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Abstract In mammalian cells, transcribed enhancers (TrEns) play important roles in the initiation

of gene expression and maintenance of gene expression levels in a spatiotemporal manner. One of

the most challenging questions is how the genomic characteristics of enhancers relate to enhancer

activities. To date, only a limited number of enhancer sequence characteristics have been investi-

gated, leaving space for exploring the enhancers’ DNA code in a more systematic way. To address

this problem, we developed a novel computational framework, Transcribed Enhancer Landscape

Search (TELS), aimed at identifying predictive cell type/tissue-specific motif signatures of TrEns.

As a case study, we used TELS to compile a comprehensive catalog of motif signatures for all

known TrEns identified by the FANTOM5 consortium across 112 human primary cells and tissues.

Our results confirm that combinations of different short motifs characterize in an optimized manner

cell type/tissue-specific TrEns. Our study is the first to report combinations of motifs that maximize

classification performance of TrEns exclusively transcribed in one cell type/tissue from TrEns exclu-

sively transcribed in different cell types/tissues. Moreover, we also report 31 motif signatures pre-

dictive of enhancers’ broad activity. TELS codes and material are publicly available at http://

www.cbrc.kaust.edu.sa/TELS.
Introduction

In mammalian cells, spatial and temporal activation of gene

transcription and maintenance of expression levels is coordi-
nated (mainly) by interactions between DNA regulatory
nces and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gpb.2018.05.003&domain=pdf
http://www.cbrc.kaust.edu.sa/TELS
http://www.cbrc.kaust.edu.sa/TELS
mailto:vladimir.bajic@kaust.edu.sa
https://doi.org/10.1016/j.gpb.2018.05.003
http://www.sciencedirect.com
https://doi.org/10.1016/j.gpb.2018.05.003
http://creativecommons.org/licenses/by/4.0/


Kleftogiannis D et al /Motif Signatures of Transcribed Enhancers 333
elements, the most prominent being promoters and enhancers
[1]. Promoters surround the transcription start sites (TSSs) of
genes and represent the class of proximal regulatory elements.

Specific regions in promoters are used as binding sites respon-
sible for recruiting and anchoring the transcriptional machin-
ery [2]. On the other hand, enhancers, frequently called distal

regulatory elements, are positioned a few thousands or many
thousands of base pairs (bp) downstream or upstream of the
TSSs of genes. Typically, enhancers activate their target genes

via physical interactions with transcription factors (TFs), as
well as co-activators, and/or via chromatin remodeling pro-
cesses [3,4]. Results obtained from the cap analysis of gene
expression (CAGE) show that transcription in enhancers medi-

ated by RNA polymerase II (RNAPII) occurs on a genome-
wide scale [5]. Enhancers’ transcription produces enhancer-
derived RNAs (eRNAs), a class of non-coding RNAs whose

functions are unclear [6,7]. It is interesting to note that it
may be difficult to clearly separate enhancers from promoters,
based on the transcriptional activation similarity, since both

categories of DNA regulatory regions act as promoters but
generate different classes of transcripts [8–10].

Several enhancer identification methods, covering both

experimental and computational approaches, have been sub-
ject of review articles [11,12]. Using the available enhancer-
related information [13,14], a number of studies linked varia-
tions in enhancer sequences to disease phenotypes, and devel-

opment/progression of cancer [15–19]. Thus, deciphering the
genomic characteristics of enhancers may help to understand
better enhancers’ functional roles.

Up to now, there are several approaches to analyze enhan-
cers’ DNA characteristics and associate sequence properties to
enhancer activities [20–22]. However, only a limited number of

cases, in terms of studied enhancer sequences, sequence motifs
(e.g., kmers of length 6–8 bp), tissues, and organisms (e.g.,
mice or Drosophila), have previously been examined or vali-

dated experimentally [23] (i.e., by massive parallel reporter
assays; MPRAs), leaving space for further investigations.

With all of the aforementioned issues in mind, we present
the Transcribed Enhancer Landscape Search (TELS), a novel

bioinformatics framework that applies logistic regression
(LR) coupled with a dimensionality reduction algorithm,
aimed at identifying systematically the most informative com-

binations of short sequence motifs of TrEns in the human gen-
ome. As a case study, we applied TELS to the atlas of CAGE-
defined TrEns that covers 112 human primary cells and tissues

[5].
As importantly, TELS contributes (1) comprehensive

exploration of the genomic landscape of human TrEns using
all available experimentally-verified enhancers by the

FANTOM5 consortium; (2) identification of novel combina-
tions of short sequence motifs (equally denoted as DNA signa-
tures or motif signatures) in TrEn sequences that are

characteristic and predictive of TrEns in a cell type/tissue-
specificmanner; (3) the identifiedmotifs allowing formore accu-
rate discrimination of TrEns compared to motif sets reported by

other studies; and (4) the identified motifs performing equally
well on the category of chromatin-defined enhancers identified
by the Encyclopedia ofDNAElements (ENCODE) consortium.

We report for the first time the combinations of short
motifs that discriminate successfully FANTOM5 enhancers
expressed and transcribed exclusively in a cell type/tissue-
specific manner from enhancers expressed and transcribed
exclusively in multiple primary cells or tissues. Our results
demonstrate that the proposed framework leads to the discov-
ery of informative motif signatures of TrEn sequences. Thus, it

opens possibilities for analyzing systematically the genomic
landscape of human TrEns and it can serve as a paradigm
for similar studies in other mammals.

Methods

Data availability

The primary datasets included in this study are derived from

the FANTOM5 atlas of TrEns [5]. Using a large number of
primary cells and tissues, Andersson et al. identified bi-
directional TrEns via CAGE experiments. All enhancer sam-

ples were obtained from the atlas webpage (http://enhancer.
binf.ku.dk/presets/) accessed in November 2016. Details about
the TrEn identification pipeline from CAGE and other infor-

mation about the primary data have been described previously
[5].

For further validation of our findings, we use the list of

‘strong’ enhancers reported by the ENCODE integrative anno-
tation [24]. Details about the ‘strong’ enhancer identification
process have been described previously [24]. From the cell-
line-specific lists of ‘strong’ enhancers, we consider only the

sequences that do not overlap with CAGE-defined enhancers
from the FANTOM5 TrEn atlas [5]. This guarantees that
the ENCODE data we used for testing (i.e., positive class)

are different from the FANTOM5 data that we used for train-
ing the models and identifying motif signatures.

All TELS source codes for reproducing the results are pub-

licly available at http://www.cbrc.kaust.edu.sa/TELS/ under
an Educational Community Licence (ECL-2.0).

Definition of positive and negative datasets for motif selection

To identify motif signatures of TrEns, we used the following
three datasets that are considered ‘positive’ data for training,
including ‘all facets’ enhancers (http://enhancer.binf.ku.dk/

presets/facet_expressed_enhancers.tgz), the ‘robust set’ enhan-
cers (http://enhancer.binf.ku.dk/presets/robust_enhancers.
bed), and the ‘exclusively transcribed’ enhancers. (1) The data-

set for ‘all facets’ enhancers contains enhancers transcribed in
all FANTOM5 facets from 112 cell types and tissues (i.e., 112
TrEn sets), covering 197,373 genomic sequences including

duplicates since some TrEns are expressed and transcribed in
more than one cell type/tissue. (2) The dataset for the ‘robust
set’ enhancers contains the enhancers transcribed at a signifi-
cant expression level in at least one FANTOM5 primary

cell/tissue, covering 38,554 genomic sequences. (3) We denoted
as exclusively transcribed enhancers those TrEns that are tran-
scribed in only one FANTOM5 cell type/tissue. We generate a

list of exclusively transcribed enhancers for every cell type/
tissue from the ‘all facets’ dataset described above. Basophil
and granulocyte cell types have no exclusively transcribed

enhancers based on the data we used. We also exclude from
‘exclusively transcribed’ enhancer dataset cell types/tissues with
less than five exclusively transcribed enhancers. This results in 96

out of 112 potential datasets (one set per cell type/tissue).
Generating ‘negative’ data for the previously described

‘positive’ datasets without experimental validation (i.e.,

http://enhancer.binf.ku.dk/presets/
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http://enhancer.binf.ku.dk/presets/robust_enhancers.bed
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MPRA or STARR-seq) is a challenging task, since it is unclear
how to infer computationally whether or not a particular
DNA sequence has enhancer activity in a cell type or tissue.

Thus, in the absence of a ‘gold-standard’ negative baseline
set, any attempt for generating negative control dataset can
be criticized as not being optimal. To mitigate this problem,

we considered two alternative approaches: (1) based on syn-
thetically generated sequences; and (2) using TrEns expressed
in cell types/tissues different than the one of interest.

The rationale behind approach (1) derives from studies
showing that mutations in enhancer sequences disrupt the
enhancer’s activity [12,16,18,19,23]. Thus, for every TrEn in
the ‘all facets’ dataset as well as for the ‘robust set’, we intro-

duce ‘noise’ by mutating randomly every TrEn sequence.
Utilization of negative data ‘corrupted’ by synthetically gener-
ated noise (in our case it is a random combination of single

nucleotide substitutions), is a common practice in machine
learning with many applications in image recognition [25]. This
approach gives us a more generic representation of the non-

enhancer class, as our aim is to capture properties of enhancers
that can differentiate enhancers from other biological
sequences with non-enhancer activity. Due to the random nat-

ure of mutations introduced during the negative dataset gener-
ation process, our derived results may not be optimal but
optimized, as we do not know what the ‘best’ negative dataset
for this problem is. We generate in total 197,373 negative con-

trols across 112 cell types/tissues named as ‘all facets random
controls’ and 38,554 negative controls named as ‘robust set
random control’, respectively. Note that throughout the previ-

ous data generation process, we make sure that none of the
randomly generated sequences belongs to the superset of
TrEns identified by FANTOM5. For approach (2), we follow

the ‘one vs. all’ paradigm and for every cell type/tissue-specific
‘exclusively transcribed’ enhancer set, we generate a negative
set that contains exclusively transcribed enhancers from all

other cell types/tissues but not from the one of interest. This
process resulted in 96 negative sets and such dataset is denoted
as ‘negative exclusively transcribed’.

DNA sequence encoding

To encode the input datasets for further use by TELS, we
transform all ‘positive’ and ‘negative’ data samples into

numerical vectors. In TELS, we focus on small sequence
motifs. In this way, we consider the intrinsic DNA properties
of TrEns and we complement similar studies that focus on

known motifs usually of length of 6 or 10 bp. We also note that
TELS does not require prior knowledge of TF binding sites
(TFBSs) based on ChIP-seq or other type of input
information.

The deployed vectors contain 346 variables (equally
denoted in the current study as sequence motifs, motifs, or fea-
tures) that describe the enhancers’ genomic specificity. These

variables are grouped into five categories: (1) four single
nucleotide frequencies; (2) six aggregate frequencies of two
nucleotides (e.g., A + C); (3) 16 dinucleotide frequencies; (4)

64 trinucleotide frequencies; and (5) 256 tetranucleotide fre-
quencies. To avoid any bias introduced by the length of the
sequences, we normalize all values of the vectors by the

sequence length.
TELS implementation

TELS works in two phases. In phase 1, TELS identifies candi-
date combinations of sequence motifs that characterize the
class of interest. In phase 2, for every candidate combination

of motifs, TELS assesses its significance by measuring the clas-
sification performance for discriminating ‘positive’ from ‘neg-
ative’ data. A simple flowchart of the developed pipeline is
presented in Figure 1. The objective of TELS is to select the

combination of motifs that maximizes separation between
‘positive’ and ‘negative’ data. Typically, determining the rela-
tive importance of a set of predictor variables via computa-

tional techniques may be used to associate differences
between the considered data classes. Such information can
be further utilized to identify sequence characteristics that

are predictive of TrEn cell type/tissue-specific activities.

Phase 1: Feature selection

To identify candidate combinations of motifs, TELS uses fil-

tering feature selection (FS) techniques. The FS problem in
bioinformatics is very well studied [26–34] and it is well docu-
mented that FS is a strongly ‘data-dependent’ process. Among

the proposed FS methods, heuristic approaches have the
advantage of being able to exploit more combinations of fea-
tures. However, heuristic approaches (e.g., based on genetic
algorithms) introduce higher algorithmic complexity and expo-

nential computational cost in contrast to filtering methods that
run fast and thus heuristic approaches are more suitable for
problems in higher dimensions. TELS first ranks the 346 indi-

vidual variables using the Gini-index based FS. We decided to
use Gini-index after comparison with two other state-of-the-
art algorithms for FS, namely minimum redundancy maxi-

mum relevance criterion (mRMR) [35] and Fisher’s test-
based FS [34] (Figure S1). We used the Gini-index implemen-
tation from the feature selection toolbox (FEAST) in Matlab

R2014b. More details about Gini-index FS can be found in
the subsection named ‘Gini-based feature selection’ (File S1).
As importantly, features ranked by filtering methods are con-
sidered ‘independently’, which may lead to suboptimal classifi-

cation performance. In other words, from a pool of 346 ranked
variables based on their significance assessed by the Gini-
index, it is not clear which combination characterizes in an

optimized manner the class of interest. To mitigate this prob-
lem, we applied in phase 2 a greedy approach and assessed the
significance of different sets of the ranked features (starting

with the top 1, top 2, top 3 and up to top K, where K is
346), which is the total number of variables we used by mea-
suring the classification performance of every candidate
combination.

Phase 2: Classification

The objective of the classification step is to select the combina-

tion of motifs that minimizes the classification error based on
the Matthews correlation coefficient (MCC). For this task,
TELS utilizes the LR classifier. LR is a simple linear classifica-
tion method, which runs fast and avoids extensive optimiza-

tion of model parameters that frequently leads to poor
performance on unseen data [36]. The implementation is made
in Matlab R2014b using built-in functions for LR (‘glmfit’
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function with the default setting without regularization). In
one classification run with LR and one candidate motif set,

we randomly split the ‘positive’ and ‘negative’ data into testing
and training sets. We use 20% of the total size of ‘positive’ and
20% of the total size of ‘negative’ samples for training,

whereas the remaining 80% from each set is kept for testing.
We decided to use a much smaller fraction (i.e., 20%) of the
available data for a training to achieve better generalization

capabilities in unseen cases. To account for the potential biases
introduced by the selection of negative data, we repeat the
training process for 300 runs when for each run the aforemen-
tioned random split of data is performed. Consequently, each

candidate combination of top-ranked motif sets (i.e., 346), is
evaluated 300 times, and characterized by the average classifi-
cation performance of multiple independent runs. This way

guarantees an equitable selection of combinations of motifs
that maximizes classification performance. We consider the
geometric mean of sensitivity and specificity (GM), positive

predictive value (PPV), MCC, area under receiver operating
characteristic curve (AUROC), and area under precision–
recall curve (AUPRC) as representative classification perfor-
mance metrics. All performance metric formulas can be found

in the subsection named ‘Classification performance metrics
(File S1)’.
Results and discussion

Analyzing all FANTOM5 cell types and tissues

In this subsection we focus on the results of the analysis of

FANTOM5 TrEns from all available cell types/tissues, aimed
to compile an atlas of motif sets that discriminate effectively
TrEns. To do this, we analysed the FANTOM5 dataset called
‘all facets’ and the negative control dataset called ‘all facets ran-

dom controls’ using TELS. Our analysis shows that the combi-
nations of motifs identified using TELS discriminate effectively
TrEns across 112 cell types/tissues, with an average classifica-

tion performance of 85.94% for PPV, 86.06% for GM
(Figure S2), 0.934 for AUROC, and 0.926 for AUPRC.
Figure S3 provides all AUROC and AUPRC values for the cell

types/tissues included in the dataset. In Figure S4, we show as an
example ROC and PRC for 49 out of 112 cell types/tissues from
FANTOM5. The remaining ROC and PR curves are available
online in our web repository (http://www.cbrc.kaust.edu.sa/

TELS/).
Figure 2 shows the number of selected motifs ranging from

204 to 4, which correspond to themaximumandminimumnum-

bers of motifs that discriminate efficiently cell/tissue-specific

http://www.cbrc.kaust.edu.sa/TELS/
http://www.cbrc.kaust.edu.sa/TELS/
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cell types/tissues from the ‘all-facets’ dataset from Figure 2. ROC,

receiver operating characteristic; PR, precision–recall.
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TrEns from the random control data, a proxy of non-enhancer
activity. At a threshold of 80% of PPV, we observed that the

identifiedmotif signatures classify cell type/tissue-specific TrEns
with high accuracy in 95% of cases (107 out of 112 cell types/
tissues). This suggests that the identified combinations of

sequencemotifs capture a great portion of the sequence specifici-
ties required inTrEns. Figure S5 shows the detailed atlas of iden-
tified motifs across 112 cell types/tissues. It is evident that the
identified combinations of motifs do not overlap significantly

across different cell types/tissues. However, some motifs are
almost always selected across the available cell types/tissues.

To investigate further the identified sets of motif signatures,

in the supplementary subsection named ‘Analysis of motif sig-
natures across tissues that belong to different developmental
stages’ (File S1), we provide a case study using nine randomly

selected tissues that belong to three different developmental
stages, according to the Embryonic Development & Stem Cell
Compendium (https://discovery.lifemapsc.com/in-vivo-devel-

opment), namely ectoderm (brain, spinal cord, and eye), meso-
derm (kidney, heart, and spleen), and endoderm (lung, liver,
and pancreas). Figure S6 presents the similarity of informative
motifs (Figure S6A) and TrEns (Figure S6B) sequences across

different developmental stages.
All observations from Figures 2, S4–S6 suggest that TrEns

display cell type/tissue specific motif signatures that are suc-

cessfully identified by TELS. Overall, these results support
the hypothesis that specific genomic characteristics enable
TrEns to operate in a highly cell type/tissue-specific manner

and for this reason the identified motifs vary across different
cell types/tissues.

Analyzing TrEns expressed in at least one FANTOM5 cell type

or tissue

In this subsection we focus on the analysis of TrEns expressed
in at least one FANTOM5 cell type or tissue. Our goal is to
identify motif signatures that allows us to discriminate the
FANTOM5 ‘robust set’ TrEns from the ‘robust set of random
control’ dataset, with maximized classification performance.

Our results across 300 experiments show that the motif sets
identified by TELS are able to identify TrEns from the ‘robust
set’ with an average PPV and GM of 79.70% and 80.47%,

respectively.
Next, we compare the results obtained using the ‘robust set’

of TrEns with the results achieved by analyzing the ‘all facets’

dataset (Figure S5). In particular, by aggregating the motif sig-
natures per cell type/tissue from the ‘all facets’ dataset, we
observe that specific motifs are selected with high frequency
across 112 cell types/tissues. We then plotted the set of 31

motifs obtained from the ‘robust set’ and considered as ‘best’
according to the selection frequency of every individual motif
across 112 cell types/tissues from the ‘all facets’ dataset. As a

result, we observed that six out of the 31 motifs are selected
more than 80% of times across different cell types/tissues.
Figure 3 shows the ROC and PR curves, respectively, obtained

using the combinations of 31 motifs (Figure 3A and B), as well

https://discovery.lifemapsc.com/in-vivo-development
https://discovery.lifemapsc.com/in-vivo-development
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as their corresponding selection frequency of these motifs
(Figure 3C). Overall, using this motif set we report an average
AUROC of 0.854 ± 0.009 and AUPRC of 0.67 ± 0.01 across

300 experiments.
Notably, some motifs, namely CG, CGA, TCG, CGT,

ACG, and TA, almost always help maximizing discrimination

performance (Figure 3C). We also observed that two di-
nucleotides, CG and TA, are very frequent in the context of
other identified kmers. Interestingly, this observation has been

explored experimentally in Drosophila [20] and reported by
another independent study [5]. Among the aforementioned
31 motifs, 10 are tri-nucleotides rich in CG and 19 are tetra-
nucleotides also rich in CG. Different from our approach, Col-

bran et al. [22] used different sequence characteristics coupled
with support vector machines (SVM) model to identify infor-
mative sequence patterns that distinguish ‘broadly active

enhancers’ from random or ‘context-specific’ background.
Note that the ‘broadly active enhancers’ analyzed in [22] cov-
ered 1961 FANTOM5 enhancer sequences selected based on

their expression levels. The sequence patterns we identified
by TELS were derived from the complete FANTOM5 ‘robust
set’ of TrEns that contains 38,554 enhancer sequences.
Analyzing TrEns expressed only in single FANTOM5 cell types

or tissues

The hypothesis we investigate in this subsection is whether or

not FANTOM5 enhancers expressed and transcribed exclu-
sively in one cell type/tissue can be distinguished based on their
sequence characteristics, from TrEns expressed exclusively in

different cell types/tissues. To explore this hypothesis, we
applied TELS to identify motif signatures that can discrimi-
nate effectively the TrEns of the FANTOM5 ‘exclusively tran-

scribed’ dataset, from those of the corresponding ‘negative
exclusively transcribed’ datasets. Due to the insufficient num-
ber of training samples, 16 out of 112 cell types/tissues were

excluded from the analysis. The classification performance
achieved across the remaining 96 cell types/tissues is presented
in Figures S7 and S8. Our results show, that ‘exclusively tran-
scribed’ enhancers can be distinguished from ‘negative

exclusively transcribed’ set with an average PPV and GM of
65.23% ± 0.87 and 65.02% ± 0.68, respectively, with PPV
>80% in some cell types/tissues (�25 cases). However, PPV

is about 60% in �40 cell types/tissues, indicating that in
addition to the identified motif signatures, other factors
have strong influence on cell type/tissue-specific TrEn

activation.

Performance comparison with existing approaches using

FANTOM5 data

In this subsection we assess TELS performance over existing
approaches. To do so, we compare the discriminative capabil-
ities of the motif set identified by TELS, with motif sets

reported by other studies. In this way, one could assess how
good are the motifs selected by TELS. These other motif sets
include (1) a set of 20 informative 6-mers that were used by lin-

ear SVM to distinguish chromatin-defined enhancers from ran-
dom DNA sequences [21]; (2) motifs CA and GA, as well as
the AP-1 binding site motif, being among the most discrimina-

tive for enhancer activation as derived from self-transcribing
active regulatory region sequencing (STARR-seq) experiments
in Drosophila [20]; and (3) a set of 351 sequence characteristics
used as input to a complex ensemble model of 1000 SVMs in

dragon ensemble enhancer predictor (DEEP) for prediction
of both transcribed and chromatin-defined enhancers on a
genome-wide scale [37].

Comparing motif signatures identified by different compu-
tational approaches is not straightforward for several reasons.
First, the considered computational methods are trained and

tested on different datasets. For example, Lee et al. used
enhancers defined by ChIP-seq [21], whereas Yanez-Cuna
et al. used a quantitative experimental approach to measure
enhancers’ activity in Drosophila [20]. Second, there are differ-

ences in the selection of machine learning models and tuning of
model parameters (e.g., C parameter for SVM or number of
SVMs in the ensemble).

Since it is not feasible to re-train all models included in the
comparison on FANTOM5 data, we used the reported motifs
from [20,21,37], and tested the classification performances

using FANTOM5 data. To make the comparison more fair,
we focus on two classifiers, the K-nearest neighbor (KNN)
and bagged decision trees (BDT), not used in our study or

by the methods we compare with, for training models and
selecting features. Thus, our evaluation provides a more objec-
tive picture of the generalization capabilities of different motif
sets. KNN and BDT are implemented in Matlab and opti-

mized using different sets of parameters, namely, the values
for K were selected to be 3, 4, 5, 6, 7, 8, or 20 for KNN, while
the values for B were selected to be 20, 30, 40, 50, 60, 70, or 150

for BDT. The best set of parameters in terms of the GM clas-
sification performance was selected based on the results of the
fine-tuning experimentation for KNN and BDT (i.e., 8 neigh-

bors provide better results for KNN and 150 trees for BDT for
all methods) (Figure S9). To assess the classification perfor-
mance for all sets of motifs, we repeat the training and testing

process 100 times using the best set of parameters. In every
individual run we split the data (i.e., enhancers and non-
enhancers) randomly into training (60%) and testing (40%)
sets. Please note that we used here different splitting of training

and testing sets for performance assessment (compared to the
20% training and 80% testing we used before for motif
identification).

As shown in Figure 4, the set of 31 motifs identified by
TELS discriminates much more accurately the ‘robust set’ of
TrEn compared to motif sets used by other studies. Since the

differences in the performance between TELS and DEEP using
the BDT classifier appear marginal, we applied the Vargha and
Delaney statistical test to quantify practically those small dif-
ferences in performance [38]. TELS always appears to perform

better than DEEP with GM 84.34%± 0.32 and PPV 85.05%
± 0.37. The superiority of TELS in terms of performance is
consistent using two different classification algorithms. In fact,

the results presented here indicate that the motif signatures
reported by TELS are very effective in recognition of FAN-
TOM5 enhancers defined by CAGE experiments. It should

be noted that, the major advantage of TELS over DEEP is
the great model simplification (i.e., DEEP is a complex ensem-
ble model). The number of features used by TELS is 31, while

the number of features used by DEEP is 351 and thus �11.3
times larger.

From the technical point of view, TELS achieves comparable
classification performance using three independent classification
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Figure 4 Classification performance of motif sets identified by different methods on FANTOM5 TrEns

Shown in the plots is the classification performance using motif signatures identified by TELS (A), DEEP [37] (B), Lee et al. [21] (C), and

Yanez-Cuna et al. [20] (D), respectively. For each method, the classification performance (in %) in terms of GM and PPV was evaluated

using two classification algorithms BDT and KNN. BDT, bagged decision trees; KNN, k-nearest neighbors; PPV, positive predictive

value; GM, geometric mean of sensitivity and specificity.
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methods namely LR, BDT, and KNN. This indicates that our

findings are not biased to one particular classification model,
although we used LR during the motif selection. Moreover,
our results indicate that the classification algorithm used for

assessing the motifs’ importance results in no bias in the motif
selection process.

Performance comparison with existing approaches using

ENCODE data

To assess more thoroughly TELS performance on independent
data, we then test the discriminative capabilities of the motif

signatures identified by TELS on chromatin-defined enhancers
reported by ENCODE [24]. With the ENCODE enhancer
datasets, we also evaluate the discrimination capabilities of

the sets of motifs identified by DEEP [37], Lee et al. [21],
and Yanez-Cuna et al. [20]. This comparison analysis provides
important insights into the robustness of the developed frame-
work and the generalization capabilities of the identified motifs

using completely independent classifiers tested on unseen data.
To do so, we utilize all chromatin-defined ENCODE enhan-

cers that do not overlap with the CAGE-defined enhancers

from the FANTOM5 atlas [5]. As input variables, TELS was
tested using the set of 31 motif signatures derived from the ‘ro-

bust set’ of TrEns, whereas DEEP, Lee et al., and Yanez-Cuna
et al. methods were tested using their original motif signatures.
For classification, we used KNN and BDT algorithms under

the best setting of parameters based on our fine-tuning experi-
mentation. To assess the classification performance, we mea-
sure the GM in 100 runs, where in each run we split the data
randomly into training (60%) and testing (40%) sets.

Our results demonstrate that the set of 31 motif signatures
identified by TELS is more effective than the motif signatures
identified by other methods when tested on the set of

chromatin-defined enhancers from ENCODE (Figure 5). Our
findings also indicate that TELS reveals DNA sequence char-
acteristic of TrEns that are common to chromatin-defined

enhancers, and thus similar sequence motifs are equally predic-
tive of chromatin-defined (ENCODE) and of transcribed
(FANTOM5) enhancers. Biologically, our findings might also
indicate that many of the ‘strong’ enhancers defined by ChIP-

seq are transcribed and/or that there are common DNA
sequence characteristics for all poised and active enhancers
[5,15]. More importantly, the results using ENOCDE data

re-confirm that TELS can be used to decipher effectively motif
signatures of enhancers compared to existing approaches.



Figure 5 Classification performance of motif sets identified by different methods on chromatin-defined enhancers obtained from ENCODE

The classification performance (%) presented in the plots is measured in terms of GM across different cell lines from ENCODE as shown

in the x-axis. Classification performance using motifs identified by TELS was evaluated using two classification algorithms BDT (A) and

KNN (B), respectively. Classification performance using motifs identified by DEEP [37] was evaluated using two classification algorithms

BDT (C) and KNN (D), respectively. Classification performance using motifs identified by Lee et al. [21] was evaluated using two

classification algorithms BDT (E) and KNN (F), respectively. Classification performance using motifs identified by Yanez-Cuna et al. [20]

was evaluated using two classification algorithms BDT (G) and KNN (H), respectively. The classification performance (%) presented in

the y-axis is measured in terms of GM across different cell-lines from ENCODE as shown in the x-axis. ENCODE, Encyclopedia of DNA

Elements; hESC, human embryonic stem cell; HUVEC, human umbilical vein endothelial cell.

Kleftogiannis D et al /Motif Signatures of Transcribed Enhancers 339



340 Genomics Proteomics Bioinformatics 16 (2018) 332–341
Conclusion

In this study, we developed TELS, a novel machine learning
framework for identifying predictive motif signatures of

TrEns. First we applied TELS to CAGE-defined enhancers
from FANTOM5. This allows us to compile a comprehensive
catalog of motif signatures from different cell types/tissues.

The use of reported motif signatures as presented in our study
results in models with improved capability of discrimination of
TrEns in comparison with models that use other existing motif
sets determined for the same purpose. In addition, our study is

the first one to report combinations of motifs that maximize
classification performance of TrEns that are exclusively tran-
scribed in one cell type/tissue from those that are exclusively

transcribed in all other cell types/tissues. Moreover, by analyz-
ing the so-called ‘robust set’ of TrEns, our study identified 31
frequently selected motifs predictive of TrEn broad activity. As

an additional validation step, we show that the TELS-
identified motif signatures can also discriminate with high clas-
sification performance chromatin-defined enhancers from dif-

ferent ENCODE datasets. Consequently, our analysis reports
combinations of motifs that allow us to discriminate TrEns
and chromatin-defined enhancers more effectively, compared
to the motif sets reported using other methods.

Nonetheless, the proposed bioinformatics method allows
for many future improvements. For instance, performing the
same analysis on TrEn data obtained by single cell analysis,

if available by FANTOM, will eliminate potential biases
caused by cell population heterogeneity and may lead to more
fine-grained results about the enhancer genomic landscape. In

addition, applying the same analysis to CAGE-defined pro-
moters from FANTOM5 will answer equally important ques-
tions about promoters’ sequence characteristics ‘encrypted’
within their genomic sequence. Lastly, we would like to point

out that stratifying TrEn data by their expression levels simi-
larly to the data reported by Arner et al. [9] and our laboratory
[10], and inferring the expression levels of TrEns using

sequence characteristics, may complement the findings pre-
sented in this study.
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