the puzzle for the mechanism of gene regulation [9,10].

What is eRNA?

Although transcription from active enhancers was reported in
the early 1990 s [11,12], eRNAs were brought to spotlight by
two reports in 2010 [13,14]. In both studies, high-throughput

sequencing was used to characterize stimulus-dependent
enhancers, unexpectedly revealing broad RNA polymerase II
(RNAPII)-mediated transcription of bi-directional eRNAs,

typically 0.5–2 kb in length [14] (Figure 1B). Moreover, the
expression levels of eRNAs correlate with the cis-regulatory
activity of their template enhancers—that is, context-
dependent, enhancer-stimulated mRNA synthesis of nearby

genes—indicating an intimate association between enhancer
function and eRNA production [13,14]. Pervasive RNA syn-
thesis from enhancers was soon confirmed in the majority of

human cell types and tissues through systematic characteriza-
tion of the functional elements in the genome by the Func-
tional Annotation of the Mammalian Genome (FANTOM)

consortium [15] and the Encyclopedia of DNA Elements
(ENCODE) consortium [1].

How are eRNAs detected?

Because the abundance of eRNAs is 19–34-fold lower than
that of gene transcripts [15], relative higher coverage NGS,

as compared to regular RNA-sequencing (RNA-seq), is
required to accurately determine the places where enhancers
are transcribed. In one of the first reports of genome-side

eRNA synthesis, transcripts from enhancers were detected
in sequencing experiments using total RNAs but not



198 Genomics Proteomics Bioinformatics 15 (2017) 196–200
polyadenylated (polyA+) RNAs only [14], although later
studies suggested that some eRNAs are polyadenylated, simi-
lar to other lncRNAs [16].

eRNAs are not as stable as mRNAs [17]. Therefore, a more
robust method to identify eRNAs requires the capture of
pioneering rounds of transcription using techniques such as

global nuclear run-on sequencing (GRO-seq) [18] and preci-
sion nuclear run-on sequencing (PRO-seq) [19,20]. Addition-
ally, a sensitive way to detect eRNAs is cap analysis of gene

expression (CAGE) sequencing [21]. This method was used
by the FANTOM consortium to profile the transcriptomes
of a large panel of human tissues and cell types, from which
43,011 enhancer elements were shown to be transcribed to

eRNAs [22].
To assist with the enrichment of eRNAs, chromatin

immunoprecipitation (ChIP) using antibodies against histone

variants (e.g., H2AZ) or modifications (e.g., H3K27ac and
H3K4me1) can be applied in eRNA detection experiments
[23]. Another method to enhance eRNA detection, named

BruUV-seq, uses UV light to introduce transcription-
blocking DNA lesions, followed by bromouridine-labeling
and deep sequencing of nascent RNAs [24].

Furthermore, eRNAs, like other RNA transcripts, can be
visualized by in situ hybridization, using complementary RNA
probes labeled with biotin or fluorescein [25].When two ormore
RNA probes are used to simultaneously detect the eRNA and

nearby protein-coding transcript(s), the dynamic relationship
between an enhancer’s transcriptional activity and its gene-
regulating function can also be investigated [25].

While these methods all provide objective ways to charac-
terize eRNAs, enhancers are active only at selected tissues
and cells [6]. Therefore, transcription from active enhancers,

in principle, is expected to occur only in a spatially and tempo-
rally restricted manner. Consequently, analysis of the dynamic
expression patterns of eRNAs is most fruitful when performed

in the cellular context where their enhancers are functionally
active.

The function of eRNAs

Despite strong correlation between eRNA synthesis and
enhancer activity, it remains unclear whether there is a mech-

anistic link between these two. On the one hand, it has been
suggested that eRNAs may function as transcription activators
[9,10]. On the other hand, eRNAs may just be a result of spu-

rious transcriptional activities as RNAPII is recruited to the
neighborhood of enhancers [9]. Note that the latter is not a
simple null hypothesis in light of the finding by the ENCODE
consortium that approximately 80% of the human genome is

capable of being transcribed, yet less than 50% of the genome
are known to contain CREs and coding sequences [1]. This
suggests that transcriptional activity can occur in about 30%

of the genome that does not encode genes or CREs.
In support of a role of eRNAs in augmenting enhancer

activity, studies using RNA interference (RNAi) to deplete

several eRNAs in human cells found evidence for a causal role
of eRNAs in transcriptional activation [18,26–29]. Further-
more, other studies suggested that eRNAs can interact with
the Mediator and the cohesion complexes to establish chro-

matin looping, which is essential for the interaction between
enhancers and promoters [27,30]. One caveat of these earlier
studies, however, is that the functional importance of eRNAs
primarily derives from experiments using traditional RNAi
techniques to knock down eRNAs, yet the majority of eRNAs

are located within the nucleus, where RNAi does not work as
effective as it does in the cytoplasm [31].

A more rigorous approach to investigate the function of the

eRNA is to interfere with its synthesis by inserting a
polyadenylation cassette near its transcription start site, which
triggers premature transcription termination. In a recent study,

this approach was applied on the locus of an enhancer regulat-
ing the expression of cdkn1b [32]. Notably, while transcription
from this enhancer is reduced by >90%, transcription of its
target gene, cdkn1b, is largely intact [32]. This suggests that

the eRNA from this enhancer is an inert by-product during
gene transcription [32]. Nevertheless, since using this approach
to truncate eRNA production has not been carried out on a

large scale, it remains unclear how many eRNAs are likewise
dispensable for enhancer activities.

eRNAs are markers of enhancers

Since the completion of the Human Genome Project, a major
focus of the scientific community is to develop effective means

to precisely map the estimated millions of CREs orchestrating
distinct gene expression patterns of each cell type and develop-
mental stage [1]. Currently, global enhancer mapping method-

ologies primarily rely on three parameters correlated with
enhancer activation: (1) TF (or cofactor) binding; (2) distinct
histone modifications at enhancer loci; and (3) accessible

‘‘open” chromatin [8]. Here, it is noteworthy that ‘‘open” chro-
matin is the state of the chromatin during enhancer activation,
which is not necessarily the cause or the result of it. Under the

same rubric, regardless of whether eRNAs contribute to the
function of enhancers, high-throughput eRNA detection can
be exploited to globally map enhancers.

Indeed, thousands of enhancers have been identified

through analyzing the transcripts from non-coding sequences,
which exhibit excellent overlap with the enhancer maps gener-
ated by histone mark ChIP-seq [22]. The strong correlation

between an enhancer’s activity and the expression levels of
eRNAs at a chromatin domain has also enabled studies to
use eRNAs as a surrogate to investigate the effects of inter-

rupting transcription regulators by short hairpins or small
molecules (e.g., JQ1) [33,34]. In these studies, side-by-side com-
parison of eRNAs and protein-coding transcripts provides a

straightforward way to establish the mechanistic link between
an enhancer and its nearby gene(s).

As the cost of high-throughput sequencing rapidly
decreases, protocols allowing for accurate determination of

eRNAs become more feasible over time. Given that RNA-seq
is now routinely used in genomic characterization of cells and
tissues, using eRNAs to predict enhancer activity can obviate

the need for additional experiments to identify enhancers. This
is an advantage over other enhancer mapping techniques such
as ChIP-seq, DNase-seq, and assay for transposase-accessible

chromatin (ATAC)-seq, all of which use protocols different
from RNA-seq. Thus, eRNA analysis may be especially useful
in situations where specimen supply is limited (e.g., in clinical
settings) [21]. For example, He et al. [35] recently examined

the occurrence of an ultra rare single-nucleotide mutation in
chromosome 4q32 (4q32A > C) in a large pedigree displaying
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non-medullary thyroid carcinoma (NMTC). Interestingly, the
expression level of eRNAs from this region is greatly down-
regulated in NMTC tumors, suggesting that, as a marker of

enhancer activity, eRNA measurement can be used to validate
disease-causal mutations. In another study, androgen receptor-
regulated eRNAs

(AR-eRNAs) were used to monitor the response of castration-
resistant prostate cancer (CRPC) to enzalutamide, a second-
generation anti-androgen compound, leading to the discovery

of a number of gene loci that contribute to enzalutamide-
resistant growth of CRPC [36].
The future of eRNA studies

It is fair to say that there still lacks a consensus on the biolog-
ical function of eRNAs, especially regarding their relationship

with enhancer activity. This lack of clarity is not entirely unex-
pected, considering that eRNAs became known just six years
ago [13,14]. It is anticipated that more mechanistic studies will

be performed to reach a mature conclusion about this rela-
tively young member of the ncRNA family. Along this direc-
tion, one area that warrants attention is the development of
new tools to manipulate eRNAs in the cell, which is critical

for both functional studies and for exploiting eRNA as thera-
peutic targets [37]. One potentially useful method is the locked
nucleic acid (LNA) technology that can target nuclear-located

eRNAs with high efficiency, which may be more useful than
traditional RNAi techniques [31]. Moreover, recently devel-
oped clustered regularly interspaced short palindromic repeats

(CRISPR)/CRISPR-associated protein 9 (Cas9) technology
has made it feasible to perform large-scale genome editing
experiments [38]. A systematic effort to manipulate eRNA syn-

thesis in situ—for example, by targeting insertion of transcrip-
tion premature termination signals in enhancer loci—will lead
to a comprehensive view of the role of eRNAs in the cis-
regulatory activity of enhancers.

Thus far, several studies have implicated a role of eRNAs in
engaging the Mediator and the cohesion complexes, while the
latter two mediate chromatin looping [27,30,39]. In the future,

a thorough analysis of eRNA-binding proteins may help illu-
minate where and how eRNAs fit into the complex network
of interactions during transcriptional regulation. This likely

requires the development of robust and scalable methods to
systematically identify eRNA-interacting proteins [40].

Finally, the growing need to decipher the epigenome in

both normal and disease tissues is expected to demand ever
more sensitive and comprehensive methodologies to character-
ize enhancers in various cellular contexts. Notably, the past
decade has seen the documentation of a plethora of disease-

associated genetic variants (e.g., single nucleotide polymor-
phism and copy number variation) and mutations that appear
to be enriched in putative enhancer elements [41]. As eRNAs

are a useful marker of active enhancers, targeted sequencing
and bioinformatics analysis of eRNAs may accelerate func-
tional annotation of these genetic variants and mutations in

human diseases [21].
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