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Abstract The human brain contains billions of highly differentiated and interconnected cells that

form intricate neural networks and collectively control the physical activities and high-level cogni-

tive functions, such as memory, decision-making, and social behavior. Big data is required to deci-

pher the complexity of cell types, as well as connectivity and functions of the brain. The newly

developed single-cell sequencing technology, which provides a comprehensive landscape of brain

cell type diversity by profiling the transcriptome, genome, and/or epigenome of individual cells,

has contributed substantially to revealing the complexity and dynamics of the brain and providing

new insights into brain development and brain-related disorders. In this review, we first introduce the

progresses in both experimental and computational methods of single-cell sequencing technology.

Applications of single-cell sequencing-based technologies in brain research, including cell type clas-

sification, brain development, and brain disease mechanisms, are then elucidated by representative

studies. Lastly, we provided our perspectives into the challenges and future developments in the

field of single-cell sequencing. In summary, this mini review aims to provide an overview of how

big data generated from single-cell sequencing have empowered the advancements in neuroscience

and shed light on the complex problems in understanding brain functions and diseases.
Introduction

The complex cellular diversity and connectivity within brain
cells are fundamental to the function of human brain. The clas-
sification of cell types in the nervous system is first brought

into focus by Ramón y Cajal’s work published over a century
ago [1], which covers only the gross morphology and major
classes of neurons and glia but lacks detailed description. In

current neuroscience, combinations of parameters are applied
to identify neuronal cell types, which include cell morphology,
nces and
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anatomical location, electrophysiological activities, synaptic
properties, connectivity in neural circuits, and expression of
certain marker genes. However, the construction of a compre-

hensive brain cell type atlas, with incorporation of their molec-
ular identity, lineage in development, and contribution to
brain diseases, remains a great challenge in the field of brain

research.
The development of single-cell technologies, especially

single-cell RNA-sequencing (scRNA-seq), has provided new

opportunity to address this challenge by looking through tran-
scriptomic profile of each individual cell. Since the first intro-
duction of scRNA-seq technique by Tang et al. in 2009 [2],
this technology has developed extensively and applied broadly

to different biological systems. In recent years, a dozen of
scRNA-seq studies that look into the cellular composition,
heterogeneity, and disease-specific populations in mammalian

brain has also demonstrated the power of this technology in
addressing the challenges in understanding the complexity,
connectivity, and functions of brain cell types [3,4]. As a result,

the American Brain Initiative, the European Human Brain
Project and also the Chinese Brain Project give top priority
to the cell type classification in their endeavors [5–7]. In the

recently launched Human Cell Atlas project, scientists, are
aiming to ‘‘create comprehensive reference maps of all human
cells” using scRNA-seq [8]. Apart from elucidating the cell
types in brain using scRNA-seq, advancements in other

single-cell sequencing technologies, including single-cell geno-
mics, epigenomics (including methylation, DNA accessibility,
and chromosome conformation), and multi-omics, have also

provided new tools to study the whole brain at single-cell res-
olution and brought new insights into the developmental lin-
eage, epigenetic markers, and functional states of individual

cells [9–13]. Moreover, by collecting cells from different spatial
locations, temporal points, and disease states, single-cell
sequencing has empowered our understanding of the brain

development, function, and diseases at an unprecedented
depth and resolution.

In this review, we started by summarizing the experimen-
tal (see the ‘‘Advances in single-cell sequencing platforms”

section) and computational techniques (see the ‘‘Advances
in computational analysis methods of scRNA-seq data” sec-
tion) in scRNA-seq, which have boosted its throughput and

analytic power. Next, we described the landmark papers as
well as recent progress in single-cell sequencing technologies
in resolving brain complexity (see the ‘‘Applications of

single-cell sequencing in brain studies” section) in terms of:
(1) the diversity and heterogeneity of cell types in the brain,
(2) the dynamic changes in brain cell types, expression pro-
files, and the accumulation of somatic mutations during

development and aging, (3) the associations between brain
cell types and neuronal diseases, and (4) the contributions
of glioma stem cells and macrophages to the intratumoral

heterogeneity of brain cancer. Lastly, we provided our
insights into the future trends and developments in the field
of single-cell sequencing.
Advances in single-cell sequencing platforms

Typical next-generation sequencers require the input DNA to

be at a nanogram level, which is orders of magnitude higher
than the amount of RNA in one single cell. Therefore, the first
challenge in scRNA-seq experiments is the amplification step
in sequencing library preparation. In the first paper that intro-
duced scRNA-seq technology in 2009, Tang et al. used a pair

of poly(T) primers with anchor sequences to capture the
mRNA from a mouse blastomere, and then amplified the
reversely-transcribed double-stranded cDNA using two

anchor sequences as primers [2]. This protocol has stable and
elegant performance, and more importantly it inspired innova-
tions of new technologies to expand its applications, such as

single-cell universal poly(A)-independent RNA sequencing
(SUPeR-seq), quantitative single-cell RNA-seq (Quartz-seq)
and single-cell tagged reverse transcription sequencing
(STRT-seq) [14–16]. Smart-seq, which utilizes Moloney mur-

ine leukemia virus reverse transcriptase that adds 2–5 untem-
plated nucleotides to the 30 end of the first cDNA strand,
allows the template switch from the first synthesized cDNA

strand to the second strand with a helper oligo called
template-switching oligo, thus enabling the capture of full-
length transcript [17]. Further improvement in sensitivity,

accuracy, and full-length coverage in Smart-seq2 makes it a
widely-used scRNA-seq library preparation protocol [18].
Apart from PCR-based amplification methods mentioned

above, other methods have been established for amplification
by in vitro transcription [19–21], and are applied to various
platforms [22–24].

Apart from the single-cell transcriptome library prepara-

tion protocols, the revolution in automatic cell separation plat-
forms has also enabled the exponential scale-up in the number
of single cells sequenced in recent years, which can go up to

hundreds of thousands of single cells per study [25]. Moving
from manual selection and pipetting [2], several automated
single-cell compartmentalization methods have been devel-

oped. Methods that isolate single cells into separated wells
using fluorescence-activated cell sorting (FACS) or robotic
arms have speeded up the single cell isolation [21,26]. Microflu-

idic platforms, such as the Fluidigm C1 system, isolate single
cells on a chip, where single cells are passively captured into
96 isolated chambers [27]. While the method also overcomes
the laborious reagent adding steps, the total number of cells

captured by the single-use microfluidic chip limits the through-
put of this method. Alternative methods that randomly cap-
ture single cells with barcoded beads using microfluidic

droplet generators, such as Droplet sequencing (Drop-seq)
[28], indexing droplets RNA sequencing (inDrop) [23], and
GemCode/Chromium 10� (widely known as 10� Genomics)

[29] stand out by their high throughput and low cost. Nonethe-
less, these methods have limited sequencing depth and can only
reveal the 3’ end sequence of transcripts. Picoliter wells that
capture single cell with barcoded beads have also been devel-

oped [24,30,31], with recent improvements in Microwell-seq
that further reduce the cost and rate of capturing cell doublets
[32]. Moreover, split-pool ligation-based transcriptome

sequencing (SPLiT-seq) has been recently developed and, by
multiple rounds of split-pool barcoding, the cost of sequencing
per cell is further reduced [33] to an estimated cost of 50 cents/-

cell. A similar method called single-cell combinatorial indexing
RNA sequencing (sci-RNA-seq) also utilized combinatorial
barcoding strategy for single cell demultiplexing [34], and has

been optimized to profile over 2,000,000 single cells in a single
experiment [35]. Apart from the platforms designed to capture
individual cells, single-nucleus isolation and sequencing meth-
ods, such as single-nucleus RNA sequencing (sNuc-seq) [36]
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and sNuc-seq with droplet technology (DroNc-seq) [22], gener-
ate highly concordant expression data as scRNA-seq while
overcoming the requirement for intact cells and the problems

of losing neuronal cell types differentially due to cell size
heterogeneity. Applied to frozen samples in human tissue
banks, single-nucleus RNA sequencing methods have shown

to be more promising than the whole-cell RNA-seq [37].
Chemical fixation methods may also facilitate stabilization
and preservation of dissociated cells for weeks before

scRNA-seq, while producing comparable results as data gener-
ated from fresh samples [38].

Recently, several scRNA-seq technologies have been devel-
oped to study the structural and dynamic properties of RNA

transcripts at single-cell level, or to simultaneously profile
multi-omic data in the same cell. For instance, single-cell iso-
form RNA-seq (ScISOr-Seq) was developed to identify RNA

isoforms and splicing sites [39]. Droplet-assisted RNA target-
ing by single-cell sequencing (DART-seq) combined multi-
plexed amplicon sequencing and transcriptome profiling in

single cells, enabling simultaneous determination of virus
genotypes and gene expression of the infected cell [40]. Combi-
nation of fluorescence in situ hybridization with scRNA-seq

revealed the connection of spatially associated cells [41]. To
overcome the limitation that current scRNA-seq provides only
a snapshot of the transcription, single-cell, thiol-(SH)-linked
alkylation of RNA for metabolic labeling sequencing

(scSLAM-seq) uncovered dynamics of transcriptional activity
directly by differentiating between new and old RNA [42].
Finally, single-cell triple omics sequencing (scTrio-seq) tech-

nique is able to provide information of the mutations, tran-
scriptome, and methylome of single cells [43]. Other single
cell sequencing platforms for unimodal profiling of the geno-

mic, epigenomic, and chromosome conformation, as well as
multimodal measurements of RNA and other components,
have been summarized in a recent review by Stuart and Satija

[44].
These technological advancements enable automatic, high-

throughput single-cell capture, and sequencing, which not only
provide new tools for brain research and huge amount of data
Table 1 Comparison of scRNA-seq platforms

Method Cell isolation Throughput (No. of cells

SMARTer (C1) IFC capture/sorting 100–1000

SMART-seq Sorting 100–1000

Smart-seq2 Sorting 100–1000

Quartz-seq Pipetting/sorting 1–100

SUPeR-seq Pipetting/sorting 1–100

STRT-seq Pipetting/sorting 10–100

CEL-seq Pipetting/sorting 10–100

MARS-seq Pipetting/sorting/IFC capture 100–1000

Drop-seq Nanodroplet dilution 1000–10,000

inDrop Nanodroplet dilution 1000–10,000

10� Genomics Nanodroplet dilution 1000–10,000

Microwell-seq Microwell 1000–10,000

sci-RNA-seq Combinatorial barcoding >50,000

SPLiT-seq Combinatorial barcoding >50,000

Note: SMARTer (C1), SMARTer ultra low RNA kit for the Fluidigm C1

switching mechanism at the end of the 50 end of the RNA transcript seq

sequencing; STRT-seq, single-cell tagged reverse transcription sequencing;

cell expression by linear amplification and sequencing; Drop-seq, droplet-seq

pool ligation-based transcriptome sequencing; sci-RNA-seq, single-cell com

based transcriptome sequencing.
for analysis, but also inspire and empower future research in
generating a comprehensive human brain cell atlas. To provide
a practical guide for future research, we summarized the char-

acteristics of common scRNA-seq library preparation meth-
ods, by comparing the throughput, transcript coverage,
ability of detecting RNA without poly(A) tail, and sensitivity

in detecting low abundance genes (Table 1). Several compre-
hensive reviews have compared the performance of different
scRNA-seq platforms. Although these platforms demonstrate

great accuracy in transcript level quantifications, their sensitiv-
ity for detecting genes with low expression varies [45,46]. Addi-
tionally, these protocols generate either cDNA library
composed of only the 30-end for quantification, or full-length

transcripts by tagmentation that allow detection of different
transcript variants and splicing events among cell types
[47,48]. Thus, requirements for sensitivity, full-length tran-

script information, number of cells, and reaction volumes are
critical factors for selecting single-cell sequencing platforms
to address specific research questions.

Advances in computational analysis methods of scRNA-

seq data

A typical workflow of scRNA-seq data analysis consists of
preprocessing, data normalization, dimensionality reduction,

clustering, differential gene expression, and gene expression
dynamics analysis (Figure 1). Although data obtained from
scRNA-seq are often structurally identical to the data obtained
from bulk RNA-seq, scRNA-seq data have two important fea-

tures that require special design in the computational methods
to distinguish technical noises from true variation signals.
These include (1) dropout events that introduce abundant zero

values in the gene expression matrix; and (2) high variations in
gene expression between cells and/or batches of experiments
(also called ‘batch effects’).

The data analysis starts with raw sequencing reads. In the
preprocessing step, a process called demultiplexing is per-
formed to assign reads to each cell based on the cell-specific
) Transcript coverage Poly(A)
�
RNA detection Sensitivity Ref.

Full-length No High [27]

Full-length No High [17]

Full-length No Highest [18]

Full-length No Medium [15]

Full-length Yes Medium [14]

50 end No High [16]

30 end No High [19]

30 end No Medium [21]

30 end No Medium [28]

30 end No High [23]

30 end No High [29]

30 end No Medium [32]

30 end No Medium [34]

30 end No Medium [33]

System; IFC, integrated fluidic circuit; SMART-seq and Smart-seq2,

uencing; SUPeR-seq, single-cell universal poly(A)-independent RNA

MARS-Seq, massively parallel single-cell RNA sequencing; CEL-Seq,

uencing; inDrop, indexing droplets RNA sequencing; SPLiT-seq, split-

binatorial indexing RNA sequencing; SPLiT-seq, split-pool ligation-



Figure 1 A typical workflow of scRNA-seq data analysis

The workflow consists of six steps. Step 1: preprocessing, in which the raw sequencing data are cleaned, demultiplexed, mapped to the

reference genome, and quantified. The output of this step is a gene expression matrix. Step 2: normalization, in which the raw expression

data are normalized to denoise and remove batch effects. Step 3: dimensionality reduction, in which the high dimension data are projected

to a small number of dimensions to capture the main signal. Step 4: clustering, in which the cells are assigned to clusters, which may

represent different cell types or states. Step 5: differential gene expression, in which comparisons are performed between cells of different

clusters or from different groups. The output of this step is a list of differentially-expressed genes. Step 6: gene expression dynamics, in

which a developmental trajectory connecting different cell clusters is inferred from the expression patterns. Exemplary tools are listed for

each step. UMI, unique molecular identifier.
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barcodes. In the presence of unique molecular identifiers
(UMIs, short random sequences attached to individual cDNA

molecules) at the 50 or 30 end of reads, deduplication of reads is
also performed to remove PCR-generated duplicated reads.
Then, the barcodes, UMIs, and adaptor sequences are

trimmed from the reads, and the clean reads are subsequently
mapped to the reference genome. For droplet-based technolo-
gies, some droplets may contain two or even more cells, and

these ‘doublets’ can be computationally identified by demuxlet
[49]. Quality control should be conducted along all these steps,
including removing reads with low quality values, reads that
are poorly mapped, and cells that have few high-quality reads.
Although some popular tools such as FastQC [50] are widely

used, home-brew scripts may also be utilized for preprocessing,
depending on the design of the experiments. The final output
of preprocessing is the expression values of each gene in the

qualified cells, which are represented as read counts.
A critical step following data preprocessing is normaliza-

tion, which intends to remove the artificial gene expression

variation. Such variation may originate from many sources,
including amplification biases, sequencing depth, GC content,
capture and reverse transcription efficiencies. Normalization
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has been demonstrated to greatly affect the downstream anal-
ysis such as differential gene expression. For bulk RNA-seq
data, global scaling (dividing the read counts by a global scal-

ing factor) is applied to enable comparison between samples.
To minimize the effects of the dropout events, similar methods
have been developed for scRNA-seq data, where the global

scaling factor is adjusted by quantile normalization or using
only genes with relatively constant expression across cells.
However, the underlying assumption of these methods is that

the total RNA amount is identical across all samples and the
variation in read counts is solely attributed to sequencing
depth, which may not be true for single cells. Additionally,
such approaches are often highly unstable, since they can be

affected by the abundant zero values in scRNA-seq data.
For scRNA-seq experiments, internal control such as synthetic
spike-ins (external transcripts added at known concentrations)

or UMIs are better options since they can reflect the differ-
ences in RNA content and amplification efficiencies between
cells. Current scRNA-seq data processing packages, such as

Seurat [51] and single-cell analysis toolkit for gene expression
data in R (Scater) [52], have internal functions to handle
spike-ins and UMIs. Imputation methods, such as Markov

affinity-based graph imputation of cells (MAGIC) [53],
single-cell analysis via expression recovery (SAVER) [54],
and scImpute [55], also demonstrate effective correction of
dropout events, as well as recovery of transcript levels and

gene–gene associations. Although some biases can be reduced
after normalization, other technical and biological variations
(such as fluctuations due to different stages in cell cycle) and

the batch effects still exist in the data. Several methods are
available to deal with batch effects, such as ComBat [56] and
mutual nearest neighbors (MNN) [57]. When batch informa-

tion is available, ComBat applies an empirical Bayesian frame-
work to correct the batch effects. MNN first detects mutual
nearest neighbors and then adjust the batch effects based on

the deviation of the shared subpopulations in each batch.
According to the comparison by Haghverdi et al. [57], MNN
shows superior performance than ComBat. More recent
batch-correction tools include Scanorama [58] and Harmony

[59]. In practice, careful experimental design that can remove
or balance batch effects would be extremely helpful.

After normalization, dimensionality reduction methods are

applied to project the high-dimensional (dimensionality as the
number of detected genes) measurements of each data point
(one data point as one cell) into a low-dimensional subspace

to visualize the population composition and discover new sub-
populations. The genes are usually filtered by the dispersion of
their expression and a few hundreds of most variable genes are
selected to capture important features across the population.

Principal component analysis (PCA) is efficient and easy to
implement, and it is widely used, since the results are highly
interpretable. Another linear method is zero-inflated factor

analysis (ZIFA) [60], which in essence is a factor analysis
method but takes into account the presence of dropouts. To
better represent the dropouts, Risso et al. developed a general

and flexible model named zero-inflated negative binomial
model (ZINB-WaVE) [61]. This model inspired the develop-
ment of two autoencoder frameworks, single-cell variational

inference (scVI) [62] and deep count autoencoder network
(DCA) [63], for dimensionality reduction of large-scale
scRNA-seq data. Linear methods assume linear relationship
between data variables, but this might not hold true for the
gene expression data. t-distributed stochastic neighbor embed-
ding (t-SNE) [64] is a non-linear method, which is optimized to
map high dimensional data points into two or three dimen-

sional space, primarily for visualization. Although hard to
interpret, the decent results generated by t-SNE make it the
current state-of-the-art method to visualize scRNA-seq data.

Recently, a method named uniform manifold approximation
and projection (UMAP) [65,66], which is based on theories
in Riemannian geometry and algebraic topology, has been

developed, and soon demonstrated arguably better perfor-
mance than t-SNE due to its higher efficiency and better
preservation of continuum. Another method, single-cell inter-
pretation via multi-kernel learning (SIMLR) [67], applies a

multi-kernel learning algorithm to learn a distance metric that
better fits the structure of the data. Embedding with t-SNE
based on the learned distance metric, Wang et al. have demon-

strated good performance of SIMILR on multiple scRNA-seq
datasets [67].

Aided by dimensionality reduction, identification of sub-

populations of cell types can be achieved by clustering meth-
ods. For unsupervised clustering, although traditional
clustering methods such as hierarchical clustering and K-

means clustering might be used, they are often hindered by
the scale and the noise in the data. Clustering through imputa-
tion and dimensionality reduction (CIDR) [68] attenuates the
effects of dropouts by imputing the zero values before cluster-

ing. Recently, a group of graph-based clustering methods,
including shared nearest neighbor (SNN)-Cliq [69], rare cell
type identification (RaceID) [70], RaceID2 [71], PhenoGraph

[72], and Seurat [51], has been developed and proved to highly
efficient and robust. These methods embed the cells into a
graph, with each edge representing the similarity (such as

Euclidean distance or Pearson correlation) between the two
cells, and then partition the graph into highly interconnected
modules. Consensus clustering has also been adopted for

scRNA-seq data clustering, and shown to be highly accurate
and robust [73]. Due to the heavy time consuming nature of
consensus clustering, a rule of thumb for unsupervised single
cell clustering is to use single-cell consensus clustering (SC3,

integrated in Scater [52]) when the number of cells is <5000
but use Seurat instead when there are more than 5000 cells.
For most cases, however, we have some prior knowledge of

the cells (e.g., major cell types, cell surface markers), and Mon-
ocle provides an option to instruct clustering by specifying
known cell type markers [47]. Although both unsupervised

and semi-supervised clustering methods are provided, Monocle
recommends the semi-supervised method for more reliable
results [74]. UNCURL also supervises the clustering by prior
biological knowledge [75]. BackSPIN, a divisive biclustering

method based on sorting points into neighborhoods (SPIN)
[76] can cluster genes and cells simultaneously, enabling us to
obtain the information on the cell types and meanwhile their

gene markers as well. Several computational tools that auto-
matically assign each single cell were available, such as SingleR
[77], scScope [78], and CellAssign [79], but all of them rely on

cell-type specific markers either from reference databases or
input by the user.

Discovering differentially expressed genes has important

implications in defining cell types and identifying markers of
each subpopulation. However, direct application of traditional
methods, such as DESeq [80], might be problematic, because
of the presence of abundant zeros in scRNA-seq data. To



Figure 2 The exponential increase of the number of cells

sequenced in published scRNA-seq studies of the brain

The number of published scRNA-seq studies of the brain (as of

August 30, 2019) we manually found is shown in the top panel.

The number of sequenced cells in each study is shown in the

bottom panel. Each circle stands for one study, and the

exponential trend of the number of sequenced cells was fitted

by robust linear regression, with 95% confidential interval

shown in gray.
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accommodate the multi-modality in the distribution of gene
expression, mixture-model-based approaches, such as model-
based analysis of single cell transcriptomics (MAST) [81],

single-cell differential expression (scDE) [82], and single-cell
differential distributions (scDD) [83], have been developed,
claiming highly improved performance than traditional differ-

ential gene expression tools. In a recent study, Soneson and
Robinson have compared the performance of scRNA-seq dif-
ferential expression methods in a consistently processed

scRNA-seq data collection named consistent quantification
of external RNA-seq data (conquer). They find that traditional
methods such as edgeR and voom-limma perform equally well
as scRNA-seq-specific methods, if lowly-expressed genes are

filtered out [84]. With proper prefiltering, even simple t-test
finds the right differentially expressed genes with low false dis-
covery rate.

Finally, in order to infer the dynamic path of cellular
development and/or differentiation from a snapshot of gene
expression pattern of individual cells, several pseudotemporal

ordering algorithms have been designed. The very first yet
efficient and robust method is Monocle [74]. In Monocle,
the data are first dimension reduced by independent compo-

nent analysis, then a graph is constructed by adding connect-
ing edges between highly similar cells. The graph is deduced
to a maximum spanning tree (MST), and the longest path in
the tree is regarded as the evolution path. Branching is

opened if alternative trajectories are found when examining
cells not along the longest path. Another type of methods
is based on theories and algorithms in topological data anal-

ysis such as diffusion map and mapper. Single-cell topologi-
cal RNA-seq analysis (scTDA) [85], for example, starts with
dimensionality reduction by PCA, then splits the two-

dimensional projection into tiles, and builds a tree using
the tiles as nodes. The root node is either given or inferred
from the tree. Several other methods are developed, including

Waterfall [86], Wishbone [87], selective locally linear infer-
ence of cellular expression relationships (SLICER) [88], Des-
tiny [89], and Sincell [90]. There is complementarity between
different methods as detailed by a large-scale comparison of

trajectory inference methods [91]. Therefore, selecting the
proper method should largely rely on knowledge about the
dataset.

Applications of single-cell sequencing in brain studies

From the year 2015 onwards, over 80 papers have reported
detailed characterization of brain cell types in different brain
regions, and at developmental stages or disease status using
scRNA-seq (Figure 2 and Table 2) [3,4]. In addition to the

increasing number of publications, we have also observed an
exponentially increasing number of sequenced cells per study
in the last 5 years. The technology is not only inspiring more

studies in recent years, but also exponentially scaling up the
number of single cells profiled in each study, which has
empowered the construction of a comprehensive landscape

of the cell types in the brain.

Revealing the diversity of brain cell types

Large-scale single-cell transcriptome-based classification stud-

ies of the nervous system were first conducted in mouse
models. Sequencing over 3000 single cells in mouse
somatosensory cortex and hippocampus CA1, in one of the

landmark papers of scRNA-seq, Zeisel et al. identified nine
major brain cell types that can be further grouped into 49
subpopulations. This study has extensively expanded the clas-

sical understanding of brain cell taxonomy [92]. The early
studies are supportive of the hypothesis that, based on
single-cell transcriptome characteristics, brain cells can be

unbiasedly clustered into similar cell types, presenting a
map of cell type complexity and diversity in the brain [93].
Droplet-based isolation has enabled high-throughput, unbi-
ased profiling of cell types in mouse nervous systems by

scRNA-seq or snRNA-seq [22,94]. For instance, more than
500,000 single cells were sequenced by Zeisel et al. [95] and
Saunders et al. [96], and more than 1,300,000 cells were

sequenced by 10� Genomics (https://support.10xgenomics.
com/single-cell-gene-expression/datasets/1.3.0/1M_neurons).
These studies provide valuable resources for discovering cell

type diversity in mouse brain and peripheral nervous system.
Characterization of brain cell types in humans has also pro-
vided rich resources for elucidating the transcriptional sub-

types and novel marker genes in normal brain [97],
assessing in vitro culture models [98,99], and analyzing the
evolutionary conservation of cell types by comparing with
scRNA-seq data from other species [100–102].

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons


Table 2 Summary of studies that characterize the single-cell transcriptome in the brain

Year
No. of cells

reported
Method Technique Cell isolation Species Brain region Developmental stages Highlight Ref.

2014 768 scRNA-seq SMART-Seq Sorting (FACS) Human Primary glioblastoma / Intratumoral heterogeneity in primary

glioblastoma by MDS

[184]

2014 301 scRNA-seq SMARTer IFC capture Human Germinal zone of cortex Gestational week 16 Markers for neurons and progenitors by PCA

and hierarchical clustering

[27]

2015 799 scRNA-seq / Robotic Mouse Dorsal root ganglion 6–8 week old 11 sensory neuron subtypes in mouse dorsal

root ganglion by PCA

[93]

2015 466 scRNA-seq SMARTer (C1) IFC capture Human Cerebral cortex Adult and fetus 6 major cell types and diverse neuronal

subtypes in adult human brain by PCA

[97]

2015 3000 scRNA-seq STRT-Seq (C1) IFC capture Mouse Somatosensory cortex,

hippocampus CA1

Adult 9 major cell types and 47 subclasses in adult

mouse brain by BackSPIN analysis

[92]

2015 393 scRNA-seq SMARTer IFC capture Human Ventricular zone and outer

subventricular zone

Gestational weeks 16–18 Molecular and functional diversification of

radial glia by hierarchical clustering

[119]

2016 1679 scRNA-seq SMARTer Sorting (FACS) Mouse Primary visual cortex Adult 49 transcriptomic cell types in adult mouse

primary visual cortex by PCA and WGCNA

[103]

2016 140 PATCH-seq STRT-Seq (C1) Pipetting

(manual

picking)

Mouse Somatosensory cortex Adult Associations between RNA expression and

electrophysiological characteristics of neurons

by correlation-based classification

[151]

2016 3000 scRNA-seq / IFC capture Mouse Perivascular spaces and

choroid plexus

Adult Origin, diversification and turnover of

macrophages in different brain regions by

bi-clustering

[144]

2016 5000 scRNA-seq STRT-Seq (C1) IFCcapture Mouse 10 regions Juvenile and adult A continuum spectrum of transcriptional

stages in oligodendrocyte differentiation and

maturation by t-SNE and Monocle

[146]

2016 3000 snRNA-seq SMARTer (C1) IFC capture Human 6 regions in cerebral cortex Adult 16 neuronal subtypes from 6 brain regions in

human by hierarchical clustering

[37]

2016 1682 snRNA-seq sNuc-Seq & Div-Seq Sorting (FACS) Mouse Hippocampus Adult Transcriptional dynamics of rare newborn

neurons in hippocampus by biSNE

[36]

2016 2831 scRNA-seq MARS-Seq Sorting (FACS) Mouse Whole brain E12.5, E18.5, and

8 weeks

Temporal dynamics of microglia during brain

development by NMF and PCA

[140]
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e 2 (continued)

No. of cells

reported
Method Technique Cell isolation Species Brain region Developmental Highlight Ref.

2200 scRNA-seq SCRB-Seq Picowell

deposition

Human Patient-derived glioma

neurosphere

/ Multiple phenotypic subpopulations

resembling the intratumoral heterogeneity in

glioblastoma by t-SNE

[190]

6100 scRNA-seq STRT-Seq (C1) IFC capture Mouse, Human Ventral midbrain Multiple devel al

stages

Diversity, expression dynamics and

conservation of cell types in human and

mouse ventral midbrain by BackSPIN

[100]

4347 scRNA-seq Smart-seq2 Sorting (FACS) Human Oligodendroglioma / IDH-mutant glioma cells are generated from

cancer stem cells by PCA

[185]

280 scRNA-seq SMARTer (C1) IFC capture Human Glioblastoma / Transcriptional heterogeneity and

phylogenies of EGF-driven and PDGF-driven

gliomas

[183]

329 scRNA-seq SMARTer (C1) IFC capture Mouse Subventricular zone Adult Expression profile and heterogeneity of adult

neural stem cells by stochastic gradient-

boosted classification model

[120]

3131 scRNA-seq / IFC capture Mouse Hypothalamus Adult 62 neuronal subtypes in the mouse

hypothalamus by BackSPIN

[109]

20,921 scRNA-seq Drop-seq Nanodroplet

dilution

Mouse Hypothalamic arcuate–

median eminence complex

Adult 50 transcriptionally distinct hypothalamic

arcuate–median eminence cell types by Seurat

[110]

14,000 scRNA-seq Drop-seq Nanodroplet

dilution

Mouse Hypothalamus Adult Identified 11 non-neuronal and 34 neuronal

cell populations in adult mouse hypothalamus

by Seurat

[111]

14,226 scRNA-seq Smart-seq2 Sorting (FACS) Human Oligodendrocytoma and

astrocytoma

/ Common lineage and discrepancies in tumor

microenvironment were observed in

astrocytoma and oligodendrocytoma by

hierarchical clustering

[192]

355 scRNA-seq SMARTer IFC capture Human Glioblastoma / Temporal and spatial heterogeneity of

glioblastoma cells in tumor evolution by

scTDA

[186]

2304 scRNA-seq CEL-Seq Sorting (FACS) Mouse mES induced into motor

neurons

/ Temporal dynamics of gene expression during

motor neuron differentiation by scTDA

[85]

67,000 scRNA-seq Drop-seq Nanodroplet

dilution

Human Brain organoid / Organoids can generate a diversity of brain

cell types by t-SNE

[98]

(continued on next page)
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le 2 Summary of studies that characterize the single-cell transcriptome in the brain

ar
No. of cells

reported
Method Technique Cell isolation Species Brain region Developmental stages Highlight Ref.

7 1369 scRNA-seq Drop-seq Nanodroplet

dilution

Mouse Hindbrain and cerebellum Postnatal Cell type diversity can be identified in

chemically fixed mouse hindbrain and

cerebellum by dropbead

[38]

7 8016 scRNA-seq MARS-Seq Sorting (FACS) Mouse Immune cells in

whole brain

Adult WT

and Tg-AD

The markers, spatial localization and

associations of a novel microglia type with

Alzheimer’s disease by PhenoGraph

[176]

7 133 scRNA-seq SMARTer (C1) IFC capture Human Glioblastoma / Associations between glioblastoma expression

subtypes and cell type heterogeneity by

CNMF clustering

[188]

7 50,000 scRNA-seq &

snRNA-seq

sci-RNA-seq None Caenorhabditis

elegans

Whole organism Larva Cell type diversity in the whole-larva level by

t-SNE and Monocle

[34]

7 39,111 snRNA-seq DroNc-Seq Nanodroplet

dilution

Mouse, Human Prefrontal cortex and

hippocampus

Adult Cell type diversity in mouse and human brain

can be successfully identified by applying

DroNc-Seq to frozen samples and t-SNE

analysis

[22]

7 584 scRNA-seq CEL-Seq Sorting (FACS) Mouse Motor and somatosensory

cortex

6 week old Associated phenotypically distinct

GABAergic neurons with transcriptional

signatures by MetaNeighbor

[108]

7 20,679 scRNA-seq Drop-seq &

Act-seq

Nanodroplet

dilution

Mouse Medial amygdala Adult Cell types and seizure-induced acute gene

expression by the Louvain-Jaccard algorithm

[112]

7 1685 scRNA-seq Smart-seq2 Sorting (FACS) Mouse Microglia in hippocampus Adult WT and CK-

p25

Heterogeneity in microglia populations and

associations with neurodegenerative disease

by t-SNE

[177]

7 3589 scRNA-seq Smart-seq2 Sorting (FACS) Human Glioblastoma / Heterogeneity in tumor cells and myeloid cells

in the core and periphery of glioblastoma by

t-SNE

[187]

7 1408 scRNA-seq SORT-Seq Sorting (FACS) Mouse Niche cells in dentate gyrus Adult Cell types and lineage relations in the

hippocampal niche by RaceID2

[148]

7 18,000 snRNA-seq sNucDrop-seq Nanodroplet

dilution

Mouse Cortex Adult Detection of cell types and transient

transcriptional states in mouse cortex by

Seurat

[94]

7 4181 scRNA-seq / Sorting (FACS),

Nanodroplet

dilution & IFC

capture

Human Primary glioma / Tumor-associated macrophages in glioma are

largely infiltrated from blood and

preferentially express immunosuppressive

cytokines by Seurat

[197]
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Table 2 (continued)

Year
No. of cells

reported
Method Technique Cell isolation Species Brain region Developmental stages Highlight Ref.

2017 1842 scRNA-seq Smart-seq2 Sorting (FACS) Drosophila Olfactory projection neurons Pupal and adult Subtypes of projection neurons and their

associated circuit assembly, transcriptional

factors and cell-surface molecules

[150]

2017 4261 scRNA-seq SMARTer (C1) IFC capture Human Primary cortical, medial

ganglionic eminence and

primary visual cortex

Embryo Cell-type diversification in brain development

is influenced by topographical, typological

and temporal hierarchies

[104]

2018 36,166 snRNA-seq snDrop-seq Nanodroplet

dilution

Human Visual cortex, frontal cortex

and cerebellum

Adult Regulatory elements and transcriptional

factors that underlie cell type diversity by

Seurat and PAGODA2

[105]

2018 114,601 scRNA-seq inDrop Nanodroplet

dilution

Mouse Visual cortex Visual stimulus Transcriptional response to visual stimuli in

cell types in visual cortex by t-SNE and Seurat

[106]

2018 5454 scRNA-seq STRT-Seq (C1) Sorting (FACS)

& IFC capture

Mouse Dentate gyrus 4 postnatal stages Molecular dynamics and diversity of dentate

gyrus cell types by t-SNE

[113]

2018 400,000 scRNA-seq Microwell-seq Microwell Mouse Over 40 organs and tissues Adult Mouse cell atlas by correlation-based

classification and developmental trajectory by

p-Creode

[32]

2018 35,000 scRNA-seq Smart-seq2 Sorting (FACS) Mouse Brain blood vascular and

vessel-associated cells

Adult Blood vascular and vessel-associated cell

types in mouse brain by BackSPIN

[149]

2018 396 scRNA-seq Smart-seq2 Sorting (FACS) Mouse Forebrain, midbrain and

olfactory bulb

Embryonic and

postnatal

Subpopulations of dopaminergic neurons by

t-SNE

[138]

2018 2309 scRNA-seq Smart-seq2 Pipetting

(manual

picking)

Human Prefrontal cortex Gestational weeks 8

to 26

35 subtypes in 6 main classes by Seurat and

traced the developmental trajectories by

Monocle

[155]

2018 21,566 scRNA-seq Drop-seq Nanodroplet

dilution

Mouse Ganglionic eminence E13.5 to E14.5 Heterogeneity within progenitors and

interneurons across developmental time

points by diffusion map and Monocle

[114]

2018 60,000 scRNA-seq scGESTALT & inDrop Nanodroplet

dilution

Zebrafish Whole brain 23–25 days post-

fertilization

Over 100 cell types in juvenile zebrafish

brain and their lineage trees by Seurat

and Monocle 2

[157]

2018 156,049 snRNA-seq SPLiT-seq Combinatorial

barcoding

Mouse Brain and spinal cord Postnatal P2 and

P11

Over 100 cell types in developing mouse brain

and 4 developmental lineages by t-SNE

[33]

(continued on next page)
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Table 2 Summary of studies that characterize the single-cell transcriptome in the brain

Year
No. of cells

reported
Method Technique Cell isolation Species Brain region Developmental stages Highlight Ref.

2018 70,000 scRNA-seq LINNAEUS Nanodroplet

dilution

Zebrafish Whole organism 5 days post-

fertilization

Cell types and lineage tree in whole

developing zebrafish by Seurat and

LINNAEUS tree building algorithm

[158]

2018 17,643 scRNA-seq ScarTrace Sorting (FACS) Zebrafish Forebrain, midbrain and

hindbrain

Adult Cell type and clonality in different organs in

adult zebrafish and timing of cell fate

specification by RaceID and scScarTrace

[159]

2018 2003 scRNA-seq SMARTer (C1) IFC Capture Mouse Caudal ganglionic eminence,

dorsal and ventral medial

ganglionic eminence

E12.5 and E14.5 Transcriptional diversity of GABAergic

interneurons is established early in

development by PCA, t-SNE and hierarchical

clustering

[115]

2018 3,321 scRNA-seq Smart-seq2 Sorting (FACS) Human H3K27M glioma / Prevalence of oligodendrocyte precursor-like

cells in diffuse midline gliomas by correlation

analysis and t-SNE

[193]

2018 66,783 scRNA-seq Drop-seq Nanodroplet

dilution

Schmidtea

mediterranea

Whole organism Adult Cell types and states in development of

planarian by Seurat and Monocle

[152]

2018 11,888 scRNA-seq MARS-seq Sorting (FACS) Nematostella

vectensis

Whole organism Adult and larva Cell types, lineages and regulatory programs

in Cnidaria by correlation-based classification

[153]

2018 1,700 scRNA-seq 10� Genomics Nanodroplet

dilution

Mouse Ventricular-subventricular

zone

Adult Ependymal cells share stem-cell-associated

genes with neural stem or progenitor cells but

does not perform stem cell functions

[121]

2018 23,015 scRNA-seq Drop-seq Nanodroplet

dilution

Lizard and turtle Pallium, hippocampus and

cortex

Adult Cortical GABAergic interneurons are

ancestral cell types, while different

transcriptome signature of glutamatergic

neurons emerged during the evolution of

mammals

[101]

2018 4213 scRNA-seq STRT-seq Pipetting

(manual

picking)

Human 22 brain regions Mid-gestation

embryo

Regional differences in cell types, gene

expression and neuron maturation during

human brain development by t-SNE and

Monocle

[129]

2018 24,000 scRNA-seq / Microwell Human High-grade glioma / Lineage identity and microenvironment in

high-grade glioma by RCA and hierarchical

clustering

[189]

2018 57,601 scRNA-seq Drop-seq Nanodroplet

dilution

Drosophila Optic lobe Adult 52 clusters of neurons and glia cells by Seurat

and transcriptional factors responsible for cell

fates by random forest model

[118]
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Table 2 (continued)

Year
No. of cells

reported
Method Technique Cell isolation Species Brain region Developmental stages Highlight Ref.

2018 157,000 scRNA-seq 10� Genomics Nanodroplet

dilution

Drosophila Whole brain Eight time points

from 0 to 50 days

old

Preserved cell identity during aging by Seurat

with exponential decay in gene expression and

mapped gene regulatory networks by

SCENIC

[161]

2018 509,876 scRNA-seq 10� Genomics Nanodroplet

dilution

Mouse 19 regions Postnatal P12–30 Molecular and spatial diversity of cell type in

mouse brain development by PCA, multiscale

KNN and graph t-SNE

[95]

2018 690,000 scRNA-seq Drop-seq Nanodroplet

dilution

Mouse 9 region Adult Systematic brain cell type classification across

regions by ICA-based clustering

[96]

2018 39,245 scRNA-seq 10� Genomics Nanodroplet

dilution

Mouse Cerebellum 12 developmental

time points in

embryonic and

postnatal stages

Cell types and transcription factors involved

in key lineage commitment steps in cerebellum

development

[127]

2018 100,605 scRNA-seq Smart-seq2

or 10� Genomics

Sorting (FACS)

or Nanodroplet

dilution

Mouse 20 organs and tissue Adult (10–15 weeks) Predominant cell types in each organ by PCA

and nearest-neighbor graph-based clustering,

and an atlas of transcriptomic cell biology

[128]

2018 60,933 scRNA-seq 10� Genomics Nanodroplet

dilution

Human Glioblastoma and fetal brain

cells

Adult glioma and

fetal normal brain

Shared lineage hierarchy of developing

human brain and glioblastoma, and cancer

stem cell are actively proliferating and

generating tumor heterogeneity

[194]

2018 37,000 scRNA-seq 10� Genomics

and SMARTer

Nanodroplet

dilution and

IFC Capture

Human Glioblastoma / Recurrent hierarchies and differences in

expression, location and prognosis between

proneural and mesenchymal glioblastoma

stem-like cells

[195]

2018 23,822 scRNA-seq Smart-seq Sorting (FACS)

or manual

picking

Mouse Primary visual cortex and

anterior lateral motor cortex

Adult Identified shared and region-specific cell types

and long-range projections in distinct areas of

mouse cortex

[107]

2018 31,299 scRNA-seq 10� Genomics Nanodroplet

dilution

Mouse Preoptic region Adult Identified cell types of the preoptic regions

and characterized their markers and spatial

organization with MERFISH

[117]

2019 146 scRNA-seq Smart-seq2 Sorting (FACS) Human Parkinson’s disease patient-

and control iPSC-derived

dopamine neurons

/ Parkinson’s disease patient-derived dopamine

neurons demonstrate endoplasmic reticulum

stress regulated by HDAC4

[139]

2019 1922 scRNA-seq Smart-seq2 Sorting (FACS) Mouse Microglia and other myeloid

cells across 6 brain regions

Embryonic,

postnatal and adult

Limited heterogeneity in microglia at different

brain regions; resemblance of a proliferative-

region-associated microglia with previously

reported degenerative disease-associated

microglia

[141]

(continued on next page)
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2 Summary of studies that characterize the single-cell transcriptome in the brain

No. of cells

reported
Method Technique Cell isolation Species Brain region Developmental stages Highlight Ref.

76,149 scRNA-seq 10� Genomics Nanodroplet

dilution

Mouse Whole brain Embryonic,

postnatal, adult, aged

and after brain injury

At least 9 distinct microglial states were

observed, with increased diversity of microglia

in developmental, aged and injury states

[142]

1106 scRNA-seq Smart-seq2 Sorting (FACS) Mouse Ventral midbrain Embryonic and

postnatal

Diversity of dopamine neurons during

developmental stages

[116]

2966 scRNA-seq Smart-seq2 Sorting (FACS) Mouse Microglia across different

brain regions

Embryonic, juvenile,

adult, and with

neurogenerative and

demyelinating

pathologies

Time- and region-dependent subtypes of

microglia in development and in multiple

sclerosis

[143]

2,058,652 snRNA-seq Sci-RNA-seq3 Sorting (FACS) Mouse Whole embryo Gestation E9.5 to

E13.5

Cell types and trajectories during mouse

organogenesis by Monocle 3

[35]

3066 scRNA-seq 10� Genomics Nanodroplet

dilution

Mouse Ventricular-subventricular

zone

Young (2 or

7 months) and old

(22 months) mice

Niche-derived inflammatory signals and Wnt

antagonist suppresses neural stem cell

activation in aged brain, while stem cell

activity is minimally affected by aging

[122]

11,601 scRNA-seq Fluidigm C1 & 10� Genomics IFC capture and

nanodroplet

dilution

Mouse Neonatal cortex Embryonic P5 and P6 Transitional intermediate states in astroglial

and oligodendroglial lineages and

contributions of primitive oligodendrocyte

progenitor cells to glioma formation

[147]

60,000 scRNA-seq 10� Genomics Nanodroplet

dilution

Mouse Mesial cerebellum and

hindbrain

Embryonic and

postnatal

Cell type diversity in cerebellum and

associations with different subtypes of

medulloblastoma

[126]

22,899 scRNA-seq 10� Genomics Nanodroplet

dilution

Mouse Choroid plexus, dura matter,

subdural meninges, or whole

brain

Adult Regional immune cell type heterogeneity and

macrophage subtypes associated with

neurodegenerative diseases

[145]

104,559 scRNA-seq 10� Genomics Nanodroplet

dilution

Human Prefrontal cortex and

anterior cingulate cortex

from 15 autism patients and

16 controls

Aged between 4 and

22 years old

Autism-related transcriptome changes are

predominantly observed in upper-layer

excitatory neurons and microglia

[180]

2756 scRNA-seq SMARTer (C1) Sorting (FACS)

& IFC capture

Mouse Neocortex Embryonic E12 to

E15

Transcriptional trajectories from apical

progenitors to their daughter neurons are

influenced by intrinsic epigenetic programs at

early time points and by environmental

signals at later time points by combining

scRNA-seq with FlashTag

[160]
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Table 2 (continued)

Year
No. of cells

reported
Method Technique Cell isolation Species Brain region Developmental stages Highlight Ref.

2019 166,242 scRNA-seq 10� Genomics Nanodroplet

dilution

Human Organoid models of dorsal

forebrain

/ Cell types generated in different organoids are

highly similar, reproducible and follow similar

developmental trajectories

[99]

2019 6124 scRNA-seq Smart-seq2 Sorting (FACS) Mouse Neural crest Embryonic E8.5 to

E10.5

Cell fate decisions during neural crest

development by combining scRNA-seq,

spatial transcriptomics and lineage tracing

[125]

2019 80,660 snRNA-seq 10� Genomics Nanodroplet

dilution

Human Prefrontal cortex samples

from 48 individuals with

Alzheimer’s disease

pathology

Aged Transcriptional changes in early and late

disease stages of Alzheimer’s disease as well as

transcriptional differences in patients of

different genders

[178]

2019 14,685 scRNA-seq 10� Genomics Nanodroplet

dilution

Mouse Subventricular zone Young (3 months old)

and old (28–29 months

old) mice

T cell infiltration, decrease in activated neural

stem cells, and changes in endothelial cells and

microglia in old neurogenic niches

[123]

2019 48,919 snRNA-seq 10� Genomics Nanodroplet

dilution

Human Cortical gray matter and

adjacent subcortical white

matter from multiple

sclerosis patients and

controls

Adult Lineage-and region-specific transcriptomic

changes are associated with cortical neuron

damage and glial activation

[179]

2019 9000 scRNA-seq Smart-seq2 Sorting (FACS) Human 25 medulloblastoma tumors

and 11 patient-derived

xenograft models

Aged 2 to 17 Differences in the composition of

undifferentiated and differential neuronal-like

tumor cells, as well as development trajectory

and cell-of-origins in different

medulloblastoma subtypes

[191]

2019 24,131 scRNA-seq Smart-seq2

and 10� Genomics

Sorting (FACS)

and nanodroplet

dilution

Human Glioblastoma / Genetics and microenvironment influence the

cellular states and plasticity of glioblastoma

cells

[196]

2019 15,928 snRNA-seq Smart-seq Sorting (FACS) Human Middle temporal gyrus Adult Conservation and species-specific changes in

human and mouse cortex cell types

[102]

2019 40,000 scRNA-seq Drop-seq Nanodroplet

dilution

Human Ventricular zone,

subventricular zone,

subplate, cortical plate

Mid-gestation

(gestation week 17 to

18)

Cell type identification by t-SNE and cell-

type-specific regulatory networks

[124]

Note: The list is arranged in chronological order. scRNA-seq, single-cell RNA sequencing; snRNA-seq, single-nucleus RNA sequencing; FACS, fluorescence-activated cell sorting; IFC, integrated

fluidic circuit; MDS, multi-dimensional scaling; PCA, principle component analysis; WGCNA, weighted correlation network analysis; t-SNE, t-distributed stochastic neighbor embedding; NMF,

nonnegative matrix factorization; biSNE, biclustering on stochastic neighbor embedding; CNMF, consensus non-negative matrix factorization; RCA, reference component analysis; KNN, k-nearest

neighbor; ICA, independent component analysis.
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358 Genomics Proteomics Bioinformatics 17 (2019) 344–366
Brain functions are known to be partitioned into different
brain regions, where locally and distally connected neurons
coordinate to integrate signals and perform specific tasks.

scRNA-seq technology has greatly facilitated research efforts
in resolving regional cell type landscapes, including the visual
cortex [103–107], motor cortex [107,108], hypothalamus

[109–111], amygdala [112], dentate gyrus [113], ganglionic emi-
nence [114,115], ventral midbrain [100,116], preoptic region
[117], optic lobe [118], hippocampus [22,36,92,101], subventric-

ular zone and ventricular-subventricular zone [119–124], neu-
ral crest [125], and cerebellum [126,127]. Moreover, a few
studies following a unified set of protocols have been reported
to dissect and sequence single cells across multiple brain

regions at fetal or adult stages in mice [95,96,128] and in
humans [37,129]. These studies have enabled comprehensive
capture of brain cell types, comparison of regional differences

in cell type compositions and expression profiles, as well as
mining associations between brain cell types and neurological
disorders [130]. However, challenges remain to resolve the

positional information of individual cells in three-
dimensional space, as such information is lost when cells are
dissociated from intact tissues into single cell suspensions.

While several RNA-FISH-based techniques in spatial tran-
scriptomics (reviewed by Crosetto et al. [131] and Lein et al.
[132]) have been developed and applied to visualize spatial
expression patterns of up to 10,000 genes in mouse hippocam-

pus [133], midbrain [100], cortex [134], subventricular zone and
olfactory bulb [135], single-cell gene expression profiling at
whole transcriptome level has not been achieved yet. To inte-

grate spatial information with sequencing, Stahl et al. [136]
placed brain sections onto an array with positional barcodes
to label transcripts from each location before sequencing.

Another technology called Slide-seq [137] coated DNA bar-
coded beads on slides to mark the spatial position of cells on
a tissue section. However, multiple cells can be captured by

the same group of arrays or the same bead, making it difficult
to guarantee single-cell resolution. Future advancements in
spatial transcriptomics profiling platforms will provide a
high-resolution brain cell type map and aid novel discoveries

in brain connectivity, development, and diseases.
While many studies profile all brain cell types in an unbi-

ased manner, other studies isolate specific cell types by FACS

using markers, followed by scRNA-seq, to illustrate the
molecular heterogeneity within the population, such as
GABAergic neurons [108,115], dopaminergic neurons

[116,138,139], microglia [140–143], macrophages [144,145],
oligodendrocytes [146], glial progenitors [147], niche cells
[119,148], endothelial cells [149], ependymal cells [121], and
Drosophila olfactory projection neurons [150]. Moreover,

several recent technologies have demonstrated that, by inte-
grating scRNA-seq with other epigenomics, molecular, and
cellular features, the functional states of individual cells can

be further characterized, leading to better classification and
clarification of cell type-specific functions. For example, Lake
et al. applied both scRNA-seq and single-cell DNA accessi-

bility assay to the same set of human brain cells for brain
cell type classification [105]. Electrophysiological characteris-
tics of single neuron can also be integrated with transcrip-

tome profiling by Patch-seq, thereby elucidating the
molecular identity of different excitatory and inhibitory neu-
ron subtypes [151].
Tracking the dynamic transcriptional and genomic landscape in

development and aging

While scRNA-seq captures a snapshot of brain cell type com-
positions in a brain region, it still has limitations in resolving

key questions in brain development, including tracing cell lin-
eage, quantifying compositional changes in different develop-
mental stages, and finding connections between cell types
during development. Aided by the pseudotemporal analysis

algorithms, such as Monocle, Waterfall, and scTDA, the lin-
eage relationships among neurons, stem cells, or even at the
whole organism level [34,152,153], can be interpreted from

single-cell transcriptome snapshots, reconstructing multiple
continuous transition states during development [33,85,86,
120,129,154]. While these computational pipelines infer trajec-

tories from static landscape of the brain, examining the dynam-
ics in developmental processes through performing scRNA-seq
across different time points provides more accurate informa-

tion and is becoming more popular in in recent studies.
By sampling the brain cell types across multiple time points

during embryonic development for scRNA-seq, several studies
have addressed the dynamic process of brain development,

resolving both cell type heterogeneity, fluctuations and disease
associations. Manno et al. characterize the midbrain develop-
ment by scRNA-seq of human and mouse embryos over time,

demonstrating fluctuations in different cell types during devel-
opment, as well as heterogeneity among dopaminergic neu-
rons, which are known to be associated with Parkinson’s

disease [100]. Apart from neurogenesis at embryonic stages,
at adult stage, the radial glia cells in dentate gyrus of the hip-
pocampus also undergo neurogenesis. By comparing postnatal
and adult neurogenesis, similar cell markers and transition

stages in development was observed, while their number and
spatial distribution differ with age [113]. The prefrontal cortex
in developing human embryos has also been surveyed using

scRNA-seq, presenting the landscape of complex cell types
and potential interplays that regulate the balance of excitatory
and inhibitory neurons in neural circuits [155]. Single-nucleus

ATAC-seq of mouse forebrain throughout eight developmen-
tal stages also contributed to the identification of cell type
complexity, compositional changes and, more importantly,

transcriptional regulatory sequences and master regulators
that define cell-type identity specification [156].

However, without a cell lineage mark that is stable for accu-
rate lineage tracking, the relationships between progenitors

and differentiated cell types are hard to elucidate. To solve this
problem, several recent methods utilize CRISPR-Cas9 system
to modify endogenous barcode in transgenic zebrafish, demon-

strating the plausibility of simultaneous detection of cell lin-
eage and transcriptome information in individual cells in the
whole organism [157–159]. One of these methods, scGES-

TALT, utilizes Cas9 to generates random mutations in the lin-
eage barcode at the 30UTR of DsRed transgene, which is later
transcribed with the DsRed mRNA and sequenced with other
transcripts in zebrafish brain [157], allowing the simultaneous

detection of cell lineage and transcriptome information. While
cell lineage tracing at the whole organism level can be achieved
in animals with smaller body size, it remains challenging to

perform scRNA-seq with lineage tracing in mice. Alterna-
tively, Telly et al. combined the FlashTag system with
scRNA-seq to pulse-label progenitor cells in the mouse neo-



Mu Q et al / Single-cell Sequencing in Brain Biology and Medicine 359
cortex and trace their daughter cells, and unraveled both
intrinsic and extrinsic signals that influence the differentiation
and diversification of neurons [160].

In addition to the advancement in understanding cellular
programs in early development, scRNA-seq has also provided
new insights into the transcriptional changes during aging.

Sampling Drosophila whole brain across its lifespan, Davie
et al. observed a decline in the RNA content and heterogeneity
in gene networks involved in energy consumption in aged brain,

while neuronal identity is minimally affected [161]. In mouse
ventricular-subventricular zone, infiltration of T cells and a
decrease in activated neural stem cells were observed during
aging, together with transcriptional changes in endothelial cells

and microglia in neurogenic niches [123]. Moreover, neural
stem cell activity does not decrease during aging, while niche-
derived inflammatory signals and Wnt antagonist suppresses

neural stem cell activation, providing potential therapeutic
opportunity in treating neurodegenerative diseases [122].

Apart from dynamics in transcriptional and epigenetic reg-

ulations in brain development, the accumulation of somatic
mutations at each cell division may also play key roles in pro-
ducing genomic mosaicism at the whole organism level, result-

ing in the generation of pathogenic somatic mutations,
alterations in local cellular compositions in brain and further
effects on the neural circuits. To tackle the brain mosaicism
in humans, single-cell whole-genome sequencing of neurons

from the same donor can be employed to elucidate all genomic
alterations in individual neurons for building a tree model that
traces back the history of genome divergence during develop-

ment. Each neuron was found to harbor �1000 to 1500
single-nucleotide variations (SNVs), which are more frequently
located in highly transcribed genes for neuronal functions

[162]. Sampling neuronal progenitor cells from three fetal
human brains, Bae et al. showed the different mutational rates
during development, with �1.3 mutations per division per cell

at postzygotic cleavages, and increased mutation rate with
oxidative damage signature in later developmental stages
(including neurogenesis) [163]. Comparing young and old indi-
viduals (aged from 4 months to 82 years old), the number of

somatic SNVs in neurons shows a linear increase in respect
to age. Moreover, three different somatic mutation signatures
were identified, which correspond to aging process, brain

region-specific mutations, and DNA repair in response to
oxidative damages. Interestingly, the last signature was also
enriched in the neurons from patients affected by early-onset

neurodegeneration, including Cockayne syndrome and xero-
derma pigmentosum, which are caused by genetic deficits in
DNA repair [164]. Somatic SNVs, along with copy number
variations [165–167] and L1 retrotransposition events [168–

170], have been characterized by single-cell whole-genome pro-
filing, revealing their roles in reshaping the genome of the
whole organism throughout the process of development. These

findings also shed light on the pattern and frequency of
somatic mutations, and further imply that pathogenic somatic
mutations can also lead to various neurodevelopmental and

neurodegenerative diseases [171,172].

Identifying cell populations associated with neuronal diseases

Neurodegenerative diseases, including Alzheimer’s disease
(AD), Parkinson’s disease (PD), and amyotrophic lateral
sclerosis (ALS), share common pathologies of protein aggrega-
tions, synaptic loss, and neuronal death. In recent years, vari-
ous studies have shed light on potential roles of

neuroinflammation in neurodegenerative diseases [173,174].
Glial cells, especially microglia, have been shown to maintain
brain microenvironment homeostasis and, when repro-

grammed in the diseased brain, promote AD progression
[175]. However, limited by the number of available cell type-
specific markers, the full spectrum of immune cell types and

activation states has not been characterized by previous studies.
To achieve a comprehensive unbiased sampling of immune

cell populations in brain, Keren-Shaul et al. [176] sampled all
immune cells in the brain of wild-type and AD mouse model

(5 � FAD mice, which expresses five human familial AD gene
mutations) using scRNA-seq. A novel type of microglia asso-
ciated with neurodegenerative disease, disease-associated

microglia (DAM), is found to be present only in AD, which
results from the gradual deviation from the homeostatic micro-
glia state during disease progression. Characterized by the

downregulation of microglia homeostatic factors and induc-
tion of lipid metabolism and phagocytic pathways, the DAM
represents an activated population of microglia and is involved

in plague clearance. The enrichment of DAM in the vicinity of
amyloid beta (Ab) plaques, as well as the observations of
increased pool of DAM in AD patients and in an ALS mouse
model, suggests a conserved and general response program of

microglia towards the aggregated and misfolded proteins gen-
erated in neurodegenerative diseases. Similar observations
were reported in another AD mouse model, CK-p25 [177].

Moreover, by collecting and sequencing brain samples from
48 AD patients at different disease stages, Mathys et al. eluci-
dated early and late disease stage-related transcriptional

changes in different cell types, as well as gender-associated dif-
ferences in transcriptome [178]. These studies not only have
important implications for the development of AD treatment,

but also provide a novel method to search for etiology in the
neuro-immune axis in other neurodegenerative diseases.

In addition to AD research, scRNA-seq has recently been
applied to resolving the cell type relationships and mechanisms

of several neuronal diseases. In PD patient iPSC-derived
dopaminergic neurons, gene expression changes related to
endoplasmic reticulum stress was observed in comparison with

dopaminergic neurons from control individuals, and HDAC4
was identified as the upstream regulator of disease progression
and potential drug target [139]. In multiple sclerosis, lineage-

and region-specific transcriptomic alterations were also
observed, which were associated with cortical neuron damage
and glial activation [179]. In autism, upper-layer excitatory
neurons and microglia were identified as the susceptible cell

types affected by the disease [180]. Identification of the under-
lying cell types and regulators of these neuronal diseases would
provide new insights into disease mechanisms and opportuni-

ties for therapeutic design.
Resolving heterogeneity in brain tumors

Glioma represents the majority of brain tumor in adults. Com-
mon genomic alterations in gliomas include mutations in
IDH1, TP53, ATRX, and TERT promoter, amplification and

rearrangements of EGFR, MET, and PDGFRA, as well as
deletions of chromosome 1p/19q and CDKN2A [181,182].
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The high intratumoral heterogeneity (ITH), marked by the
diversity of genomic alterations, cell lineages, and tumor
microenvironment, may be an important reason for the refrac-

toriness of glioma. The ITH in high-grade glioma was eluci-
dated in a scRNA-seq study through profiling gene
expression of single cells in EGFR amplified and PDGFRA

amplified tumors [183]. Muller et al. found that (i) within the
same tumor, different cells express distinct EGFR or PDGFRA
isoforms; (ii) multiple EGFR oncogenic variants are coex-

pressed in the same cell; and (iii) some cells express receptor
and ligand other than EGFR or PDGFRA. These results sug-
gest that heterogeneity of different tumor clones contributes
to the failure of EGFR and PDGFRA inhibitors for glioma

treatment. Afterwards, intra-glioma heterogeneity has been
repeatedly demonstrated in several studies [184–190]. Notably,
these single-cell studies highlight that, although the bulk tumor

can be classified into three molecular subtypes, individual cells
within the same tumor mass commonly exhibit different sub-
type expression profiles. The extensive ITH is closely related

to tumor evolution, drug resistance, and relapse. However,
Lee et al. [186] investigated single-cell gene expression in sam-
ples from a multi-focal glioblastoma patient and found shared

PIK3CA activating mutation and over-expression in tumor
masses that were located far apart, highlighting that PI3KCA
could be a good candidate for the glioma treatment. A recent
study investigated the intra- and inter-tumoral heterogeneity

of four subtypes of medulloblastoma, another malignant brain
cancer. Complementary to the difference in genomic features,
distinct cell populations and developmental trajectories were

found among the four medulloblastoma subtypes [191].
Based on spatial and pseudotemporal mapping, scRNA-seq

also enables the identification of potential cancer stem cell

populations and tracing of developmental lineages, and pro-
vides insights into the tumorigenesis. In low-grade glioma, Tir-
osh et al. found that most cancer cells are differentiated into

two glial lineages (oligodendrocyte-like or astrocyte-like cells),
while a smaller subset of cells appear undifferentiated and
resemble neural stem/progenitor cells [185]. They also found
that actively cycling cells are enriched among stem/progenitor

cells, indicating high proliferation of these cells. Additionally,
at the single-cell level, Venteicher et al. [192] showed similar
expression profile in two types of low-grade glioma (namely

astrocytoma and oligodendroglioma, based on histology),
implying shared glial lineages, developmental hierarchies,
and cell of origin for these two glioma types. The same hierar-

chical pattern was reconfirmed in diffuse intrinsic pontine
glioma (DIPG), a highly-fatal pediatric glioma. Compared to
the less aggressive low-grade glioma, the proportion of undif-
ferentiated, cycling stem/progenitor cells was much higher in

DIPG with histone H3 lysine-to-methionine mutations [193].
In glioblastoma, cancer stem cells were also identified and were
found to recapitulate the developmental hierarchy of normal

stem cells [194,195]. In a recent study, the model of glioma cell
types has been further extended to four transitable cellular
states to explain the four gene expression-based subtypes in

glioblastoma [196]. These studies have shed light on a long-
standing debate in gliomagenesis and suggest new therapeutic
strategies targeting glioma stem cell populations. Using mouse

models, Weng et al. tracked the developmental linage of
glioma and captured an intermediate stage named
oligodendrocyte-progenitor. These cells are abundant, highly
proliferative, and likely to transform to malignant glioma.
They also identified Zfp36l1 as the key gene controlling
gliomagenesis [147].

scRNA-seq also aids the comprehensive profiling of the

microenvironment of brain tumors. Due to the existence of
blood brain barrier, the immune system in brain is largely dif-
ferent from other parts of human body. Microglia, a unique

group of brain-resident macrophage, as well as the infiltrated
bone marrow-derived macrophages, are very abundant in
brain tumor. Microglia and macrophages composite �50%

of the tumor core in glioblastoma, and participate in enhanc-
ing tumor growth, survival, and dissemination [187]. The pro-
portion of infiltrating macrophages increases with glioma
grade, and is inversely correlated with response to radiother-

apy and survival of high-grade glioma patients [188,189]. Sin-
gle cell sequencing of IDH-mutant astrocytoma and IDH-
mutant oligodendroglioma revealed that the abundance of

microglia and macrophages accounts for the main difference
in expression profile between the two types of clinically distinct
low-grade gliomas [192]. Similarly, profiling of glioblastoma

also revealed that tumor microenvironment differs in glioblas-
toma subtypes [196]. Despite the high similarity between
microglia and macrophages, evidence suggests that the infil-

trated bone marrow-derived macrophages preferentially
express immunosuppressive cytokines and alter the tumor
microenvironment [197]. Several therapeutic strategies against
tumor-associated macrophage are under development and may

provide new opportunities for glioma treatment.

Future perspectives

Overall, scRNA-seq has been proved to be a powerful high-
throughput tool for resolving individual brain cells, enabling

comprehensive and high-resolution cell type determination
and novel cell marker identification. The great potential has
also been demonstrated in studies of brain development and
brain diseases. In our perspectives, three potential directions

lead the future studies of brain research using single-cell
sequencing-based methods.

Firstly, with the accumulating sequenced single cells as well

as the increasing capacity of newly developed technologies,
new computational methods to handle the big data are extre-
mely necessary. Droplet-based sequencing platforms, for

instance, have produced scRNA-seq datasets encompassing
more than half a million of single cells [95,96], challenging
the speed and memory efficiency of the state-of-the-art tools.

Fortunately, tools such as Seurat [198] and Scanpy [199]
emphasize the high efficiency in processing large scRNA-seq
datasets. We anticipate that more computational tools are
emerging to address this obstacle. Secondly, while numerous

studies have addressed the compositional variations in differ-
ent brain regions and the diversity of heterogeneous cell states,
very few attempts have been done to integrate cell types from

various studies. Due to the difference in experimental proto-
cols and data processing workflows, results from two different
studies are hardly comparable, even if they sequence the same

region of the brain or the same type of brain disease. Method-
ologies and computational frameworks to integrate and com-
pare scRNA-seq data from multiple platforms will be
beneficial for this purpose. Recently, linked inference of geno-

mic experimental relationships (LIGER) is reported for the
integration of multi-omics single-cell sequencing data [200].
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Thirdly, single-cell multi-omics, which integrate data from
multiple platforms, are also highly important for brain studies.
A good example has been set in the classification of retinal

bipolar cells [201], which integrated a convergent set of mor-
phological (electron microscopic reconstruction), physiological
(calcium imaging), and molecular (scRNA-seq) data. Unbi-

ased, systematic collection of molecular, morphological, phys-
iological, functional, and connectional data will greatly benefit
our understanding of the organization and function of the

brain.
Overall, while we still know little about the brain, the

rapidly developing single-cell sequencing technologies has
accumulated big data for future explorations and presented

us the single-cell-resolution map of the brain that we have
never seen before. Despite problems and challenges present,
we expect overwhelming progress in the coming decade.

Competing interests

The authors declare no competing interest.
Acknowledgments

This work was supported by the Research Grants Council
(RGC) (Grant No. 26102719), Hong Kong Special Adminis-
trative Region (SAR), China; the National Natural Science

Foundation of China (NSFC) (No. 31922088); NSFC-RGC
Joint Research Scheme (Grant No. N_HKUST606/17), Hong
Kong SAR, China; the Collaborative Research Fund (CRF)
(Grant Nos. C6002-17GF and C7065-18GF), Hong Kong

SAR, China; the Hong Kong Epigenomics Project (EpiHK);
and the Innovation and Technology Commission
(ITCPD/17-9, ITS/480/18FP), Hong Kong SAR, China.

References

[1] Cajal SR. Comparative study of the sensory areas of the human

cortex. Worcester, MA: Clark University; 1899.

[2] Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al.

mRNA-seq whole-transcriptome analysis of a single cell. Nat

Methods 2009;6:377–82.

[3] Poulin JF, Tasic B, Hjerling-Leffler J, Trimarchi JM, Awatra-

mani R. Disentangling neural cell diversity using single-cell

transcriptomics. Nat Neurosci 2016;19:1131–41.

[4] Zeng H, Sanes JR. Neuronal cell-type classification: challenges,

opportunities and the path forward. Nat Rev Neurosci

2017;18:530–46.

[5] Markram H. The Human Brain Project. Sci Am 2012;306:50–5.

[6] Insel TR, Landis SC, Collins FS. The NIH BRAIN initiative.

Science 2013;340:687–8.

[7] Poo M, Du J, Ip NY, Xiong ZQ, Xu B, Tan T. China Brain

Project: basic neuroscience, brain diseases, and brain-inspired

computing. Neuron 2016;92:591–6.

[8] Paper W, Regev A, Teichmann SA, Lander ES, Amit I, Benoist

C, et al. The Human Cell Atlas. Elife 2017;6:e27041.

[9] Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-

based technologies will revolutionize whole-organism science.

Nat Rev Genet 2013;14:618–30.

[10] Linnarsson S, Teichmann SA. Single-cell genomics: coming of

age. Genome Biol 2016;17:97.
[11] Schwartzman O, Tanay A. Single-cell epigenomics: techniques

and emerging applications. Nat Rev Genet 2015;16:716–26.

[12] Kelsey G, Stegle O, Reik W. Single-cell epigenomics: Recording

the past and predicting the future. Science 2017;358:69–75.

[13] Macaulay IC, Ponting CP, Voet T. Single-cell multiomics:

multiple measurements from single cells. Trends Genet

2017;33:155–68.

[14] Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F, et al. Single-cell

RNA-seq transcriptome analysis of linear and circular RNAs in

mouse preimplantation embryos. Genome Biol 2015;16:148.

[15] Sasagawa Y, Nikaido I, Hayashi T, Danno H, Uno KD, Imai T,

et al. Quartz-Seq: a highly reproducible and sensitive single-cell

RNA sequencing method, reveals non-genetic gene-expression

heterogeneity. Genome Biol 2013;14:3097.

[16] Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, Lönnerberg

P, et al. Characterization of the single-cell transcriptional

landscape by highly multiplex RNA-seq. Genome Res

2011;21:1160–7.
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