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Abstract The generation of induced pluripotent stem cells through somatic cell reprogramming

requires a global reorganization of cellular functions. This reorganization occurs in a multi-phased man-

ner and involves a gradual revision of both the epigenome and transcriptome. Recent studies have shown

that the large-scale transcriptional changes observed during reprogramming also apply to long non-

coding RNAs (lncRNAs), a type of traditionally neglected RNA species that are increasingly viewed

as critical regulators of cellular function. Deeper understanding of lncRNAs in reprogramming may

not only help to improve this process but also have implications for studying cell plasticity in other con-

texts, such as development, aging, and cancer. In this review, we summarize the current progress made in

profiling and analyzing the role of lncRNAs in various phases of somatic cell reprogramming, with

emphasis on the re-establishment of the pluripotency gene network and X chromosome reactivation.
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Introduction

High-throughput sequencing techniques have demonstrated
that mammalian genomes are ubiquitously transcribed [1].

The transcription of large numbers of non-coding RNAs
(ncRNAs) [2] might help to explain interspecies differences
despite limited variations in the number and sequence of cod-

ing genes. ncRNAs are classified based on their length into
small RNAs (< 200 nucleotides), e.g., microRNAs (miRNAs)
and piwi-interacting RNAs (piRNAs), and long ncRNAs
(lncRNAs, > 200 nucleotides) [3,4].

lncRNAs are typically transcribed by RNA polymerase II,
although this process occurs with different modalities and ori-
gins. They include circular RNAs (circRNAs) [5], enhancer

RNAs (eRNAs) [6], antisense transcripts [7], and long inter-
genic ncRNAs (lincRNAs) [8,9]. These lncRNAs recruit epige-
netic regulators to chromatin and serve as scaffolds to stabilize

protein complexes or as decoys for proteins and miRNAs [10–
12]. These diverse regulatory modes are due to the complemen-
tary base pairing of lncRNAs with both DNA and other

RNAs, the ability of lncRNAs to interact with proteins, and
the localization of lncRNAs in different cellular compartments
(e.g., cytoplasm, nucleus, or mitochondrion) [13,14]. Interest-
ingly, a large fraction of lncRNAs also associate with ribo-

somes and, paradoxically, some previously annotated
lncRNAs produce small peptides with biological functions
[15,16]. The latter raises relevant questions regarding the true

nature of some lncRNAs, but the general significance of these
findings requires further investigation.

Although the functional relevance of lncRNAs has not yet

been systematically explored, some are known to regulate key
aspects of normal and pathological cellular functions such as
proliferation [17], metabolism [18,19], and epithelial cytoarchi-
tecture [20]. The recent discovery that lncRNAs display cell-

specific and development-specific expression patterns has also
suggested a pivotal role of lncRNAs in cell fate determination
[21–23]. In support of this idea, suppression of several embry-

onic stem cell (ESC)-specific lincRNAs influences pluripotency
maintenance/exit and early lineage commitment [21]. Similarly,
the heart-associated lncRNA Braveheart serves as a key player

in the activation of the core vascular gene network during
mouse cardiac cell fate specification [22]. In addition, lincRNA
Yin Yang 1 (linc-YY1), which is highly conserved in humans,

regulates myogenesis through dislodgement of the YY1/poly-
comb repressive complex on target promoters, resulting in
the activation of muscle gene expression [23].

Here, we summarize the current knowledge of lncRNA pro-

filing and functions in an extreme scenario of cell fate transi-
tion, somatic cell reprogramming.

lncRNAs are new players in somatic cell reprogram-

ming

Mammalian somatic cells can be reprogrammed to an ESC
state and this has revolutionized stem cell research [24,25].
Originally, the reprogramming factor cocktail contained

SOX2, KLF4, OCT4 (encoded by Pou5f1 or POU5F1 gene
in mice or humans, respectively), and c-MYC (SKOM), but
other combinations of exogenous factors are also effective

[26,27]. More recently, mouse reprogramming has been
achieved using only chemicals [28]. Remarkably, induced
pluripotent stem cells (iPSCs) provide a priori unlimited num-
ber of individual-specific stem cells that can be used for in vitro

disease modeling, drug screening, and potential cell-based
therapies [29,30]. Although producing iPSCs from different
cell sources and mammalian species is in general no longer

an issue [31–34], the underlying mechanisms remain unclear
and clarifying them is important for improving iPSC quality
[35].

Reprogramming occurs through a stepwise process that
involves reorganization of most cell functions, culminating in
the reactivation of the pluripotency gene program [36,37]. This
conversion is characterized by several roadblocks and check-

points. For example, reprogramming cells must overcome the
senescence/apoptosis barrier to acquire the ability to prolifer-
ate indefinitely [38,39], switch their metabolism from oxidative

phosphorylation to glycolysis [40], and undergo a
mesenchymal-to-epithelial transition (MET) [41,42]. By the
end of these events, under standard conditions, only a small

percentage of the original population activates the endogenous
pluripotency gene circuitry.

Since the first demonstration of somatic cell reprogram-

ming, multiple regulatory factors have been identified. Among
these, miRNAs play essential roles in creating or removing
reprogramming roadblocks [43,44]. For example, components
of miRNA cluster 302–367 suppress Tgfbr2 to neutralize the

pro-mesenchymal effects of TGFb cytokines secreted by
somatic cells or present in serum, facilitating the MET
[45,46]. miRNA cluster 302–367 also targets genes encoding

chromatin regulators (e.g., BAF170) that prevent the activa-
tion of pluripotency genes in the late phase of reprogramming
[46]. Conceivably, lncRNAs, which are present in much higher

numbers than miRNAs and are in principle more versatile
players in cell regulation, could be important regulators of
reprogramming too. In this regard, lncRNAs also experience

phase-dependent changes during reprogramming, and their
regulation shares the same epigenetic mechanisms that drive
mRNA changes in reprogramming [47,48]. These findings sug-
gest a coordinated role between protein-coding and ncRNAs

in reorganizing cellular functions. Studying lncRNAs is, there-
fore, important to understand reprogramming as a whole
(Table 1). Such knowledge may also contribute to clarifying

the role of lncRNAs in other contexts such as development,
aging, and cancer.

p53-regulated lncRNAs in reprogramming

Proliferation facilitates the appearance of stochastic events
needed for directing chromatin reorganization into a pluripo-

tent state during reprogramming [38]. However, somatic cells
have a limited life span/proliferation capacity, and reprogram-
ming is a stressful process involving activation of senescence/-

cell death pathways. Accordingly, suppressing p53, p16Ink4a, or
p19Arf enhances reprogramming efficiency by accelerating pro-
liferation and/or reducing apoptosis [39,49,50].

Interestingly, several p53-regulated lncRNAs have strong
impacts on reprogramming efficiency (Figure 1). For instance,
expression of lincRNA-RoR (regulator of reprogramming) [51]
and lincRNA-p21 [52,53] is induced by p53 [54,55], which can

influence reprogramming in positive and negative manner,
respectively. Similarly, expression of p53-repressed



Table 1 lncRNAs and their functions in somatic cell reprogramming

Name Function or mechanism Refs.

lincRNA-RoR Inhibiting p53 translation and acting as a miR-145 sponge to promote

reprogramming efficiency

[51,58]

lincRNA-p21 Activating p21 expression and inhibiting expression of pluripotency genes

by recruiting SETDB1 or DNMT1 to derail reprogramming

[52,53]

LNCPRESS1 Acting as a decoy for histone deacetylase SIRT6 [56]

lincRNA-1463 Inhibiting pre-iPSC to iPSC conversion [52]

lincRNA-1526 Inhibiting pre-iPSC to iPSC conversion [52]

lincRNA-1307 Promoting pre-iPSC to iPSC conversion [52]

Zeb2-NAT Maintaining Zeb2 expression and inhibiting the MET [66]

Gas5 Maintaining expression of Tet1 and pluripotency genes, and protecting

NODAL mRNA from microRNA-mediated degradation

[70,71]

Snhg14 Binding to the promoter of Sox2 to enhance its expression, promoting

reprogramming, and maintaining pluripotency in iPSCs

[75]

Peblr20 Promoting reprogramming by activating endogenous Pou5f1 in a trans

manner, and recruiting TET2 to the enhancer region of Pou5f1 to activate

eRNAs

[76]

Ladr49 and Ladr83 Inhibiting expression of muscle-related genes [47]

Ladr86 and Ladr91 Promoting expression of mitochondria-associated genes and blocking the

metabolic switch

[47]

Xist Impairing XCR, promoting MET, and inhibiting pre-iPSC to iPSC

conversion

[87,93]

Note: iPSC, induced pluripotent stem cell; XCR, X chromosome reactivation; MET, mesenchymal-to-epithelial transition; lncRNA, long non-

coding RNA; lincRNA-RoR, long intergenic non-coding RNA-regulator of reprogramming; SETDB1, SET domain bifurcated histone lysine

methyltransferase 1; DNMT1, DNA methyltransferase 1; LNCPRESS1, lncRNA p53-regulated and ESC specific 1; SIRT6, sirtuin 6; Zeb2-NAT,

zinc finger E-box binding homeobox 2-natural antisense transcript; Gas5, growth arrest specific 5; TET2, ten-eleven translocation 2; NODAL,

nodal growth differentiation factor; Snhg14, Sox2 promoter-interacting lncRNA 14 (also known as Spilr14); Sox2, SRY-box transcription factor 2;

Peblr20, Pou5f1 enhancer-binding lncRNA 20; eRNA, enhancer RNA; Ladr49, long non-coding RNA activated during reprogramming 49; Xist,

X-inactive specific transcript.
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LNCPRESS1 (lncRNA p53-regulated and ESC-associated 1)
is robustly induced during reprogramming and activates the

pluripotency network [56]. Given these circumstances, it would
be useful to systematically profile lncRNAs during reprogram-
ming in the presence or absence of p53 or other pro-senescence

regulators.

lincRNA-RoR

lincRNA-RoR (2603 nucleotides) is located on chromosome
18q21.31. Its expression is induced by p53 [54] and facilitates
human reprogramming by suppressing the p53-mediated tran-
scriptional response to oxidative stress and DNA damage [51].

However, overexpression or knockdown of lincRNA-RoR does
not influence cell growth at the early stages of reprogramming.
In cancer cells, lincRNA-RoR suppresses p53 translation

through heterogeneous nuclear ribonucleoprotein I (hnRNP
I), a classical RNA-binding protein (RBP) involved in splicing
[54]. In this regard, a fraction of hnRNP I is localized in the

cytoplasm, where it promotes the translation of p53 through
binding to internal ribosome entry sites. Apart from suppress-
ing the p53 pathway, lincRNA-RoR sequesters pro-

differentiation miRNAs, including miR-145, to maintain the
expression of the core pluripotency transcription factors
OCT4, SOX2, and NANOG in human ESCs [57,58]. Although
these two latter mechanisms have not yet been tested in repro-

gramming, it is likely that they also contribute to the effects of
lincRNA-RoR in this process. Notably, lincRNA-RoR is more
highly expressed in human iPSCs than in ESCs [51], which may

be a consequence of a selective advantage conferred during
reprogramming.
lincRNA-p21

lincRNA-p21 (3121 nucleotides, located on chromosome
6p21.2) resides 5 kb upstream of p21. It was originally discov-
ered as an executioner of the p53-mediated apoptotic response

[55]. Expression of lincRNA-p21 is induced by p53 and impairs
mouse reprogramming, but different cis or trans modes of
action have been proposed [52,53]. The cis-acting model is

based on the observation that conditional excision of the
lincRNA-p21 promoter and first exon reduces the expression
of p21 mRNA, resulting in enhanced proliferation and repro-

gramming efficiency based on alkaline phosphatase activity (an
early marker of reprogramming) [53]. However, it is important
to note that removal of the lincRNA-p21 locus leads to the loss

of multiple enhancers that control the transcription of nearby
genes, including p21 itself, independently of lincRNA-p21 [59].
In fact, removal of the lincRNA-p21 locus alters the expression
of nearby genes even in tissues with no detectable lincRNA-p21

transcript. Conversely, the trans-acting model of lincRNA-p21
in reprogramming proposes that lincRNA-p21 impairs repro-
gramming independently of proliferation by binding to

pluripotency loci (e.g., Nanog) and blocking their reactivation
[52]. In this model, lincRNA-p21 represses pluripotency loci by
recruiting the histone 3 lysine 9 (H3K9) methyltransferase

SETDB1 or the maintenance DNA methyltransferase
DNMT1. Binding of lincRNA-p21 to these epigenetic regula-
tors is mediated by the classical RBP hnRNP-K. Hence, sup-

pressing hnRNP-K also results in enhanced reprogramming
efficiency, although it is unlikely that it acts exclusively
through lincRNA-p21. The idea that expression of p53-
induced lncRNAs such as lincRNA-p21 prevents reprogram-
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ming independent of proliferation or apoptosis is attractive, as
this may have implications for the control of cell fate when
stem cells are under stress or in aging and in p53-negative

cancers.
In a screen for lncRNAs modulating the conversion of pre-

iPSCs to iPSCs, lincRNA-p21 was identified as a negative reg-

ulator of reprogramming [52]. Pre-iPSCs are stable but incom-
pletely reprogrammed clones, and their conversion to iPSCs is
commonly used as a proxy for the late phase of reprogram-

ming [60]. The same screen also identified lincRNA-1463 and
lincRNA-1526 as negative regulators of the conversion of
pre-iPSCs to iPSCs. However, it is unclear whether expression
of these two lncRNAs is also regulated by p53.

LNCPRESS1

Another screening study conducted on differentiating human

ESCs led to the discovery of LNCPRESS1 (832 nucleotides,
located on chromosome 7q22.1). LNCPRESS1 is a p53-
repressed lncRNA that positively regulates the pluripotency

gene network in human ESCs [56]. LNCPRESS1 acts as a
decoy for the histone deacetylase SIRT6, thereby enriching
Figure 1 lncRNAs regulating somatic cell reprogramming
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intermediate that successfully passes through these check-
points achieves full activation of the pluripotency gene net-
work. Likewise, even when somatic cells have been

successfully reprogrammed to iPSCs, their DNA methylation
patterns often do not faithfully reflect those of ESCs. For
example, iPSCs can show aberrant DNA methylation of

imprinted regions, which alters the expression of lncRNAs
encoded by those regions [63–65].

Zeb2-NAT

Zinc finger E-box binding homeobox 2-natural antisense tran-
script (Zeb2-NAT, 430 nucleotides, located on chromosome

2q22.3) is a natural antisense transcript for the transcription
factor ZEB2 [66]. ZEB2 is a master regulator of the
epithelial-to-mesenchymal transition (EMT) that represses
the expression of many epithelial genes [67]. Zeb2-NAT is

involved in maintaining Zeb2 expression by preventing the
splicing of the Zeb2 50-untranslated region (50-UTR) [66].
Interestingly, Zeb2-NAT is highly expressed in fibroblasts from

aged mice [68], which are known to be less amenable to repro-
gramming [69]. The reprogramming efficiency of these aged
fibroblasts is enhanced when expression of Zeb2-NAT is

reduced. Given that aging promotes the accumulation of
DNA damage, thereby activating p53, it is plausible that
expression of Zeb2-NAT is also induced by p53 in aged fibrob-
lasts and during reprogramming. However, this speculation

has not yet been tested.

Gas5

Expression of the lncRNA growth arrest specific 5 (Gas5, 656
nucleotides, located on chromosome 1q25.1) is controlled by
pluripotency transcription factors. Gas5 plays a pivotal role

in reprogramming and self-renewal of mouse ESCs by main-
taining the expression of genes encoding key pluripotency fac-
tors and ten-eleven translocation 1 (Tet1) [70]. The effect of

Gas5 on Tet1 expression suggests that Gas5 regulates active
DNA demethylation in reprogramming. Its human ortholog,
GAS5, also controls human ESC pluripotency by protecting
NODAL mRNA from miRNA-mediated degradation [71], a

mechanism that may also participate in human reprogram-
ming. GAS5 is also a well-known regulator of cell proliferation
and apoptosis in various cell contexts, including breast cancer,

lung cancer, and differentiating mouse ESCs [70,72,73].

Ladr lncRNAs

Single-cell transcriptomic analysis of mouse reprogramming
has unveiled numerous lncRNAs that are activated or
repressed during this process [47]. Among them, knockdown

of two lncRNAs activated during reprogramming 49 and 83
(Ladr49 and Ladr83), showed modest effects on reprogram-
ming efficiency, but led to the upregulation of muscle-related
genes in reprogramming intermediate cells. Interestingly, these

two lncRNAs have been previously shown to physically asso-
ciate with polycomb repressive complex 2 (PRC2) [21,74]. On
the other hand, depletion of Ladr86 and Ladr91, which show

upregulated expression in reprogramming, represses
mitochondria-associated genes, suggesting a role in the meta-
bolic switch during reprogramming.
Promoter/enhancer-interacting lncRNAs

A recently devised approach chromatin-RNA in situ reverse-
transcription sequencing (CRIST-seq) took advantage of the
specificity of the clustered regularly interspaced short palin-

dromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system
for DNA to profile pluripotency-specific lncRNAs that inter-
act with the promoter of the core pluripotency genes Sox2
and Pou5f1 [75]. Among the identified lncRNAs interacting

with the Sox2 promoter, 59 of them were differentially
expressed in reprogramming. Notably, overexpression of one
of these differentially expressed lncRNAs, Sox2 promoter-

interacting lncRNA 14 (Spilr14, also known as Snhg14), led
to significant enhancement of reprogramming efficiency,
whereas its knockdown caused loss of pluripotency in iPSCs.

Another lncRNA, Pou5f1 enhancer-binding lncRNA 20
(Peblr20), was identified utilizing a strategy combining RNA
reverse transcription-associated capture sequencing (RAT-

seq) and RNA sequencing [76]. Peblr20 is expressed at higher
levels in iPSCs than in mouse embryonic fibroblasts and pro-
motes reprogramming by activating endogenous Pou5f1 in
trans through the recruitment of TET2 to the enhancer region,

which enhances the expression of eRNAs.
Imprinted lncRNAs

Maternally expressed 3 (Meg3, also known as Gtl2) is localized
at the imprinted Dlk1–Dio3 gene cluster on mouse chromo-
some 12qF1, which also encodes numerous miRNAs [77,78].

ncRNAs harbored in this region are maternally expressed in
mammals. Interestingly, they are strongly repressed in most
mouse iPSCs compared to ESCs, which is responsible for the
failure to support the development of all-iPSC mice [63,79].

This inability can be reversed through reactivation of the
imprinted Dlk1–Dio3 locus in reprogramming using the his-
tone deacetylase inhibitor valproic acid or ascorbic acid (vita-

min C, Vc) [63,80,81]. Vc facilitates the conservation of
imprinting at this locus by interfering with reprogramming
factor-induced loss of H3K4 methylation, which prevents the

recruitment of DNA methyltransferase 3A (DNMT3A).
Importantly, MEG3, which is encoded in the DLK1–DIO3
locus, is also frequently silenced in human iPSCs [82]. Simi-

larly, hypomethylation of the maternally expressed imprinted
lncRNA zinc finger (CCCH type), RNA binding motif, and
serine/arginine rich 1 (Zrsr1) is associated with reduced
pluripotency in mouse iPSCs, which could not be rescued by

treating reprogramming cells with Vc or PD0325901 and
CHIR99021 (inhibitors of MEK1/2 and GSK3, respectively)
[64]. It remains to be clarified how these imprinted lncRNAs

regulate the reprogramming process.
X chromosome reactivation during reprogramming

In the late stage of reprogramming, another important process
involving lncRNAs is X chromosome reactivation (XCR)
(Figure 2). During the development of mice and other

mammals, one of the two X chromosomes in females is
randomly silenced in somatic cells shortly after implantation
to maintain the dosage equivalence between the sexes

[83,84]. X chromosome inactivation (XCI) is initiated by the
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expression of X-inactive specific transcript (Xist), a 17,918-
nucleotide lncRNA localized in the X chromosome inactiva-
tion center (XIC) [85]. Xist coats the X chromosome, which

gradually removes RNA polymerase II and active histone
marks such as H3K4 trimethylation. This is followed by a
sequential gain of diverse repressive marks including

H3K27 trimethylation (H3K27me3), macroH2A.1 histone
(macroH2A), and DNA methylation on the inactivated X
chromosome (Xi). Consequently, Xi is silenced throughout life

with remarkable stability. Despite possessing a stable nature,
Xi can be reactivated in specific contexts such as primordial
germ cell differentiation, somatic cell nuclear transfer (SCNT),
and somatic cell reprogramming [86]. Due to its ease and

reproducibility, reprogramming provides an unprecedented
tool for characterizing the events involved in XCR [87,88].

A relevant question in the field of reprogramming is the

order of the epigenetic events leading to XCR. High-
resolution single-cell time course analyses of reprogramming
using immunofluorescence and RNA fluorescence in situ

hybridization (FISH) [87,89] demonstrate that XCR occurs
in the following order: (1) recruitment of H3K27 methyltrans-
ferase EZH2 to Xi (XiEZH2+) in E-cadherin (CDH1) positive

(CDH1+) cells, (2) activation of NANOG in XiEZH2+ cells,
(3) loss of EZH2, H3K27me3, Xist coating, and macroH2A1
on Xi in NANOG+ cells, and (4) removal of DNA methyla-
tion on Xi and activation of the transcribed antisense to Xist

(Tsix). Therefore, except for DNA demethylation, the events
of XCR in reprogramming follow the inverse order of the
events of XCI in development. Notably, the removal of

DNA methylation during XCR in reprogramming is TET-
independent and hence passive, and the expression of Tsix is
paradoxically dispensable.

Conspicuously, despite the initiation of XCR in NANOG+

cells, full reactivation of the core pluripotency circuitry pre-
cedes XCR in reprogramming. Accordingly, XCR serves as

one of the crucial standards for bona fide mouse iPSC identifi-
cation [90]. This is consistent with the observation that the
pluripotency factor PRDM14 represses Xist expression [91].
Although ectopic expression of Xist impairs XCR in repro-

gramming, its depletion does not affect XCR or reprogram-
ming efficiency [87]. This is inconsistent with the
observations in SCNT, the efficiency of which is greatly

improved following Xist elimination [92]. A possible explana-
tion could be that Xist plays opposite roles at different stages
of somatic cell reprogramming, as SCNT has no obvious

phases. In support of this idea, Xist depletion impairs the
MET in the early phase of reprogramming but significantly
improves the conversion of pre-iPSCs to iPSCs [93]. Interest-
ingly, the reprogramming booster Vc [81] promotes XCR in

reprogramming by preventing the relocalization of macroH2A
onto Xi [93]. This is likely mediated by the boosting effect of
Vc on H3K27me3 demethylases [94,95]. It remains to be deter-

mined whether Vc also acts through unrelated mechanisms, for
example by decreasing the levels of N6-methyladenosine (m6A)
deposition on Xist, as Vc is also a cofactor for another two

dioxygenases, the alpha-ketoglutarate-dependent dioxygenase
fat mass and obesity-associated protein (FTO) and AlkB
homolog 5 (ALKBH5), which are responsible for erasing this

epitranscriptomic mark [96–98].
Notably, the aforementioned mechanisms have been inves-

tigated in mouse cell reprogramming, but it is unclear whether
the same principles apply to human cells. In this regard, XCR
is either absent or unstable in female donors when human
iPSCs are generated using standard culture conditions [99],
but is present in reprogramming to naı̈ve pluripotency [100].

Further studies are needed to understand the differences and
similarities between XCR in mouse and human cell
reprogramming.

Perspectives

It is becoming increasingly evident that lncRNAs are critical
players in cell fate regulation. Few lncRNAs, mostly related
to p53 or cell senescence, have been well studied thus far,
but the repertoire of lncRNAs that regulate pluripotency/re-

programming is likely large. Systematic profiling is needed
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for functional characterization of these lncRNAs. This could
be facilitated by developing highly efficient/deterministic
reprogramming systems [101], as low-efficiency protocols are

prone to cell heterogeneity and the cell reprogramming kinetics
are asynchronous, which complicates the interpretations. In
addition, specialized high-throughput RNA sequencing

approaches such as global nuclear run-on sequencing (GRO-
seq) and sequencing with RNase R treatment are necessary
to enrich for certain lncRNAs such as eRNAs and circRNAs

[102,103], respectively, since they are rarely detected using con-
ventional RNA sequencing methodologies. In this regard, sev-
eral circRNAs exhibit human iPSC/ESC-specific expression
[104,105]. Among them, circBIRC6 and circCORO1C posi-

tively regulate pluripotency maintenance and reprogramming
[104]. circBIRC6 acts as a sponge for differentiation-
mediated miRNAs, whereas the mechanism underlying cir-

cCORO1C regulation is unknown. An important considera-
tion is that functional lncRNA screens with short hairpin
RNAs (shRNAs) or small interfering RNAs (siRNAs) have

inevitable limitations because many lncRNAs are localized in
the nucleus, where shRNAs/siRNAs cannot effectively silence
transcripts. As a solution, CRISPR/Cas9-based screening sys-

tems assisted by comprehensive computer prediction algo-
rithms could be used to increase on-target efficiency and
minimize off-target effects. This approach requires eliminating
the whole DNA fragment (rather than introducing a frame

shift for coding genes), potentially in the promoter region, to
suppress expression/functionality of lncRNAs without affect-
ing the nearby genes [106]. CRISPR/Cas13 and CRISPR inter-

ference are potential alternatives, as they can be used to edit
RNA or repress gene expression without altering the genome
[107,108]. Collectively, the characterization of lncRNAs in

reprogramming will not only help to uncover new layers of
regulation for the diverse pathways modulating reprogram-
ming but may also have implications in other types of cell fate

transitions.
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