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Abstract Microsatellite instability (MSI) is a key biomarker for cancer therapy and prognosis. Tra-

ditional experimental assays are laborious and time-consuming, and next-generation sequencing-

based computational methods do not work on leukemia samples, paraffin-embedded samples, or

patient-derived xenografts/organoids, due to the requirement of matched normal samples. Herein,

we developed MSIsensor-pro, an open-source single sample MSI scoring method for research and

clinical applications. MSIsensor-pro introduces a multinomial distribution model to quantify poly-

merase slippages for each tumor sample and a discriminative site selection method to enable MSI

detection without matched normal samples. We demonstrate that MSIsensor-pro is an ultrafast,

accurate, and robust MSI calling method. Using samples with various sequencing depths and tumor

purities, MSIsensor-pro significantly outperformed the current leading methods in both accuracy
nces and
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and computational cost. MSIsensor-pro is available at https://github.com/xjtu-omics/msisensor-pro

and free for non-commercial use, while a commercial license is provided upon request.
Introduction

Microsatellite instability (MSI) is a form of hypermutation in
the microsatellites of malignancies due to a deficient DNA
mismatch repair (MMR) system [1]. Significant proportions

of tumor samples with MSI status are observed in colorectal
cancer (CRC), stomach adenocarcinoma (STAD), and uterine
corpus endometrial carcinoma (UCEC) [2,3]. Given that MSI

is an important molecular phenotype for cancers and a key
biomarker for cancer immunotherapy [4–6], two gold stan-
dard detection methods, MSI-PCR and MSI-IHC, are widely

used for identifying MSI clinically [7,8]. However, both meth-
ods are laborious, time-consuming, and expensive [7,8].
Recently, several next-generation-sequencing (NGS)-based

methods have been developed, which show improved time
and cost efficiency, and are highly consistent with both gold
standards [2,3,9–13]. For instance, MSIsensor [10], an FDA-
authorized MSI detection solution based on MSK-IMPACT

[14], achieved 99.4% concordance and high sensitivity [15].
However, these NGS methods have several limitations, such
as requiring matched normal samples as control (sometimes

inaccessible), computational expense, and being affected by
low sequencing depths and low tumor purities [7]. Particu-
larly, due to the requirement of matched normal samples,

NGS-based methods do not work on leukemia samples,
paraffin embedded samples or patient-derived xenografts/
organoids.

A hallmark of MSI is the enrichment of insertions or dele-
tions in microsatellite regions initiated by polymerase slippage
[16,17] (Figure S1), which we have argued is an iterative pro-
cess and described using a multinomial distribution (MND)

model (Figure S2), providing promising improvements for
MSI detection efficacy using NGS data. Here, we report a
novel MSI calling method, MSIsensor-pro, which addresses

the aforementioned limitations of current NGS-based MSI
detection tools by applying an MND model to capture the
intrinsic properties of polymerase slippages in a single sample.

We demonstrated that MSIsensor-pro is an ultrafast, accurate,
and normal sample-free MSI calling method. Moreover, it out-
performs all current MSI detection methods and is robust for
samples with various sequencing depths, tumor purities, and

target sequencing regions.

Method

Data preprocessing

Whole-exome sequencing data and clinical MSI status of
1532 tumor–normal pairs were downloaded from The Cancer
Genome Atlas (TCGA) [18]. The sequencing data were

aligned against a human reference genome (GRCh38), and
MSI was determined using the gold standards [19]. The scan
module (default parameters) in MSIsensor [10] was used to

retrieve the microsatellite regions from the human reference
genome. Then, the allelic distribution of each microsatellite
for each sample was extracted and used in subsequent

analyses.

Multinomial distribution model for polymerase slippage

To detect MSI without matched normal samples, we evaluated
the stability of microsatellites using single samples. Based on
the characteristics of allelic distribution of microsatellites in
normal samples (Figures S1 and S2), we proposed that the

polymerase slippage during DNA replication is an iterative
process and that each step is independently accumulative.
Therefore, we use multinomial distribution to model the slip-

page process in microsatellite sites. We use variable x to denote
hysteresis synthesis (causing deletions; x ¼ 0), pre-synthesis
(causing insertions; x ¼ 2), and normal synthesis (x ¼ 1) of

each step of repeat unit synthesis, and the corresponding prob-
abilities are denoted by p, q, and 1� p� q, respectively. Then,
x is subjected to a multinoulli distribution, and the probability
distribution function is as follows:

pro xjp; qð Þ ¼
p if x ¼ 0

1� p� q if x ¼ 1

q if x ¼ 2

8><
>: ð1Þ

Thus, for a microsatellite site with n repeats on the refer-
ence genome, we assume that y is the repeat length observed
from the data. Therefore, we have:

y ¼
Xn

i¼1

xi ð2Þ

and the probability distribution function of y is:

pro yjp; qð Þ ¼ proND þ D y 6 nð Þ
proNI þ D y > nð Þ

�
ð3Þ

where:

proND ¼ Cn�y
n

Yy
t¼1

pro xt ¼ 1ð Þ
Yn
t¼yþ1

pro xt ¼ 0ð Þ ð4Þ

proNI ¼ Cy�n
n

Y2n�y

t¼1

proðxt ¼ 1Þ
Yn

t¼2n�yþ1

proðxt ¼ 2Þ ð5Þ

Here, proND and proNI denote the probability of acquiring
the observed repeat length due to deletion and insertion,

respectively, with the minimum number of steps, while D
is the probability of using more steps. Since D is much
smaller and difficult to calculate, we ignore it in practice

to preserve computational resources. For a microsatellite
region spanned by m reads, we denote the observed repeat
length as y1; y2; . . . yi . . . ; ym and its distribution as
Y ¼ fy1; y2; . . . yi . . . ; ymg. Based on Y, we use the

maximum likelihood estimation to compute p and q in
Equation (6).

L Yjp; qð Þ ¼
Ym
i¼1

pro yið Þ ð6Þ
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Finally, p and q can be estimated as follows:

p ¼
Pm
i¼1

n�yið Þ

nm

q ¼
Pm
i¼nþ1

yi�nð Þ

nm

8>>><
>>>:

ð7Þ

The values of p and q are positively correlated with the
magnitude of polymerase slippages.

Validation of the MND model

To evaluate how well parameters p and q from the MND
mimic polymerase slippages for microsatellites with various
repeat lengths, we randomly selected 27,200 microsatellites

from normal control samples of three cancer types in
TCGA and estimated the parameters p and q for each
microsatellite site. Then, the calculated p and q values (also

known as the probabilities of deletion and insertion) were
used to simulate allele length distribution. The sites with
no significant difference (P < 0.05, Kolmogorov–Smirnov

test) between real and simulated distribution are defined
as fitted sites. Then, the percentage of fitted sites to all test
sites was used to evaluate the fitness of the MND model.

To investigate polymerase slippages in tumor samples, we
estimated p and q for 1532 TCGA tumor samples and com-
pared the differences between MSI and microsatellite stable
(MSS) samples. In this study, only samples with status of

MSI-H as determined by MSI-PCR are classified as MSI
samples, whereas cancer samples with status MSS or MSI-
L are classified as MSS samples, as reported previously

[3]. We found that p discriminates between MSI and MSS
samples while q does not, indicating that p is an effective
metric for MSI classification.

MSI calling of MSIsensor-pro

We used p (probability of deletion) from the MND model

to evaluate the stability of microsatellites. To distinguish
unstable sites from stable ones we determined the mean
(li) and standard deviation (ri) of p in the i-th microsatel-
lite site in normal samples. Specifically, a microsatellite is

classified as unstable with p> li + 3ri. We used 1532 nor-
mal control samples from three cancer types to build the
baseline. The MSI score, defined as the percentage of

unstable sites within all detected sites in a sample, is used
for MSI calling.

Discriminative microsatellite site selection

To find discriminative microsatellite (DMS) sites for MSI
calling, we computed the contribution of each site to MSI

classification. For a given microsatellite site, the parameter
p was used for MSI classification, and then the area under
the receiver operating characteristic curve (AUC) was calcu-
lated to evaluate the contribution of this site to MSI call-

ing. Finally, sites with AUC > 0.65 were defined as DMS
sites and used for MSI calling. In this study, 340 TCGA
samples were used to discover DMS sites, and all 1532

samples were used to test the performance of MSIsensor-
pro.
MSIsensor-pro performance evaluation

To assess the performance of MSIsensor-pro, we benchmarked
MSIsensor-pro against MSIsensor [10], MANTIS [12], and
mSINGS [11] using the 1532 TCGA tumor samples. The

MSI score was used to rank sites for MSI classification, and
AUC was used to evaluate the performance of each method
(File S1). CPU usage, memory, and runtime for all these meth-
ods were tested on a TCGA sample, TCGA-AD-A5EJ, using a

Linux machine running Ubuntu18.04 OS with Intel(R) Core
(TM) i5-7500 CPU@3.40 GHz and 32-GB memory.

To compare the performances of the four methods on sam-

ples with low sequencing depths or low tumor purities, we used
178 CRC (78 MSI and 100 MSS) tumor–normal paired sam-
ples from TCGA to simulate test data. We downsampled the

raw sequencing data to 5 �, 10 �, 20 �, 40 �, 60 �, and 80 �
sequencing depths and mixed different proportions of tumor
and normal sequencing data to generate samples with tumor

purities ranging from 5% to 80%. We called MSI for all sim-
ulated data and calculated the AUC for each method. To
assess the performance of MSIsensor-pro using fewer sites,
we selected microsatellite sets containing the top 1, 2, 5, 10,

20, 50, 100, 200, 500, and 1000 DMS sites for MSI calling.
In addition, we randomly selected various number of
microsatellites from DMS sites for MSI calling to examine

the number of sites sufficient for MSI calling by MSIsensor-
pro.

Results

Evaluation of MND model

To quantitatively describe the polymerase slippages present in
a single sample, we first examined the allele length distribu-

tions of 27,200 microsatellites in 1532 normal samples from
TCGA [18] (Tables S1 and S2; Method). The distributions flat-
tened (the variances became larger and the modes deviated

from expectation) with increases in the repeat length of
microsatellites in the reference genome (Figure 1A), suggesting
that polymerase slippage could be an iterative process. We pro-
posed that polymerase slippages are independently cumulative

in the DNA replication process and could be modeled by the
MND model. Here, we used p and q to denote the probabilities
of hysteresis synthesis (causing deletions) and pre-synthesis

(causing insertions), respectively, for each replication unit
(Figure S2). We next estimated p and q for each microsatellite
to quantify the polymerase slippage in a given allele length

distribution.
To explore the characteristics of p and q in the MND

model, we applied the model to 1532 TCGA normal samples.

We obtained a total of 11,666 microsatellites with sufficient
read coverage (>20 � ) in more than half of the samples for
subsequent study (Tables S1 and S2). We found that the aver-
age probability of hysteresis synthesis, p, is significantly larger

(P< 0.05, Wilcoxon rank-sum test) than that of presynthesis,
q (Figure S3), at these sites, indicating that polymerase slip-
pages tend to cause more deletions than insertions at

microsatellites, confirming previous reports [2,17]. To evaluate
the power of our MND model for describing polymerase slip-
pages in DNA replication, we simulated the allele length distri-

butions at each microsatellite site with their corresponding



Figure 1 MND model of polymerase slippages

A. Allele length distribution of homopolymers in normal samples. The gray vertical lines represent the repeat lengths in the human

reference genome (GRCh38). B. The fitness of the MND model for polymerase slippages. The values on the top of boxplots represent the

percentages of sites fitted (P < 0.05, Kolmogorov–Smirnov test) to the MND model at the respective repeat lengths. C. Dot plots for the

means of parameter p (probability of deletion) in the MND model using 326 MSI and 1206 MSS samples (11,666 sites). D. Dot plots for

the means of parameter q (probability of insertion) in the MND model using 326 MSI and 1206 MSS samples (11,666 sites). Dots are

color-scaled according to the number of sites as shown by the color key. Dots near the diagonal lines represent sites undistinguishable

between MSI and MSS. MND, multinomial distribution; MSI, microsatellite instability; MSS, microsatellite stable.
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computed p and q values, and compared them with the

observed values from sequencing data. We found that the
allele length distributions of the simulated data were consistent
with those of observed values at 91.97% of microsatellites and

the similarities between the two distributions decreased with
increasing repeat length (Figures 1B and S4 and S5), confirm-
ing that the MND model is capable of describing polymerase

slippages at microsatellite sites.
Performance of MSIsensor-pro

Based on the MND model, we developed a method called

MSIsensor-pro to detect MSI. We applied our MND model
to 1532 TCGA tumor samples with clinical MSI status and
obtained their p and q values at each microsatellite site. We

found that the MSI samples have significantly larger p values
than MSS samples (P < 2 � 1016), while q values in the MSI
and MSS samples are not significantly different (Figures 1C,

D and S6–S9). Thus, it is conceivable that either the higher
incidence of polymerase slippages or failure to fix deletion
errors, and therefore, the greater instability of microsatellites

in MSI as opposed to MSS, could be attributed to more dele-
tions rather than insertions [9]. Therefore, parameter p could
evaluate the stability of each microsatellite site. MSIsensor-
pro classifies the i-th microsatellite as unstable when its p is lar-

ger than li + 3ri, in which li and ri are the mean and standard
deviation, respectively, of p in 1532 normal samples at the i-th
microsatellite. The fraction of unstable sites in a given

microsatellite set is used to score MSI in a tumor sample
(Figure S10 and Methods).
To assess the performance of MSIsensor-pro in terms of

accuracy and computational cost, we compared MSIsensor-
pro against MSIsensor [10], MANTIS [12], and mSINGS
[11]. Among them, MSIsensor and MANTIS require tumor–

normal-paired samples, whereas mSINGS requires tumor-
only samples (Tables S1 and S2; File S2). First, we applied
MSIsensor-pro to 1532 TCGA tumor samples based on

11,666 preselected microsatellites to detect MSI and then com-
pared the MSI detection accuracy with the other three meth-
ods in the same samples using AUC. We noticed that even
without matched normal samples, AUC values of

MSIsensor-pro are comparable to those of MSIsensor and
MANTIS, but much higher than those of mSINGS (Table 1

and Table S3).

Sequencing data from samples with low sequencing cover-
age or low tumor purities are common challenges for robust
MSI detection in clinical applications [15]. To indicate the

robustness of MSIsensor-pro for various sequencing depths
or tumor purities, we evaluated the performance of all four
aforementioned methods on 178 CRC samples (78 MSI and
100 MSS) in both original settings and varied sequencing

depths or tumor purities. Multiple sequencing depths (5 �,
10 �, 20 �, 40 �, 60 �, and 80 �) resulted from simulating
and downsampling the original data, while various tumor puri-

ties (5%, 10%, 20%, 40%, 60%, and 80%) were simulated by
mixing the tumor and matched normal samples (Method).
Across samples of diverse depths and tumor purities, AUC val-

ues of MSIsensor-pro, MSIsensor, and MANTIS were all
much higher than those of mSINGS. Notably, MSIsensor-
pro, requiring tumor samples only, achieved performance

comparable to that of MSIsensor and MANTIS, both of



Table 1 AUC obtained using four MSI detection methods for 1532 samples from TCGA

Method Input CRC (n = 588) STAD (n = 412) UCEC (n = 532) Total (n = 1532)

MANTIS T–N 0.983 1.000 0.993 0.986

MSIsensor T–N 0.981 1.000 0.988 0.989

mSINGS T 0.594 0.711 0.634 0.594

MSIsensor-pro (all) T 0.993 0.999 0.987 0.993

MSIsensor-pro (DMS) T 0.997 1.000 0.990 0.994

Note: For MSIsensor-pro (all), all 11,666 preselected microsatellite sites were used for MSI computation; for MSIsensor-pro (DMS), only 7698

DMS sites were used for MSI computation. AUC, area under the receiver operating characteristic curve; DMS, discriminative microsatellite; CRC,

colorectal cancer; STAD, stomach adenocarcinoma; UCEC, uterine corpus endometrial carcinoma; T–N, tumor–normal paired sample; T, tumor

only sample.
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which require normal–tumor-paired samples to call MSI
(Figure 2A; Tables S4–S7). These results confirm the robust-
ness of MSIsensor-pro and indicate that MSIsensor-pro can

achieve high accuracy on samples with low sequencing depth
(e.g., 20 �) or low tumor purity (e.g., 40%).

To further evaluate the computational performances of all

these four methods, we called MSI for a TCGA sample
TCGA-AD-A5EJ (35-GB tumor and 12-GB normal bam files)
using these four methods on a Linux machine running Ubun-
tu18.04 OS with Intel(R) Core (TM) i5-7500 CPU@3.40 GHz

and 32-GB memory. MSIsensor-pro and MSIsensor required
Figure 2 MSI calling accuracy in TCGA dataset

A. AUC for four MSI detection methods across various sequencing de

from 5% to 100%; right) in 78 MSI and 100 randomly selected MSS C

pro, MSIsensor, MANTIS, and mSINGS. MSIsensor-pro was tested

DMS sites for MSIsensor-pro (DMS), respectively. B. AUC of MSIsen

samples in total and for individual cancer types of CRC, STAD, and U

sites. C. AUC of MSIsensor-pro using 1–1000 randomly-selected DM

with 50 randomly-selected sites. These random tests were run 10 times.

randomly selected. The black point is the mean of 10 AUC values

representing the maximum and minimum of 10 AUCs, respectively. A

discriminative microsatellite; CRC, colorectal cancer; STAD, stomach

T–N, tumor–normal paired; T, tumor only.
only 4 min and 15 min, respectively, thus performing signifi-
cantly faster than mSINGS (94 min) and MANTIS
(119 min). In addition, MSIsensor-pro consumed much less

memory than MSIsensor, mSINGS, and MANTIS (Table 2;
Figures S11 and S12).

While MSIsensor-pro exhibited satisfactory all-around per-

formance in detecting MSI using the 11,666 preselected
microsatellites, these sites seemed to have an unequal contribu-
tion to MSI classifications (Figure S13). We therefore evalu-
ated the contribution of each microsatellite based on MND

parameter p and identified 7698 sites (Table S8) with strong
pths (ranging from 5 � to 100 �; left) and tumor purities (ranging

RC samples from TCGA. The methods tested include MSIsensor-

using all 11,666 preselected sites for MSIsensor-pro (all) and 7698

sor-pro using top 1–1000 contributing DMS sites for 1532 TCGA

CEC. AUC values approach a plateau with the top 20 contributing

S sites for 1532 TCGA samples. AUC values approach a plateau

Data points are color-coded according to the number of DMS sites

for each group, with the top line and bottom lines of each bar

UC, area under the receiver operating characteristic curve; DMS,

adenocarcinoma; UCEC, uterine corpus endometrial carcinoma.



Table 2 Peak RAM and runtime used by four MSI detection methods for the sample TCGA-AD-A5EJ

Method Input Peak RAM (GB) Runtime (min)

MANTIS T–N 3.712 119

MSIsensor T–N 0.576 15

mSINGS T 2.592 94

MSIsensor-pro (all) T 0.032 4

MSIsensor-pro (DMS) T 0.032 3

Note: Runtime is evaluated by wall clock time.
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contributions (AUC > 0.75), which are defined as DMS sites
(Figure S13, Table S8, and Method). When only DMS sites
were used, MSIsensor-pro exhibited a slight improvement
compared to MSI detection using all 11,666 sites and per-

formed superiorly to all other methods in the 1532 TCGA
samples. Using DMS sites, performance of MSIsensor-pro
was further enhanced with respect to sequencing data of low

depths, especially for depths below 40 � (Figure 2A; Tables
S4 and S5). For data of different tumor purities using DMS
sites, MSIsensor-pro exhibited performance comparable to

those of other tumor–normal-paired methods for tumor puri-
ties of over 40%. However, for lower tumor purities
(<40%), although the performances of all methods decreased,

the performance of MSIsensor-pro on DMS sites remained
superior to all other methods examined (Figure 2A; Tables
S6 and S7).

Since only a portion of all 11,666 sites (DMS sites) were suf-

ficient for high performance MSI calling by MSIsensor-pro, we
wonder whether an even smaller subset of DMS sites would be
adequate for MSIsensor-pro to achieve similar performance,

which would reduce time and cost in practical clinical applica-
tions. We therefore assessed the MSI calling performance of
MSIsensor-pro on microsatellite sets from single type of tumor

samples or in combination containing the top 1, 2, 5, 10, 20,
50, 100, 200, 500, and 1000 DMS sites based on their contribu-
tions. We found that even with only 1 top site, MSIsensor-pro
achieved AUC values ranging 0.92–0.96 (Figure 2B; Tables S9

and S10). The performance improved with increases in the
number of top sites and reached a plateau when using the
top 20 sites (0.98 AUC). In addition, by testing MSIsensor-

pro performance on various number of randomly selected
DMS sites, we sought to identify small panels of DMS sites
that are potentially effective at robust MSI calling. Indeed,

we found that the AUC values for MSI detection steadily
increased with growing number of randomly-selected DMS
sites. When as few as 50 random sites were used, the AUC

was approximately 0.98 and remained stable. Taken together,
these results suggest that MSIsensor-pro could be applied to
various target sequencing panels with as few as 50 sites (Fig-
ures 2C and S14; Tables S9 and S10).

Discussion

In this study, we completely redesigned the MSI scoring strat-
egy. By incorporating a MND model for polymerase slippage,
MSIsensor-pro scores MSI on tumor samples without matched

normal controls, enabling detection of MSI status on patient-
derived xenografts/organoids, leukemia, and paraffin-
embedded samples. In addition, MSIsensor-pro is able to score
MSI using as few as 50 microsatellite sites (Figure 2C), indicat-
ing its potential to compute MSI status in cancer gene panels,
stool DNA, and circulating tumor DNA from liquid biopsy
samples.

MSIsensor-pro exhibits remarkable advantages in terms of

both accuracy and computational cost, compared to the cur-
rent leading NGS-based MSI scoring methods tested in this
study, especially when processing samples with low sequencing

depths or low tumor purities (Figure 2). MSIsensor-pro
improves AUC values of MSI classification with tumor only
samples from 0.594 (mSINGS) to 0.994 in 1532 TCGA sam-

ples (Table 1). We have also demonstrated the advantageous
performance of MSIsensor-pro using data with various tumor
purities (Figure 2A). We will further optimize our approach to

integrate tumor purity information to our MND model for
polymerase slippage.

In addition to these methodological analyses, we also exam-
ine the properties of DMS sites and find that these sites are clo-

ser to splicing sites and located in genes with higher expression
than the other sites (Figures S15–S17), indicating potential
roles of DMS sites in tumorigenesis.
Code availability

MSIsensor-pro is available at https://github.com/xjtu-omics/

msisensor-pro with help documentation and demo data. It is
free for non-commercial use by academic, government, and
non-profit/not-for-profit institutions. A commercial version

of the software is available and licensed through Xi’an Jiao-
tong University. For more information, please contact
kaiye@xjtu.edu.cn.

Data availability

Primary sequencing data, gold standard MSI status, and RNA
expression data can be downloaded from TCGA Research
Network (http://cancergenome.nih.gov/). All results generated

by this study are available in Supplementary materials from
the article.
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