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Abstract On November 18, 2018, the Future Science Prize Awarding Ceremony was held in

Beijing. In the area of life science, Professors Jiayang Li, Longping Yuan, and Qifa Zhang shared

the prize for their pioneering contributions in producing high-yield, superior-quality rice through

systematic study of molecular mechanisms associated with specific rice features and application

of novel approaches in rice breeding. The Future Science Prize is also touted as ‘‘China’s Nobel

Prize”, fully affirming their achievements in rice basic research and breeding.
The 2018 China’s Future Science Prize in Life Science was
jointly awarded to Profs. Jiayang Li, Longping Yuan, and Qifa

Zhang, in recognition of their groundbreaking discoveries
leading to the development of innovative tools for breeding
high-yield and superior-quality rice varieties (Figure 1). The

Future Science Prize is one of China’s highly regarded awards
established in 2016 (http://futureprize.org/), being touted as
the Chinese version of the Nobel Prize.

Rice is the staple food for more than half of the world’s
population, and in China, over 60% of its 1.4 billion people
consume rice on a daily basis. The dramatic increase in popu-
lation coupled with global climate change, reduced agricultural
land, and environmental pollution pose a big challenge for
food security in China. As such, increasing rice production is

critical to sustain and improve people’s livelihood, national
economy, and even national security. Over the past six dec-
ades, China has made extraordinary accomplishments in

boosting its rice production. Rice yield has experienced at least
two quantum jumps; the first was brought by dwarf breeding,
the so-called ‘‘Green Evolution” in the 1960s, and the second

came from the introduction of hybrid rice in the 1970s.
The Green Revolution has dramatically increased crop pro-

duction, thanks to the development of high-yield varieties
through deployment of semi-dwarf genes in rice and wheat.

The rice semi-dwarf gene sd1 was first identified from the
Chinese rice cultivar named ‘‘Dee-geo-woo-gen” and since
then has been widely bred into the current rice varieties [1].

Guang-chang-ai is the first of its kind that was developed in
China through the introduction of the sd1 gene [2]. The
semi-dwarf varieties accounted for 20%–30% yield increase
nces and
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Figure 1 A photo of winners, Science Committee Members, and Donors of the 2018 Future Science Prize in Life Science during the

Awarding Ceremony on November 18, 2018, in Beijing
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when compared with the conventional ones because of their
high harvest index, resistance to lodging, and improved
response to fertilizers [3]. Developing rice dwarf varieties has
been widely considered as one of the most important achieve-

ments in rice breeding history.
Another breakthrough achievement was to harness hetero-

sis by developing and growing hybrid rice. Heterosis or hybrid

vigor refers to a situation in which the hybrids perform better
than their parents, and this has been exploited to improve crop
production for nearly a century [4]. Exploitation and utiliza-

tion of heterosis in rice was first initiated by Prof. Longping
Yuan in the 1960s, and a significant progress was made in
1970 due to the discovery of a cytoplasmic male sterility

(CMS) line from wild rice (Oryza rufipogon) [5]. Five years
later, large-scale hybrid seed production using a three-line sys-
tem was fully established, making it feasible to commercially
produce hybrid rice [6]. Several additional CMS lines were

later identified and successively exploited [7], which had greatly
expanded the germplasm pool of CMS. The subsequent estab-
lishment of the two-line hybrid system broadened the use of

hybrid vigor both within and between subspecies, and this
technology further increased rice yield by 5%–10% compared
to the three-line system [6]. In 1996, the Chinese government

launched a nationwide ‘‘Super Rice Breeding Program”, with
an ultimate goal to further boost rice yield through an
improved understanding of the theory and practice of hybrid
development. In recent field tests, Super Hybrid Rice has set

a new world record by reaching an average yield over
1000 kg per mu (about 0.07 ha). The Super Hybrid Rice is
characterized by its ideal plant architecture (ideotype) and uti-
lization of the inter-subspecific heterosis [8]. After more than
40 years of application, hybrid rice has become one of the

greatest innovations in agriculture, making a massive contribu-
tion to food security in both China and the world.

China has been a major player of the rice genome research,

contributing to sequencing and resequencing genomes of many
cultivated and wild rice varieties [9]. A wealth of genomic data
combined with fast-growing biotechnologies greatly facilitated

gene discovery and functional analyses. Prof. Jiayang Li and
his team successfully cloned MONOCULM 1 (MOC1), a key
regulator controlling rice tiller number [9]. Thereafter, Chinese

scientists have made great strides in isolating dozens of key
genes relevant to important agronomic traits. Examples of
such genes include the plant architecture controlling genes
(IPA1 [10], PROG1 [11], and D53 [12]), panicle architecture

related genes (DEP1 [13] and NOG1 [14]), grain size con-
trolling genes (GS2 [15], GS3 [16], GS5 [17], and GW5 [18]),
rice grain quality genes (Wx [19], ALK [20], and Badh2 [21]),

cold resistance genes (COLD1 [22], CTB4a [23], and LTG1
[24]), heat tolerance genes (TT1 [25] and HTAS [26]), salt tol-
erance gene (SKC1 [27]), drought resistance gene (DWA1 [28]),

disease resistance genes (STV11 [29], PIGM [30], Bsr-d1 [31],
and Xa4 [32]), insect resistance genes (Bph3 [33] and Bph14
[34]), heading date genes (GHD7 [35] and GHD8 [36]), nitrogen
nutrient efficiency gene (NRT1.1B [37]), and photoperiodic

sensitive male sterile gene (PMS3 [38]). Moreover, Chinese
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scientists have also made significant breakthroughs in elucidat-
ing the genetic and molecular mechanisms underlying rice
heterosis [39,40], CMS [41], and fertility between indica and

japonica varieties [42,43].
With so many genes mapped or cloned, it is pivotal to

design a molecular strategy to breed better rice varieties that

require less input and can adapt to various environmental con-
straints. This is particularly helpful for the smallholder farmers
in sub-Saharan Africa and Asia who grow crops under stress

conditions but have limited financial resources. For this
purpose, Prof. Qifa Zhang, together with researchers from
the International Rice Research Institute (IRRI) and Chinese
Academy of Agricultural Sciences (CAAS) funded by the Bill

and Melinda Gates Foundation, put forward a long-term
strategy to develop the so-called Green Super Rice (GSR).
GSR is a new strategy for generating high-yield varieties and

hybrids that are tolerant to various abiotic stresses such as
drought, floods, and salinity, resistant to multiple pests and
diseases, and with high nitrogen and phosphorus use efficiency

and superior nutritional quality [44]. After ten years of contin-
uous efforts, the GSR program has achieved encouraging
progresses. As of March 2018, 75 new GSR varieties have been

developed, with total planting area exceeding 6.67 million
hectare [45].

Breeding by design aims to bring together favorable alleles
of all agronomically important genes into a single genotype

[46]. This concept has driven the development of frontier tech-
nologies of crop breeding in China [47–49]. As an active advo-
cator and practitioner, Prof. Jiayang Li and his colleagues

have developed a series of well-designed lines through the
‘‘breeding by molecular design” approach. Examples of the
germplasm include Jiayouzhongke series, Zhongkefa series,

and Zhongke804, which possess high yield, superior quality,
disease and lodging resistance, and resilience to environmental
stresses [50]. Prof. Li’s seminal work lays a solid foundation

for future rice improvement.
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