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Abstract Hepatocellular carcinoma (HCC) is highly heterogeneous in nature and has been one of

the most common cancer types worldwide. To ensure repeatability of identified gene expression pat-

terns and comprehensively annotate the transcriptomes of HCC, we carefully curated 15 public

HCC expression datasets that cover around 4000 clinical samples and developed the database

HCCDB to serve as a one-stop online resource for exploring HCC gene expression with user-

friendly interfaces. The global differential gene expression landscape of HCC was established by

analyzing the consistently differentially expressed genes across multiple datasets. Moreover, a 4D

metric was proposed to fully characterize the expression pattern of each gene by integrating data

from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). To facilitate

a comprehensive understanding of gene expression patterns in HCC, HCCDB also provides links

to third-party databases on drug, proteomics, and literatures, and graphically displays the results
nces and
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from computational analyses, including differential expression analysis, tissue-specific and tumor-

specific expression analysis, survival analysis, and co-expression analysis. HCCDB is freely

accessible at http://lifeome.net/database/hccdb.
Introduction

Hepatocellular carcinoma (HCC) is one of the most common
and lethal cancer types. With the development of high-

throughput technologies, various types of molecular data have
been used to delineate the alterations in HCC at multiple levels
[1–3]. Good curation of these molecular data can lay the foun-
dation for scientific research and drive translation in clinical

applications. Until now, some efforts have been made in the
data curation about HCC, such as OncoDB.HCC [4] and
Liverome [5]. OncoDB.HCC was established as a resource of

HCC genomes, to visualize somatic aberrations at levels vary-
ing from DNA, RNA to protein, with main focus on HCC
tumorigenesis. Liverome was set up to curate liver cancer-

related gene signatures and provide interface for gene search
and signature comparison.

In the past decades, transcriptomic data have been accumu-

lated vastly and applied widely in molecular classification [6,7]
and biomarker identification [8,9]. As HCC is a highly hetero-
geneous disease [10–12], inference of expression signatures
from single gene expression dataset usually faces challenges

of low repeatability and high false positive rates. To improve
the confidence of high-throughput experiments, gene expres-
sion patterns should be carefully assessed in multiple datasets

derived from independent studies [6,7,13]. However, there is no
large-scale collection of HCC transcriptomics data, let alone
detailed annotation and intuitive display.

Recent studies have revealed that tissue-specificity matters
in tumorigenesis [14]. Different cancer types share a set of com-
mon cancer hallmarks [15], although they also have extensive
tissue-specific oncogenic processes [14,16–19]. HCC has been

demonstrated to harbor aberrant expression patterns that are
obviously different from those observed in other cancer types
[20,21]. So it is important to consider the tissue-specificity infor-

mation when annotating gene expression patterns in HCC.
Thus, we first compiled a unique resource by carefully

curating 15 public HCC gene expression datasets that cover

around 4000 clinical samples to facilitate the hypothesis testing
and pattern discovery based on multiple gene expression data-
sets. Meanwhile, we analyzed the consistently differentially

expressed genes across multiple datasets to depict a global dif-
ferential expression landscape of HCC. A 4D metric was pro-
posed to summarize the expression pattern of individual gene
by integrating normal tissues from the Genotype-Tissue

Expression (GTEx) [22] and tumors from The Cancer Genome
Atlas (TCGA). Aiming at providing a one-stop resource for
gene expression atlas in HCC, we developed a web-based data-

base HCCDB. HCCDB provides the visualization for the
results from several computational analyses, including differ-
ential expression analysis, tissue-specific and tumor-specific

expression analysis, survival analysis, and co-expression anal-
ysis. And it also provides links to third-party databases on
drug, proteomics, and literatures. Users can browse or search

these results through a simple web-based interface.
Database content and computation methods

The archived expression datasets

In the current database release, we archived 15 public HCC
gene expression datasets containing totally 3917 samples
(Table 1). For 13 microarray datasets, probe values (log2 inten-

sity) and probe annotations were extracted from raw files
downloaded from the Gene Expression Omnibus (GEO) data-
base. Multiple probes mapped to a single gene (i.e., unique

Entrez gene ID) were collapsed as their medians. For the
two remaining RNA-seq datasets, Liver Hepatocellular Carci-
noma Project of The Cancer Genome Atlas (TCGA-LIHC)

and Liver Cancer - RIKEN, JP Project from International
Cancer Genome Consortium (ICGC LIRI-JP), we took the
normalized read counts for log2 transformation. Among the

15 datasets, 12 datasets contain both tumor and the adjacent
normal samples, whereas only tumor samples are available
for the three remaining datasets. Clinical information, such
as tumor stages and survival time, was also collected if

available.
Moreover, we also integrated the expression data of 9755

tumor samples covering 35 tumor types from TCGA and

11,688 normal tissue samples covering 54 tissue types from
GTEx (v7) to comprehensively annotate the expression pat-
terns of each gene.
Identification of consistently differentially expressed genes

To identify consistently differentially expressed genes in HCC,

the 12 datasets containing both tumor and the adjacent normal
samples were used. The function t test in R was employed to
detect whether there existed significant difference in gene
expression between tumor samples and the adjacent samples

in each dataset, followed by the Benjamini–Hochberg correc-
tion [23]. Genes with expression measured in �8 datasets
and significantly differential (adjusted P < 0.001 and

log2foldchangej j> 0.6) in at least half of the datasets contain-
ing these genes were identified as consistently differentially
expressed genes.
Definition of a 4D metric for summarizing gene expression

patterns

We proposed a 4D metric based on log2 fold change (FC) to
characterize the expression patterns of each gene. With x
denoting the gene expression values in samples from a certain
resource (indicated in subscript, such as GTEx), four metrics

are defined in the following way, with positive value for high
specificity and negative value for low specificity, respectively:

1) liver-specific metric, log2FC1, quantifies the specificity of

a gene in liver in comparison with other tissues:

http://lifeome.net/database/hccdb


Table 1 The collected gene expression datasets in HCCDB

Dataset ID
No. of adjacent

tissue samples

No. of

HCC samples

No. of other normal

tissue samples
Platform Source

HCCDB1 97 100 Rosetta/Merck Human RSTA Custom

Affymetrix 1.0 microarray

GSE22058

HCCDB3 243 268 Healthy 6; Cirrhotic 40 Rosetta/Merck Human RSTA Affymetrix 1.0

microarray

GSE25097

HCCDB4 193 240 Illumina HumanHT-12 V4.0 expression

beadchip

GSE36376

HCCDB6 220 225 Affymetrix Human Genome U133A 2.0 Array GSE14520

HCCDB7 82 80 Human 6k Transcriptionally Informative

Gene Panel for DASL

GSE10143

HCCDB8 0 91 Affymetrix Human Genome U133 Plus 2.0

Array

GSE9843

HCCDB9 0 164 Illumina HumanRef-8 WG-DASL v3.0 GSE19977

HCCDB11 48 88 Illumina Human Whole-Genome DASL HT GSE46444

HCCDB12 80 81 Agilent-014850 Whole Human Genome

Microarray 4x44K G4112F

GSE54236

HCCDB13 168 228 Affymetrix Human Genome U219 Array GSE63898

HCCDB14 0 88 Illumina HumanHT-12 V4.0 expression

beadchip

GSE43619

HCCDB15 49 356 RNA-Seq TCGA-LIHC

HCCDB16 60 60 Healthy 6 Affymetrix Human Gene 1.0 ST Array GSE64041

HCCDB17 52 115 Illumina HumanHT-12 V4.0 expression

beadchip

GSE76427

HCCDB18 177 212 RNA-Seq ICGC-LIRI-JP

Total 1469 2396 Healthy 12; Cirrhotic 40 – –
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log2FC1 ¼ log2
xliver

xtissue

� �
GTEx

þ log2
xadjacent of LIHC

xadjacent

� �
TCGA

 !,
2

ð1Þ
2) deregulation metric, log2FC2, measures the degree of

deregulation of a gene in HCC in comparison with adjacent
samples:

log2FC2 ¼ log2
xHCC

xadjacent

� �
HCCDB

ð2Þ

3) tumor-specific metric, log2FC3, quantifies the specificity

of a gene in HCC in comparison with other tissues:

log2FC3 ¼ log2
xHCC

xadjacent

� �
TCGA

ð3Þ

4) HCC-specific metric, log2FC4, denotes the specificity of a
gene in HCCs compared with other tumor types:

log2FC4 ¼ log2
xHCC

xtumor

� �
TCGA

ð4Þ
Prognostic analysis

The prognostic performance of each gene was evaluated using
three datasets (HCCDB6, HCCDB15, and HCCDB18) with
overall survival time information available. HCC samples in
each dataset were classified into high-expression group and
low-expression group according to the median expression

value of each gene. Then we used log-rank test [24] to compare
the survival distribution of samples between the two groups.
Genes with adjusted P < 0.001 (Benjamini–Hochberg correc-

tion) in �1 dataset or adjusted P < 0.01 in �2 datasets were
considered as prognostic genes. These genes were tagged as
‘‘favorable genes” if their Cox coefficients were negative,

meaning the higher expression levels and the lower risk extents.
Conversely, genes were tagged as ‘‘unfavorable genes” if their
Cox coefficients were positive.

To reduce the noise of disease-irrelevant deaths, survival

time that was greater than five years was truncated to five years
and the status of the corresponding patient was set to be
‘‘alive”.

Co-expression analysis

For each gene, we computed and displayed its co-expressed

genes in HCC, adjacent tissue samples, and normal liver sam-
ples, respectively. In each dataset, the following steps were
taken. Firstly, the 10% genes with smallest expression vari-

ances were considered to be almost invariably expressed and
thus excluded in co-expression analysis. We then used the func-
tion cor.test in R to compute the Pearson correlations between
each of the remaining genes (pivot) and all the other genes and

significance was tested followed by the Benjamini–Hochberg



Figure 1 The design of HCCDB

MongoDB was used to store the data of archived HCC datasets,

GTEx, and TCGA in the format of JSON. Echarts was applied for

charting and data visualization. HCCDB provides four main

pages and serval downstream pages. The possible jumps among

HCCDB pages and the third-party links are indicated by arrows.

HCC, hepatocellular carcinoma; GTEx, Genotype-Tissue Expres-

sion; TCGA, The Cancer Genome Atlas; HPA, Human Protein
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correction. For each gene (pivot), its significantly co-expressed
genes (candidates) in a certain dataset were detected as those
with adjusted P < 0.001.

For co-expression in normal liver (GTEx liver samples), we
picked the top 20 strongest co-expressed genes for display on
the website. For co-expression in HCC/adjacent samples, we

combined multiple datasets (Table 1) to provide a robust
result. Suppose one pivot gene had a candidate gene detected
in k datasets. If k is smaller than 3, the co-expression relation-

ship would be thought to be unstable and excluded in down-
stream analysis. For pivot genes with stable co-expression
relationships present (k � 3), their candidates’ correlation val-
ues were combined with Fisher’s z-transformation, if the can-

didate was detected in at least one third of k datasets:

zi ¼ 1

2
ln

1þ ri
1� ri

� �
¼ arctanh rið Þ ð5Þ

zmeta ¼
Pk

i¼1 ni � 3ð Þ � ziPk
i¼1 ni � 3ð Þ ð6Þ

rmeta ¼ tanhðzmetaÞ ð7Þ
where i is the index of dataset and ni is the sample size. In this

way, we could get the consistently co-expressed genes for each
pivot gene in multiple HCC or adjacent datasets. Similarly,
only the top 20 strongest co-expressed genes are displayed on

the website.
Atlas; TTD, Therapeutic Target Database; GEO, Gene Expres-

sion Omnibus; Up-list, up-regulated gene list; Down-list, down-

regulated gene list; Co-genes, co-expressed genes.

Implementation and results

The database overall design

To facilitate a convenient and user-friendly browsing and
searching, HCCDB provides both graphical and text-based
interfaces. The graphical interface is provided on the database

home page by clicking on a certain gene in the differential
expression landscape. For the text-based interface, HCCDB
offers two search modes: single gene search and multi-gene

search. In the single gene search mode, users can query a par-
ticular gene with Entrez ID or official gene symbol. All results
about the queried gene will be retrieved in seconds, including
summary information, expression patterns, survival analysis,

and co-expression analysis. As for the multi-gene search mode,
summary information of the queried genes will be returned
after submitting their symbols or Entrez IDs split by some

common separators. The whole design of the database is
shown in Figure 1, with the possible jumps among web pages
illustrated.

HCCDB is freely available to all users without login
requirement. The server is driven by the framework of
Linux + Apache + MongoDB+ PHP. ECharts (http://
echarts.baidu.com/), a third-party JavaScript library, is used

for charting and data visualization. The design of user inter-
face is optimized by Bootstrap (http://getbootstrap.com/), a
third-party HTML5 library.
The home page and overall analysis results

The home page mainly exhibits the differential expression

landscape of HCC, provides search interfaces and links to
some summarized results. In total, we identified 1259 consis-
tently differentially expressed genes, including 557 up-
regulated and 702 down-regulated genes. By mapping these

genes onto the respective chromosomes, a differential expres-
sion landscape of HCC is depicted at the genome scale
(Figure 2A).

There are some interesting observations. Among 138 con-

sistently differentially expressed genes on arm 1q, 83% (114
genes) was up-regulated genes. While among 62 consistently
differentially expressed genes on arm 4q, 76% (47 genes) was

down-regulated genes. This observation coincide with the fact
that 1q and 4q exhibit the most frequently detected gain and
loss of chromosomal materials, respectively [25,26]. Therefore,

such a global view provides potential evidence that genomic
events, such as CNV, could be closely related to expression
alterations.

Analyzing the 4D metric values of all genes could also lead
to some inspiring results. The relationship between liver speci-
ficity (log2FC1) and deregulation degree (log2FC2) is shown in
Figure 2B. Liver-specific genes (log2FC1 > 0) significantly fall

into the group of HCC down-regulated (log2FC2 < 0) genes

(P < 2:2� 10�16;FisherexactÞ, suggesting the dedifferentia-
tion in HCC. This is also consistent with existing observations
in pan-cancer analysis [27,28]. Three genes with expression sig-

nificantly up-regulated in HCC, including GPC3, SPINK1,
and AKR1B10, are highlighted in Figure 2B. GPC3, which
encodes clypican-3, an oncofetal proteoglycan anchored to

the cell membrane, is not detected in normal liver and benign
liver lesions [29], but overexpressed in HCCs at both the gene
and protein levels [30]. It has been demonstrated that GPC3

http://echarts.baidu.com/
http://echarts.baidu.com/
http://getbootstrap.com/


Figure 2 Differential analysis results of HCC

A. Differential expression landscape of HCC. The consistent expression up-regulation and down-regulation of genes on the corresponding

genomic locations are shown in red and blue, respectively. The bar plot on the right shows the number of up-regulated (red) and down-

regulated (blue) genes on each chromosome. The number and percentage of the up-regulated or down-regulated genes located on a

particular chromosome can be shown on the screen when the mouse hovers over the respective bar. B. Relationship between liver-specific

metric (log2FC1) and deregulation metric (log2FC2) in HCC.
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promotes HCC growth and metastasis by activating WNT/b-
catenin and other signaling pathways [31,32]. And GPC3 is

used as a diagnostic biomarker and immunotherapeutic target
[29,30]. SPINK1, which encodes serine peptidase inhibitor,
Kazal type 1, has been found to be table to differentiate

between a well-differentiated HCC and a high-grade dysplastic
nodule [33,34]. AKR1B10, which encodes aldo–keto reductase
family 1 member B10, may play an important role in liver car-

cinogenesis and is a promising biomarker to differentiate
HCCs from benign liver lesions [35]. The three genes with clin-
ical value can be highlighted as shown in Figure 2B, suggesting
the effectiveness and utility of the defined metric to filter HCC

biomarkers for follow-up experiments.

The result page for single gene search

The result page for single gene search has four major views: (1)
summary view; (2) expression pattern view; (3) survival view;

and (4) co-expression view. Taking GPC3 as an example, we
showed the detailed design of gene page in Figure 3.

The summary view provides an overview of general infor-

mation and computation results of the queried gene. The gen-
eral information covers Entrez ID, official gene symbol, and so
on. The computation results include the prognostic perfor-

mance and the consistency of differential expression in
HCCDB. The third-party database links, such as drug, pro-
teomics, and literature mining results, are also provided in this

part. The 4D metric summarizes gene expression with a radar
chart, with red and blue axis labels representing the positive
and negative metric values, respectively. We exemplify the view
using GPC3, which is not a liver-specific gene (log2FC1 =

�1.7). While it was highly up-regulated in HCC compared
with adjacent samples (log2FC2 = 3.99), GPC3 was also highly
expressed in HCC compared with other normal tissues

(log2FC3 = 3.47) and other kinds of tumors (log2FC4 = 5.22).
The expression pattern view displays the expression patterns

of a specific gene in the archived HCC datasets, tissue samples

in GTEx, and tumor samples in TCGA. Users can view the
differential gene expression in HCCs compared with adjacent
samples by both table and graph visualization. The dataset
labels are colored (red or blue) to indicate whether the gene

is identified to be significantly up-regulated or down-
regulated in the corresponding dataset. In GTEx and TCGA
graphs, liver-related data (liver tissue and LIHC) are also high-

lighted with distinct colors. Users can switch between scatter
and boxplot to view the gene expression plot. The expression
pattern view corresponds to the 4D metric, which is displayed

in numeric form in radar chart of gene summary view.
The survival view shows the prognostic performance of the

queried gene (GPC3) in three datasets with the overall survival
time information available, that is, HCCDB6, HCCDB15, and

HCCDB18. Patients are classified into two groups based on
the expression levels of GPC3 in HCC and adjacent tissue sam-
ples. The Kaplan–Meier survival curves are shown for the two

groups of patients, with P values computed by log-rank test
shown above the plots, which could be clicked to zoom in
and saved.

The co-expression view is designed to display three kinds of
co-expression relationships of the queried gene: meta co-
expression in HCCs, meta co-expression in adjacent samples,
and co-expression in GTEx liver samples. In Figure 3, meta

co-expression network in HCCs of GPC3 is shown as an exam-
ple. Notably, AFP, a well-known stem marker [9], is co-
expressed with GPC3 in HCCs.

Perspectives and concluding remarks

Genome-wide gene expression data are valuable resources for
studying the molecular mechanisms and identifying biomark-

ers of cancers. Given the high heterogeneity nature of HCC,
identifying consistent patterns from multiple gene expression
datasets would be beneficial for identifying reliable biomarkers

of HCC. First of all, we detected consistently differentially
expressed genes across multiple HCC expression datasets to
provide a global differential landscape. Integrating data from

GTEx and TCGA, we defined a 4D metric to comprehensively
summarize the gene expression pattern. Taking GPC3 as
example, we show the utility of this metric and the idea of



Figure 3 The result page for single gene search

This page consists of four views: (1) the summary view showing the gene information and expression pattern summarized by the 4D metric;

(2) the expression pattern view displaying the expression patterns in archived HCC datasets, tissue samples in GTEx, and tumor samples in

TCGA; (3) the survival view showing the gene’s prognostic performance in HCC for patients with high (above the median) and low (below

the median) expression levels; (4) the co-expression view displaying the consistently co-expressed genes of the queried one in HCCs,

adjacent samples, and normal liver tissues.
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integrating multiple-source data. Coupled with the commonly
used third-party database links and convenient download links

of computational results, HCCDB provides a one-stop online
resource for exploring HCC gene expression with user-friendly
interfaces.

To better serve the research community of HCC, we will
continue to collect related data and update HCCDB regularly
in the future. Our next plan is to obtain more public multi-

omics data on HCC, such as CNV [36], mutation [37], or
DNA methylation [38], mine relationships between expression
patterns and genomic events, and provide quick query and
graphical presentation about these relationships. We believe

HCCDB could serve as a very useful public resource for both
bench scientists and computational biologists, and contribute
to clinical and translational studies.
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