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Abstract Accurate identification of cell types from single-cell RNA sequencing (scRNA-seq) data

plays a critical role in a variety of scRNA-seq analysis studies. This task corresponds to solving

an unsupervised clustering problem, in which the similarity measurement between cells affects the

result significantly. Although many approaches for cell type identification have been proposed,

the accuracy still needs to be improved. In this study, we proposed a novel single-cell clustering

framework based on similarity learning, called SSRE. SSRE models the relationships between cells

based on subspace assumption, and generates a sparse representation of the cell-to-cell similarity.

The sparse representation retains the most similar neighbors for each cell. Besides, three classical

pairwise similarities are incorporated with a gene selection and enhancement strategy to further

improve the effectiveness of SSRE. Tested on ten real scRNA-seq datasets and five simulated data-

sets, SSRE achieved the superior performance in most cases compared to several state-of-the-art

single-cell clustering methods. In addition, SSRE can be extended to visualization of scRNA-seq

data and identification of differentially expressed genes. The matlab and python implementations

of SSRE are available at https://github.com/CSUBioGroup/SSRE.

Introduction

With the recent emergence of single-cell RNA sequencing

(scRNA-seq) technology, numerous scRNA-seq datasets have
been generated, which brings unique challenges for advanced

omics data analysis [1,2]. Unlike bulk sequencing averaging
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the expression of mass cells, scRNA-seq technique quantifies
gene expression at the single-cell resolution. Single-cell tech-
niques promote a wide variety of biological topics such as cell

heterogeneity, cell fate decision, and disease pathogenesis [3–
5]. Among all the applications, cell type identification plays a
fundamental role and its performance has a substantial impact

on downstream studies [6]. However, identifying cell types
from scRNA-seq data is still a challenging problem. The tradi-
tional clustering methods cannot work well on scRNA-seq

data because of the high noise rate and high dropouts [7].
Therefore, new efficient and reliable clustering methods for cell
type identification are urgent and meaningful.

In recent studies, several novel clustering approaches for

detecting cell types from scRNA-seq data have been proposed.
Among these methods, cell types are mainly decided on the
basis of learned cell-to-cell similarity. For example, single-cell

interpretation via multikernel learning (SIMLR) [8] visualizes
and clusters cells using multi-kernel similarity learning [9],
which performs well on grouping cells. Shared nearest neigh-

bor (SNN)-Cliq [10] firstly constructs a distance matrix based
on the Euclidean distance, and then introduces the shared
k-nearest neighbors (KNN) model to redefine the similarity.

SNN-Cliq provides both the estimation of cluster number
and the clustering results by searching for quasi-cliques.
Moreover, Corr [11] defines the cell-pair differentiability
correlation instead of computing primary (dis)similarity like

Pearson correlation and Euclidean distance. RAFSIL [12]
divides genes into multiple clusters, and makes dimension
reduction on each gene cluster. Then, RAFSIL concatenates

the informative features obtained from each gene cluster.
Finally, RAFSIL applies the random forest to calculate the
similarities for each cell recursively. Besides, nonnegative

matrix factorization (NMF) determines the cell types in the
latent space [13], while SinNLRR [14] and AdaptiveSSC [15]
learn the similarity matrix with nonnegative low rank and

sparse constraints. Instead of learning a specific similarity, some
researchers have turned to use ensemble learning that focuses
on the consensus of multiple clustering methods [16,17].

Even though many approaches have been applied to cell

type identification, most of them are sensitive to noise, espe-
cially for the high-dimensional data. They generally compute
the similarity between two cells merely considering the gene

expression of these two cells [18]. In this study, we developed
SSRE, a novel method for cell type identification. It focuses
on similarity learning, in which the cell-to-cell similarity is

measured by considering more similar neighbors. SSRE com-
putes the linear representation between cells based on sparse
subspace theory, and thus generates a sparse representation
of cell-to-cell similarity [19]. Moreover, motivated by the

observations that each similarity measurement can represent
data from a different aspect [16,20], SSRE incorporates three
classical pairwise similarities into similarity learning. In order

to reduce the effect of irrelevant features and improve the over-
all accuracy, SSRE designs a two-step procedure, i.e., 1) adap-
tive gene selection and 2) similarity enhancement. The

experimental results show that when combined with spectral
clustering, the learned similarities by SSRE can reveal the
block structure of scRNA-seq data reliably. Also, the experi-

mental results on ten real scRNA-seq datasets and five simu-
lated scRNA-seq datasets show that SSRE achieves higher
accuracy of cell type detection in most cases than the com-
pared popular approaches. Moreover, SSRE can be easily

extended to other scRNA-seq tasks such as differential expres-
sion analysis and data visualization.

Method

Framework of SSRE

We introduce the overview of SSRE briefly. A schematic dia-

gram of SSRE is shown in Figure 1, and detailed steps of SSRE
are introduced later in this section. Given a scRNA-seq expres-
sion matrix, SSRE first removes genes whose expression levels
are zero in all the cells. Then, the informative genes are selected

based on the sparse subspace representation (SSR), Pearson

Figure 1 The schematic diagram of SSRE

SSRE consists of five main parts, including gene filtering,

similarity calculation, gene selection, similarity enhancement,

and clustering. The original input is a gene expression matrix.

After filtering, four similarity measurements (Pearson correlation,

Spearman correlation, cosine similarity, and SSR) are applied to

select informative genes. The selected gene expression matrix is

then used as input to the subsequent process for single-cell

clustering. SSRE, single-cell clustering framework based on

similarity learning; SSR, sparse subspace representation.
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correlation, Spearman correlation, and cosine similarity. With
the preprocessed gene expression matrix, SSRE learns SSR for
each cell simultaneously. Then, SSRE derives an enhanced

similarity matrix from the learned SSR similarity and the other
three pairwise similarities. Finally, SSRE uses the enhanced
similarity to identify cell types and visualize data.

Sparse subspace representation

The estimation of the similarity (or distance) matrix is a crucial

step in clustering [8]. If the similarity matrix is well generated,
it could be relatively easier to distinguish the cluster. In this
study, we adopted sparse subspace theory [19] to compute

the linear representation between cells and generate a sparse
representation of the cell-to-cell similarity. Some subspace-
based clustering methods have been successfully applied to
computer vision field, and have been proved to be highly

robust in corrupted data [21,22]. For scRNA-seq data, the
sparse representation of cell-to-cell similarity is measured by
considering the linear combination of similar neighbors. This

tends to catch global structure information and generate more
reliable similarity than traditional similarity measurement. The
specific calculation processes are described as follows.

Mathematically, a scRNA-seq dataset with p genes and n
cells can be denoted as X ¼ ½x1; x2; � � � ; xn� 2 Rp�n, where

xi ¼ ½xi1; xi2; � � � ; xip�T indicates the expression profiles of the

p genes in cell i. Its linear representation coefficient matrix
C ¼ ½c1; c2; � � � ; cn� 2 Rn�n satisfies the equation X ¼ XC.
According to the assumption that the expression of a cell

can be represented by other cells in the same type, only the
similarity of cells in the same cluster is non-zero. It also means
that the coefficient matrix C is usually sparse. With the relaxed
sparse constraint, the coefficient matrix C can be computed by

solving an optimization problem as follows:

min
1

2k
kX� XCk2F þ kCk1

s:t:; diagðCÞ ¼ 0 ð1Þ
where jj � jjF denotes the Frobenius norm which calculates the

square root of sum of all squared elements, and constraint

diagðCÞ ¼ 0 prevents the cells from being represented by them-
selves, while k is a penalty factor. An efficient approach to
solve Equation (1) is the alternating direction method of mul-

tipliers (ADMM) [23]. We rewrite Equation (1) as follows:

min
1

2k
kX� XZk2F þ kCk1

s:t:;Z� C ¼ 0; diag Cð Þ ¼ 0 ð2Þ
where Z is an auxiliary matrix. According to the model of

ADMM, the augmented Lagrangian with auxiliary matrix Z
and penalty parameter (c) > 0 for the optimization Equation
(2) is

L1
c
Z;C;Yð Þ ¼ 1

2k
kX� XZk2F þ kCk1 þ trðYT

Z� Cð ÞÞ

þ 1

2c
kC� Zk2 ð3Þ

where Y is the dual variable. The derivation of its update can
be found in section 1 of File S1. Matrix C is the target sparse

representation matrix. To keep the symmetry and nonnegative

nature of similarity matrix, the element of SSR is calculated as

simsparseði; jÞ ¼ cij
�� ��þ cji

�� ��.

Data preprocessing and gene selection

Before used to calculate SSR, the original data needs to be pre-

processed. Various data preprocessing methods have been used
in the previous studies, such as gene filtering [12,16], feature
selection [24,25], and imputation [26,27]. In this study, we first
removed genes with zero expression in all of cells and applied

L2-norm to each cell to eliminate the expression scale differ-
ence between different cells. Then, we computed the prelimi-
nary SSR with the normalized gene expression matrix, and

adopted the Laplacian score [28] on SSR to assess the contri-
bution that genes make to cell-to-cell similarity learning.
According to the Laplacian scores, we selected significant

genes for the following study. Genes with higher Laplacian
scores are considered as more informative in distinguishing cell
types [8]. Besides the SSR, we also considered three additional
pairwise similarities, i.e., Pearson correlation, Spearman corre-

lation, and cosine similarity, to evaluate the importance of
genes (denoted as simpearson, simspearman, and simcosine, respec-

tively). For each similarity, we ranked genes in descending
order by the Laplacian score and selected the top t genes as

an important gene set that is denoted by G1. The determination
of the threshold t can be formulated as

min var ðLSG1Þ þ var LSG2ð Þ

s:t: 0:1� p < G1j j < 0:5� p ð4Þ
where G1 = [g1; g2; � � � ; gt�1] and G2 ¼ ½gt; gtþ1; � � � ; gp� denote
two gene sets divided by t. The LSG1 and LSG2 are the Lapla-
cian scores of genes in sets G1 and G2, respectively, and �j j is
the cardinality of a set. The varð�Þ indicates variance of a set

while p is the number of genes. Finally, we recomputed
simsparse, simpearson, simspearman, and simcosine based on the intersec-

tion of four selected important gene sets. In the next section,
we introduce an enhancement strategy to further improve the
learned SSR simsparse.

Similarity enhancement

The SSR simsparse may suffer from the high-level technical noise
in the data resulting in underestimation. Inspired by the con-
sensus clustering and resource allocation, we further enhanced

simsparse by integrating multiple pairwise similarities including

simpearson, simspearman, and simcosine. These pairwise similarities

partially reveal the local information between cells.
We imputed the missing values in simsparse according to their

nearest neighbors’ information. We firstly defined a target sim-
ilarity matrix P as follows:

P xi; xj

� � ¼ 1; xj 2 KNNðxiÞ
0; else

�
ð5Þ

where KNN xið Þ indicates the KNN of cell xi. Then we marked
the similarity simsparseðxi; xjÞ between cells xi and xj as a missing

value when it is zero in the simsparse but P xi; xj

� � ¼ 1 in at

least one pairwise similarity matrix. Let Isimsparse ¼ On�n

denotes the initial matrix to be imputed where n indicates

the number of cells. For a marked missing value, the similarity

284 Genomics Proteomics Bioinformatics 19 (2021) 282–291



Isimsparseðxi; xjÞ was computed by the modified Weighted Ada-

mic/Adar [29,30]. It was formulated as follows:

Isimsparse xi; xj

� � ¼
X

xz2CN xi ;xjð Þ
simsparse xi; xzð Þ þ simsparse xj; xz

� �
C xzð Þj j

ð6Þ

where jCðxzÞj indicates the number of neighbors of cell xz, and

CNðxi; xjÞ denotes the set of common neighbors of cell xi and

xj. Note that the imputed similarity Isimsparse xi; xj

� �
is zero

when CNðxi; xjÞ ¼ £. At the end, an enhanced and more

comprehensive SSR matrix Esimsparse was computed as

Esimsparse ¼ Isimsparse þ Isimsparse
T + simsparse.

Spectral clustering

Spectral clustering is a typical clustering technique that divides
multiple objects into disjoint clusters depending on the spec-
trum of the similarity matrix [31]. Compared with the tradi-

tional clustering algorithms, spectral clustering is
advantageous in model simplicity and robustness. In this
study, we performed spectral clustering on the final enhanced

SSR Esimsparse. The inputs of spectral clustering are the cell-

to-cell similarity matrix and the cluster number. The detailed

introduction and analysis of spectral clustering could be found
in previous studies [31,32].

Datasets

Datasets used in this study consist of two parts, real scRNA-seq
datasets and simulated scRNA-seq datasets. We collected ten

real scRNA-seq datasets that vary in terms of species, tissues,
and biological processes, from public databases or published
studies. The scale of these ten datasets varies from dozens to

thousands, and the gene expression levels of them were com-
puted by different units. The details of these real datasets are
described in Table 1. Four datasets (i.e., Treutlein [33], Deng
[34], Ting [35], and Macosko [36] datasets) of these ten datasets

were downloaded from the data subdirectory of MPSSC
tool (https://github.com/ishspsy/project/tree/master/MPSSC).
The Yan [37] and Goolam [38] datasets were collected

from the popular single-cell consensus clustering (SC3)
software package (https://github.com/hemberg-lab/SC3). The
Song [39], Engel [40], and Haber [41] datasets were obtained

via Gene Expression Omnibus [42] database (GEO:
GSE85908, GSE74597, and GSE92332, respectively;
https://www.ncbi.nlm.nih.gov/geo/), and the Vento [43] data-

set was downloaded from ArrayExpress [44] (ArrayExpress:
E-MTAB-6678; https://www.ebi.ac.uk/arrayexpress/). In
addition, we used Splatter [45] to simulate five scRNA-seq
datasets for more comprehensive analysis. They either have

different size or different sparsity. We set group.prob to
(0.65, 0.25, 0.1) for all simulated datasets, and changed the
scale and sparsity by adjusting nCells and dropout.mid,

respectively. The other parameters were set to default. The
sample sizes of the five simulated datasets are 1000, 1000,
1000, 500, and 1500, and the corresponding sparsity is 0.61,

0.8, 0.94, 0.94, and 0.94, respectively.

scRNA-seq clustering methods

For performance comparison, we took the original SSR, native
spectral clustering (SC), and eight state-of-the-art clustering
methods (i.e., SIMLR [8], MPSSC [20], Corr [11], SNN-Cliq

[10], NMF [13], SC3 [16], dropClust [46], and Seurat [47]) as
comparison. Among these methods, SIMLR, MPSSC, Corr,
and SNN-Clip focus on similarity learning. Both SIMLR
and MPSSC learn a representative similarity matrix from

multi-Gaussian-kernels with different resolutions. Corr intro-
duces a cell-pair differentiability correlation to relieve the
effect of dropouts. SNN-Cliq applies the SNN to redefine

the pairwise similarity. NMF detects the type of cells by pro-
jecting the high dimensional data into a latent space, in which
each dimension of the latent space denotes a specific type. SC3

is a typical and powerful consensus clustering method. It
obtains clusters by applying different upstream processes,
and desires the final clusters to fit better. DropClust is a clus-

tering algorithm designed for large-scale single-cell data, and it
exploits an approximate nearest neighbor search technique to
reduce the time complexity of analyzing large-scale data. Seu-
rat, a popular R package for single-cell data analysis, obtains

cell groups based on KNN-graph and Louvain clustering.
Moreover, SC [32] with the Pearson correlation is considered
as a baseline.

Metric of performance evaluation

We evaluated the proposed approach using two common met-

rics, i.e., normalized mutual information (NMI) [48] and
adjusted rand index (ARI) [49]. They have been widely used
to assess clustering performance. Both NMI and ARI evaluate
the consistency between the obtained clustering and pre-

annotated labels, and have slightly different emphasis [50].
Given the real labels L1 and the clustering labels L2, NMI is
calculate as

NMIðL1;L2Þ ¼ IðL1;L2Þ
½H L1ð Þ þH L2ð Þ�=2 ð7Þ

IðL1;L2Þ is the mutual information between L1 and L2, and H
denotes entropy. For ARI, given L1 and L2, it is computed as

ARI L1;L2ð Þ ¼
P

ij
nij
2

� �� ½Pij
nij
2

� �P
ij

nij
2

� ��= n
2

� �

1
2

P
i

ai
2

� �þP
j

bj
2

� �h i
� ½Pi

ai
2

� �P
j

bj
2

� �
�= n

2

� � ð8Þ

where nij is the number of cells in both group L1i and group

L2j. The ai and bj denote the number of cells in group L1i
and group L2j, respectively.

Results and discussion

SSRE can greatly improve the clustering accuracy

In order to evaluate the performance of SSRE comprehen-
sively, we first applied it on ten pre-annotated real scRNA-seq

datasets and compared its performance with the original SSR,
SC, and eight state-of-the-art clustering methods. See details
in the Method section. Then, we tested all these methods on five

simulated datasets for further comparison. In our experiments,
for a fair comparison, we set the number of clusters to the
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number of pre-annotated types for all methods except SNN-

Cliq and Seurat because SNN-Cliq and Seurat do not need
the number of clusters as input. The other parameters in all
the methods were set to the default as described in the original

papers. Table 2 and Table 3 summarize the NMI and ARI val-
ues of all methods on ten real scRNA-seq datasets, respectively.
The results of Corr in large datasets are unreachable because of
the high computational complexity. As shown in Table 2 and

Table 3, the proposed method SSRE outperformed all other
methods in most cases. SSRE achieved the best or tied first on
seven datasets upon NMI and ARI. Meanwhile, SSRE ranked

the second on three datasets based on NMI and two datasets
based on ARI. It demonstrates that SSRE obtains more reliable
results independent to the scale and the biological conditions of

scRNA-seq data. Moreover, SSRE performed better than SSR

on nine of the ten datasets in terms of NMI and ARI, which

illustrates the effectiveness of the enhancement strategy in
SSRE. Results of simulation experiment are shown in Tables
S1 and S2. SSRE achieved the better performance overall, which

shows the good stability of SSRE. SSRE is slightly time-
consuming compared with some methods such as SC and
dropClust, but its running time is still in a reasonable range.
More detailed descriptions can be found in section 2 of

File S1.
Estimating number of clusters is another key step in most

clustering methods, which affects the accuracy of clustering

method. SSRE performed eigengap [32] on the learned similar-
ity matrix to estimate the number of clusters. Eigengap is a
typical cluster number estimation method. It determines the

number of clusters by calculating max gap between eigenvalues

Table 2 NMI values of all analyzed methods across ten real datasets

Note: SC, native spectral clustering; SNN, shared nearest neighbor; SIMLR, single-cell interpretation via multikernel learning; SC3,

single-cell consensus clustering; NMF, nonnegative matrix factorization; SSR, sparse subspace representation; SSRE, single-cell

clustering framework based on similarity learning. ‘‘–” indicates unreachable. The bold value is the highest value in each column.

Table 1 The details of real scRNA-seq datasets used in this study

Note: FPKM, fragments per kilobase of exon model per million mapped fragments; RPKM, reads per kilobase of exon model per million

mapped reads; CPM, counts of exon model per million mapped reads; RPM, reads of exon model per million mapped reads; TPM,

transcripts per kilobase of exon model per million mapped reads; UMI, unique molecular identifier.
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of a Laplacian matrix. To assess reliability of the estimation in
different methods, we compared the estimated numbers with

pre-annotated numbers. The results are summarized in
Table S3. Besides SSRE and SSR, another four methods which
also focus on similarity learning were selected for comparison.

More experimental details can be seen in section 3 of File S1.

Analysis of parameter setting

In SSRE, four parameters are required to be set by users, i.e.,
penalty coefficients k and c in solving SSR simsparse, gene

selection threshold t, and the number of nearest neighbors
k in similarity enhancement procedure. In this study, the
selection of the threshold t was determined adaptively by

solving Equation (4). The number of nearest neighbors k
was set to 0:1� n (n is the number of cells) for small datasets
with less than 5000 cells and set to 100 for other larger data-

sets. The other two parameters k and c in augmented Lagran-
gian (we used 1=k and 1=c in the coding implementation)
were proportionally set as:

1=c ¼ q=k; q ¼ minj maxi mij

� 	� 	 ð9Þ
where mij is the element of matrix M ¼ XTX. The mij is equiv-

alent to the cosine similarity between cells xi and xj. This is

same as previous work [19]. In our experiments, q=k was set
to a constant. For a given dataset, the larger value of q leads
to the larger value of k, which will result in the sparser matrix

C. It means that the value of q can control the sparsity of
matrix C adaptively in different datasets. Moreover, to vali-
date the effect of penalty coefficient k in clustering results,
we tested SSRE with q=k from 2 to 30 with the increment of

2 on all real datasets. We found that SSRE’s performance
was basically stable when q=k is in the interval of 6 and 20.
The results are shown in Figure 2 and Figure S1. In our study,

we set q=k to 10 and 1=k ¼ q=k as default for all datasets.

Application of SSRE in visualization

One of the most valuable aims in single-cell analysis is to iden-
tify new cell types or subtypes [6]. Visualization is an effective

Figure 2 Clustering performance of SSRE with different parameter settings

The change of clustering performance of SSRE versus the value of parameter q=k on four datasets (i.e., Goolam dataset [38], Engel dataset

[40], Haber dataset [41], and Vento dataset [43]) is shown here. The change of NMI values (A) and ARI values (B). NMI, normalized

mutual information; ARI, adjusted rand index.

Table 3 ARI values of all analyzed methods across ten real datasets

Note: The bold value is the highest value in each column.
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tool to intuitively display subgroups of all cells. The t-
distributed stochastic neighbor embedding (t-SNE) [51] is
one of the most popular visualization methods, and it has been

proved to be powerful in scRNA-seq data. In our study, we
performed a modified t-SNE on the similarities learned by dif-
ferent methods for visualization. We focused on two datasets,

Goolam and Yan, and selected the native t-SNE, Corr,
SIMLR, MPSSC, SSR, and SSRE for comparison. In Goolam

dataset [38], cells were derived from mouse embryos in five dif-
ferentiation stages: 2-cell, 4-cell, 8-cell, 16-cell, and 32-cell. The
visualization results of Goolam dataset are shown in Figure 3A.

As shown in Figure 3A, SSRE placed cells with the same type
together and distinguished cells with different types clearly.
And, although SIMLR can clearly distinguish groups from

each other, some cells with the same type were separated.
The second dataset Yan [37] was obtained from human

Figure 3 Visualization of Goolam and Yan datasets using different methods

Two datasets are visualized by t-SNE, Corr, SIMLR, MPSSC, SSR, and SSRE, respectively. A. The clustering results from Goolam

dataset [38]. B. The clustering results from Yan dataset [37]. Each point in the figure represents a cell. Different colors and shapes indicate

different cell types. t-SNE, t-distributed stochastic neighbor embedding; SIMLR, single-cell interpretation via multikernel learning.

288 Genomics Proteomics Bioinformatics 19 (2021) 282–291



pre-implantation embryos. It involves seven primary stages of
preimplantation development: metaphase II oocyte, zygote,
2-cell, 4-cell, 8-cell, morula, and late blastocyst. As shown in

Figure 3B, Corr, SIMLR, and SSRE had a better overall
performance than other methods. However, the four cell types,
i.e., oocyte, zygote, 2-cell, and 4-cell, were mixed totally in

Corr, and mixed partially in SIMLR. Moreover, SIMLR also
divided the cells with same type into different groups that were
generally far away from each other. SSRE clusters cells more

accurately, according to oocyte, 2-cell, and other cell types,
than the competing methods.

Application of SSRE in identifying differentially expressed genes

The predicted clusters may potentially enable enhanced down-
stream scRNA-seq data analysis in biological sights. As a
demonstration, we aimed to detect significantly differentially

expressed genes (DEGs) based on the clustering results. Specif-
ically, we applied the Kruskal-Wallis test [52] to the gene
expression profiles with the inferred labels. The Kruskal-

Wallis test, a non-parametric method, is often used for testing
that if two or more groups are from the same distribution. We
used the R function kruskal.test to perform the Kruskal-Wallis

test. Then we detected DEGs according to the P value. The sig-
nificant P value (P < 0.01) of a gene indicates that the gene’s
expression in at least one group stochastically dominates one
other group. We took the Yan [37] dataset as an example to

analyze the DEGs. The details of Yan have been introduced
above. Figure S2 shows the heat map of gene expression of
the top 50 most significantly DEGs identified. Notice that

genes NLRP11, NLRP4, CLEC10A, H1FOO, GDF9, OTX2,
ACCSL, TUBB8, and TUBB4Q have been reported in previ-
ous studies [37,53], which were also identified by SSRE. Genes

CLEC10A, H1FOO, and ACCSL were reported as the mark-
ers of 1-cell stage cells (zygote) of human early embryos, while
NLRP11 and TUBB4Q are the markers of 4-cell stage cells

[54]. Genes GDF9 and OTX2 are the markers of germ cell
and primitive endoderm cell, respectively [55,56]. Genes
H1FOO and GDF9 were marked as the potential stage-
specific genes in the oocyte and the blastomere of 4-cell stage

embryos [57]. Certain PRAMEF family genes were reported
as ones with transiently enhanced transcription activity in 8-
cell stage. MBD3L family genes were identified as 8-cell

stage-specific genes during the human embryo development
in the previous studies [58,59]. All these are part of the top
50 significantly DEGs detected by SSRE.

Conclusion

Identifying cell types from single-cell transcriptome data is a

meaningful but challengeable task because of the high-level
noise and high dimension. The ideal identification of cell types
enables more reliable characterizations of a biological process

or phenomenon. Otherwise, it will introduce additional biases.
Many approaches from different perspectives have been pro-
posed recently, but the accuracy of cell type identification is

still far from expectation. In this study, we presented SSRE,
a similarity learning-based computational framework for cell
type identification. Besides three classical pairwise similarities,
SSRE computed the SSR of cells based on the subspace the-

ory. Moreover, a gene selection process and an enhancement

strategy were designed based on the characteristics of different
similarities to learn more reliable similarities. SSRE greatly
improved the clustering performance by appropriately com-

bining multiple similarity measurements and adopting the
embedding of sparse structure. The systematic performance
evaluations on multiple scRNA-seq datasets showed that

SSRE achieves superior performance among all competing
methods. Furthermore, with the further downstream analyses,
it is demonstrated that the learned similarity and inferred clus-

ters can potentially be applied to more exploratory analyses,
such as identifying gene markers and detecting new cell sub-
types. In addition, for more flexible use, users can choose
one or two of the three pairwise similarities mentioned in this

study to perform gene selection and similarity enhancement
procedures, and all three are used by default. Nonetheless,
the proposed computational framework still can be improved

in future study. One limitation of SSRE is relatively time-
consuming in large-scale datasets; therefore, parallel comput-
ing is a possible strategy to accelerate the framework [60].

And more informative genes can be extracted or other biolog-
ical information, such as gene functions [61] and gene regula-
tory relationships [62,63], can be incorporated to distinguish

cell types. In addition, with the emergence of single-cell
multi-omics data, it will be a possible trend to design corre-
sponding multi-view clustering models to integrate the multi-
omics data for cell type identification [64,65].

Code availability

The matlab and python implementations of SSRE are avail-
able at https://github.com/CSUBioGroup/SSRE.
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