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Abstract Previous studies have reported that some important loci are missed in single-locus

genome-wide association studies (GWAS), especially because of the large phenotypic error in field

experiments. To solve this issue, multi-locus GWAS methods have been recommended. However,

only a few software packages for multi-locus GWAS are available. Therefore, we developed an

R software named mrMLM v4.0.2. This software integrates mrMLM, FASTmrMLM, FAS-

TmrEMMA, pLARmEB, pKWmEB, and ISIS EM-BLASSO methods developed by our lab. There

are four components in mrMLM v4.0.2, including dataset input, parameter setting, software run-

ning, and result output. The fread function in data.table is used to quickly read datasets, especially

big datasets, and the doParallel package is used to conduct parallel computation using multiple

CPUs. In addition, the graphical user interface software mrMLM.GUI v4.0.2, built upon Shiny,

is also available. To confirm the correctness of the aforementioned programs, all the methods in

mrMLM v4.0.2 and three widely-used methods were used to analyze real and simulated datasets.

The results confirm the superior performance of mrMLM v4.0.2 to other methods currently avail-

able. False positive rates are effectively controlled, albeit with a less stringent significance threshold.

mrMLM v4.0.2 is publicly available at BioCode (https://bigd.big.ac.cn/biocode/tools/BT007077) or

R (https://cran.r-project.org/web/packages/mrMLM.GUI/index.html) as an open-source software.
Introduction

Since the establishment of the mixed linear model (MLM)
framework of genome-wide association studies (GWAS)
[1,2], the MLM-based GWAS methodologies have been widely
nces and
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used to identify many important loci for complex traits in ani-
mals, plants, and humans. With the technological advances in
molecular biology, a huge number of markers are easily

obtained. However, this brings new computational and ana-
lytic challenges. The MLM-based single-marker association
in genome-wide scans proves its feasibility. To increase statis-

tical power and decrease running time in quantitative trait
nucleotide (QTN) detection, a series of additional MLM-
based methods have been proposed. For example, Kang

et al. [3] proposed an efficient mixed model association
(EMMA), which was then extended to generate EMMAX [4]
and GEMMA [5]. Meanwhile, Zhang et al. [6] reported a com-
pressed MLM (CMLM) method, which was then extended to

develop ECMLM [7] and SUPER [8]. In addition, other meth-
ods have also been developed, e.g., GRAMMAR-Gamma [9],
FaST-LMM [10], FaST-LMM-Select [11], and BOLT-LMM

[12]. All the aforementioned methods have been subjected to
multiple testing. To control the false positive rate in such tests,
the Bonferroni correction is frequently adopted. However, this

correction is often too conservative to detect many important
loci.

To detect more QTNs with a low false positive rate, multi-

locus methods have been recommended. This recommendation
was implemented for the first time by Segura and his colleagues
[13]. Thereafter, Liu et al. [14] developed FarmCPU. Based on
the advantages of the random model of QTN effect over the

fixed model [15], we have recently developed six multi-locus
methods: mrMLM [16], FASTmrMLM [17] (File S1), FAS-
TmrEMMA [18], ISIS EM-BLASSO [19], pLARmEB [20],

and pKWmEB [21] (File S2). These methods include two
stages. First, various algorithms are used to select all the poten-
tially associated markers. Second, the selected markers are put

in one model, then all the effects in this model are estimated by
empirical Bayes, and all the non-zero effects are further identi-
fied by likelihood ratio test for true QTNs. Although a less

stringent significance threshold is adopted, these methods have
high power and accuracy, and a low false positive rate.

Many packages are available in the GWAS software, e.g.,
PLINK [22], TASSEL [23], EMMA [3], EMMAX [4],

GEMMA [5], and GAPIT [24,25] (File S2). However, these
packages are almost all based on single-marker association
in genome scans. To popularize our multi-locus GWAS meth-

ods, we integrated all the six multi-locus approaches into one
R package named mrMLM v4.0.2 (Figure S1).

Implementation

mrMLM v4.0.2 includes four parts (Figure 1): dataset input,
parameter setting, software running, and result output. In the

dataset input module, users need to input trait phenotypes
and marker genotypes. The two types of datasets are input
by the filePhe and fileGen files, respectively, and the available

file formats are *.csv and *.txt. Marker genotypes may be
indicated by mrMLM numeric (or character) and Hapmap
formats, and are used to calculate both kinship (using

mrMLM or EMMA [3]) and population structure (using
Structure [26] or fastSTRUCTURE [27]) matrices. This soft-
ware also has an option to input kinship matrix, population
structure matrix, and covariate table. The three types of data-

sets are input by the fileKin, filePS, and fileCov files, respec-
tively. In the parameter setting module, users need to set 17
parameters. Among these parameters, Likelihood, SearchRa-
dius, and SelectVariable are specific to method. Seven param-
eters may be default or set by users. fileGen, filePhe,

Genformat, Method, Trait, CriLOD, and dir must be set
by users. In the software running module, users need to use
two commands: library(‘‘mrMLM”) and mrMLM(. . .). In

the result output module, intermediate and final results and
two plots (*.png, *.tiff, *.jpeg, and *.pdf) are output to the
path that users have previously set, i.e., dir=‘‘D:/Users”.

The software is started in a computer or server via the codes
below (File S3):
mrMLM(fileGen=‘‘D:/Users/Genotype_num.csv”,filePhe=
‘‘D:/Users/Phenotype.csv”,fileKin=‘‘D:/Users/Kinship.csv”,

filePS=‘‘D:/Users/PopStr.csv”,PopStrType=‘‘Q”,fileCov=
‘‘D:/Users/Covariate.csv”,Genformat=‘‘Num”,Method =
c(‘‘mrMLM”,‘‘FASTmrMLM”,‘‘FASTmrEMMA”,‘‘pLARmEB”,

‘‘pKWmEB”,‘‘ISIS EM-BLASSO”),Likelihood= ‘‘REML”,
Trait = 1:3,SearchRadius= 20,CriLOD= 3,SelectVariable = 50,
Bootstrap = FALSE,DrawPlot = FALSE,Plotformat=‘‘jpeg”,

dir=‘‘D:/Users”)
R core is a single-threaded program, and its computing

mode limits its ability to handle large-scale data. In mrMLM

v4.0.2, however, several R packages were used to perform par-
allel calculation. First, detectCores() and makeCluster(cl.cores)
in a parallel package were used, respectively, to detect the
number of CPUs on the current host and create a set of copies

of R running in parallel and communicating over sockets.
Then, registerDoParallel(cl) in doParallel package was used
to register the parallel backend with the foreach package.

Third, ‘for’ loop was replaced by foreach(i = 1:n,.combine=’
rbind’)%dopar%{. . .} in foreach package. Finally, stopClus-
ter(cl) in parallel package was used to stop the aforementioned

parallel calculation.
fread function in data.table is used to quickly read datasets,

especially big datasets. For reading one genetic dataset with

500 individuals and one million markers, fread was three times
faster (72.84 s) than read.csv (201.45 s). Meanwhile, we utilized
the advantages of package bigmemory, which can create, store,
access, andmanipulatemassivematrices, todefine the huge geno-

typicmatrixwith the aid of the big.matrix() function. This largely
saves the running time, especially for massive genetic matrix.

The graphical user interface (GUI) software mrMLM.GUI

v4.0.2, built upon Shiny, is available as well. The interactive
GUI is started via the two commands ‘‘library(mrMLM.
GUI)” and ‘‘mrMLM.GUI()” (File S4). The next operation

can be done through clicking the mouse conveniently.

Results

To test the performance of the software package mrMLM
v4.0.2, three real datasets in rice [28], maize [29], and Simmen-
tal beef cattle [30] were downloaded from the Rice SNP-Seek

Database (http://snp-seek.irri.org./_download.zul), the Mai-
zego (http://www.maizego.org/Resources.html), and the
Dryad Digital Repository (https://datadryad.org/stash/data-

set/doi:10.5061/dryad.4qc06), respectively (File S5). In the
aforementioned three datasets, the traits of interest are grain
width, oil concentration, and kidney weight, respectively; the
numbers of phenotypic accessions are 2262, 368, and 1136,

respectively; the numbers of markers are 1.01, 1.06, and 0.67
million, respectively (File S5).

http://snp-seek.irri.org./_download.zul
http://www.maizego.org/Resources.html
https://datadryad.org/stash/dataset/doi%3a10.5061/dryad.4qc06
https://datadryad.org/stash/dataset/doi%3a10.5061/dryad.4qc06


Figure 1 The framework of mrMLM v4.0.2

Zhang YW et al /mrMLM v4.0.2: An R Platform for Multi-locus GWAS 483
Influence of various factors on QTN detection using mrMLM

v4.0.2

To investigate the effect of the number of markers on running
time, four samples with various numbers of markers (0.2, 0.5,
0.8, and 1.01 million) and a fixed sample size (500 accessions)

were sampled from the real dataset from rice [28]. As a result,
it took 0.23, 0.66, 1.18, and 1.61 hours, respectively (Fig-
ure 2A). This indicates the increase of running time with the
increase of the number of markers. To investigate the effect
of sample size on running time, 300, 600, 900, 1200, and

2262 accessions were sampled from 2262 accessions each with
1.01 million markers from the rice dataset [28]. As a result, it
took 0.37, 0.78, 1.30, 2.04, and 9.56 hours, respectively (Fig-

ure 2B). This indicates that larger sample size requires much
more running time than smaller ones.

To investigate the effect of the number of CPUs on

speedup, one sample with 500 accessions and 1.01 million



Figure 2 Performance of mrMLM v4.0.2 in detecting QTNs for rice grain width

The dataset was derived from the reference [28]. QTN, quantitative trait nucleotide; GWAS, genome-wide association study.
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markers was analyzed by the mrMLM software under various
numbers of CPUs (1 to 7). As a result, the speedups are 1.00,

1.65, 2.07, 2.45, 3.10, 3.23, and 3.52, respectively (Figure 2C;
Table S1). This indicates the effectiveness of parallel comput-
ing. The relatively small speedups with 5–7 CPUs for pLAR-

mEB and ISIS EM-BLASSO may be due to the fact that
their potentially associated markers were determined at the
chromosome and genome levels, respectively (Table S1). To
compare the running time of various methods, one sample with

500 accessions and 1.01 million markers was analyzed by seven
methods (mrMLM, FASTmrMLM, FASTmrEMMA, pLAR-
mEB, pKWmEB, ISIS EM-BLASSO, and FarmCPU). As a

result, it took 1.43, 1.08, 1.45, 1.53, 3.07, 1.06, and 1.09 hours,
respectively (Figure 2D). This indicates that ISIS EM-
BLASSO is the fastest one, and FASTmrMLM is equivalent

with FarmCPU and faster than mrMLM.
The first to fourth experiments were conducted on the first
to fourth servers, respectively (File S5).

Real data analyses in rice, maize, and Simmental beef cattle

We re-analyzed the aforementioned three datasets in rice [28],

maize [29], and Simmental beef cattle [30]. The details can be
found in File S5.

The total running time of mrMLM, FASTmrMLM, FAS-
TmrEMMA, pLARmEB, pKWmEB, and ISIS EM-BLASSO

for the rice dataset is 9.56, 3.37, 11.58, 5.09, 6.13, and 1.06
hours, respectively. Clearly, ISIS EM-BLASSO is the fastest
followed by FASTmrMLM, pLARmEB, pKWmEB, and

mrMLM, while FASTmrEMMA is the slowest. The total
numbers of QTNs identified by the aforementioned six meth-
ods for grain width in rice are 73, 77, 42, 59, 17, and 31, respec-
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tively (Table S2). Around these QTNs, some genes have been
reported to be associated with grain width. Among these
reported genes, two were identified both by mrMLM and by

Wang and his colleagues [28], and eleven were detected only
by mrMLM (Figure 3A; Table S3). In addition, two genes were
predicted to be associated with grain width in this study (Fig-

ure 3A; Table S4).
The total numbers of QTNs detected by the aforemen-

tioned six methods for oil concentration in maize are 42, 43,

31, 29, 17, and 6, respectively (Table S5). Around these QTNs,
some genes have been reported to be associated with maize oil
concentration. Among these reported genes, ten were identified
both by mrMLM and by Li and his colleagues [29], thirteen

were detected only by mrMLM, and four were identified only
by Li and his colleagues [29] (Figure 3B; Table S6).

The total numbers of QTNs identified by the aforemen-

tioned six methods for kidney weight in Simmental beef cattle
are 4, 55, 167, 117, 8, and 48, respectively (Table S7). Around
these QTNs, some genes have been reported to be associated

with kidney weight. Among these reported genes, MECOM
was identified both by mrMLM and by An and his colleagues
[31]. LCORL and NCAPG, which are very important genes for

kidney weight in cattle, were detected only by mrMLM (Fig-
ure 3C; Table S8).

Discussion

To confirm the correctness of our software mrMLM v4.0.2,
the same simulation datasets (https://doi.org/10.5061/dryad.

sk652) from Zhang et al. [20] (File S6) were re-analyzed by
Figure 3 Manhattan and QQ plots for grain width, oil concentration,

Left is Manhattan plot, while right is QQ plot. A. Grain width in r

Simmental beef cattle [30]. The dots were used to indicate the known ge

by the software mrMLM (red), and only in original studies (grey), as

(blue). QQ, quantile–quantile.
the aforementioned six methods and three current methods
(GEMMA [5], FarmCPU [14], and EMMAX [4]). As a result,
our six methods are better than the three current methods (Fig-

ures S2–S4; Tables S9–S11). The conclusion was also con-
firmed by the studies of Zhang and his colleagues [32]. As
compared with the original packages of our multi-locus

GWAS methods, there have been some improvements in the
new version. First, the FASTmrMLM algorithm is described
for the first time in this study (File S1). Then, the new package

is faster in reading datasets and efficient in parallel computing
(Figure 2C). Even if the sample size is larger than 2000, FAS-
TmrEMMA is fast as well. This is because it is unnecessary to
solve eigenvector at genome scan. Finally, the option for con-

tinuous covariates has been set up in order to analyze animal
and human GWAS datasets. The new package works well
for continuous variables in plant, animal, and human GWAS,

although the current version doesn’t work for the case-control
datasets in human genetics. In addition, we correct one mis-
take in the determination of the potentially associated SNPs

in the Monte Carlo simulation studies of Zhang and his col-
leagues [20].

In the work of Zhang’s group [32], several major concerns

in GWAS have been discussed, i.e., methodological selection,
the critical probability value or log of odds (LOD) score, reli-
able candidate genes, and heritability missing.

Using mrMLM v4.0.2, individual parameters may be chan-

ged in order to obtain the best results (Files S3 and S4). For
example, the number of potentially associated SNPs for each
chromosome in pLARmEB [20] is set at 50, and the search

radius in mrMLM [16] and FASTmrMLM [17] is set at
20 kb in real data analysis. In addition, users should under-
and kidney weight in GWAS using mrMLM v4.0.2

ice [28]. B. Oil concentration in maize [29]. C. Kidney weight in

nes detected both by mrMLM and in original studies (black), only

well as candidate genes around QTNs from the software mrMLM

http://dx.doi.org/10.5061/dryad.sk652
http://dx.doi.org/10.5061/dryad.sk652
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stand some parameter settings. For example, the maximum
number of CPUs in parallel computation is set at 10. If users
want to use more CPU cores, this parameter needs to be mod-

ified in the codes. Of course, the accuracy, size, and color of
the GWAS figures and the critical LOD score line of significant
QTNs may be changed as well.

Conclusion

To popularize our multi-locus GWAS methods, six multi-locus
methods have been integrated into the software mrMLM
v4.0.2. In this package, three genotypic data formats are avail-
able, big dataset can be analyzed at server, parallel computa-

tion with multiple CPUs can be performed, and parameters
in the GWAS figures may be set. In addition, the graphical
user interface software, mrMLM.GUI v4.0.2, built upon

Shiny, is available as well. Real data analyses and Monte Carlo
simulation studies confirmed the advantages of our multi-locus
GWAS methods.

Code availability

mrMLM v4.0.2 and mrMLM.GUI v4.0.2 are freely available

for public use at BioCode (https://bigd.big.ac.cn/biocode/
tools/7077) and R (https://cran.r-project.org/web/packages/).
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