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Abstract Single-cell genomics provides substantial resources for dissecting cellular heterogeneity and cancer evolution.
Unfortunately, classical DNA amplification-based methods have low throughput and introduce coverage bias during
sample preamplification. We developed a single-cell DNA library preparation method without preamplification in nanolitre
scale (scDPN) to address these issues. The method achieved a throughput of up to 1800 cells per run for copy number
variation (CNV) detection. Also, our approach demonstrated a lower level of amplification bias and noise than the multiple
displacement amplification (MDA) method and showed high sensitivity and accuracy for cell line and tumor tissue
evaluation. We used this approach to profile the tumor clones in paired primary and relapsed tumor samples of hepato-
cellular carcinoma (HCC). We identified three clonal subpopulations with a multitude of aneuploid alterations across the
genome. Furthermore, we observed that a minor clone of the primary tumor containing additional alterations in chro-
mosomes 1q, 10q, and 14q developed into the dominant clone in the recurrent tumor, indicating clonal selection during
recurrence in HCC. Overall, this approach provides a comprehensive and scalable solution to understand genome hetero-
geneity and evolution.
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Introduction

Heterogeneity is pervasive in human cancer [1] and mani-
fests as morphologic, transcriptomic, and genetic differen-
ces between cells. However, intercellular genetic hetero-
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geneity in cell populations is often obscured in geno-me
analysis at the bulk level. Single-cell technologies have
advanced rapid0ly in the past decade and can detect variants
at the single-cell level [2–4]. Technologies for tran-
scriptome analysis have been used to profile intra-tumor
heterogeneity or define immune infiltration in various
cancer types [5–13]. Although less widely utilized due to
throughput and cost limitations, single-cell genome se-
quencing is a powerful tool to track clonal dynamics and
infer evolutionary trajectories [14–18].

Most strategies for single-cell whole-genome sequencing
(WGS) require whole-genome amplification (WGA) before
library construction, which introduces bias and increases
cost. The degenerate oligonucleotide-primed polymerase
chain reaction (DOP-PCR) method amplifies the entire
single-cell genome by random oligonucleotide priming [19].
However, this approach preferentially amplifies regions rich
in cytosine and guanosine, resulting in a low genomic cove-
rage. Multiple displacement amplification (MDA) is another
commonly used avenue utilizing random primers and high-
fidelity φ29 polymerase. This method generates data with
good genome coverage and low error rates. However, this
approach is not suitable for copy number variation (CNV)
detection because of the compromised uniformity caused by
polymerase’s strand displacement activity [20]. A hybrid
method, multiple annealing and looping-based amplification
cycles (MALBAC), amplifies the genome with random
primers and creates looped precursors to prevent continuous
amplification before PCR, achieving a better uniformity
[21]. Other single-cell geno-me sequencing approaches are
preamplification-free and based on transposase, including
linear amplification via transposon insertion (LIANTI) [22],
direct library preparation (DLP) [23], and transposon bar-
coded (TnBC) methods [24]. These approaches transpose
single-cell genomic DNA directly and add common se-
quences to the end of the fragments for further amplification,
reducing biases compared with preamplification-based
techniques. These methods are based on a single tube or use
complicated microvalve-based microfluidic chips, resulting
in limited throughput.

Hepatocellular carcinoma (HCC) is a high-grade malig-
nancy with a high recurrence rate of up to ~ 60% within
5 years [25]. As a risk factor for reduced survival, early re-
currence of HCC is ascribed to residual tumor and in-
trahepatic micrometastasis, closely related to intra-tumor
heterogeneity [26]. Next-generation sequencing (NGS) stu-
dies based on cell population have reported a high degree of
intra-tumor heterogeneity in HCC [27,28]. A single-cell tri-
ple-omics approach applied to 26 tumor cells from HCC
identified two tumor clones based on their CNV profiles [29].
Also, monoclonal and polyclonal origins have recently been
reported based on single-cell WGS of ~ 30 cells in two pa-
tients [30]. However, a large number of cells are required to

more comprehensively understand the heterogeneity in HCC,
as well as clonal expansion and selection during HCC relapse.

Here, we developed an unbiased single-cell DNA library
preparation method without preamplification in nanolitre
scale (scDPN) using microwell chips and a 72 × 72 dual
indexing strategy, which is capable of processing up to ~ 1800
single cells in parallel. This approach can obtain highly sen-
sitive and accurate single-cell CNV (scCNV) profiles based
on the assessment of cell lines and tumor samples. We further
applied this approach to paired primary and relapsed HCC
tumor samples from the same patient. We identified three
clonal subpopulations with aneuploid alterations across the
genome. Furthermore, we noticed that relapsed tumor cells
were originated from a minor subpopulation of the primary
tumor, indicating clonal selection during HCC recurrence.

Results

Microwell-based single-cell DNA library preparation
workflow

To increase scCNV detection efficiency, we developed a
preamplification-free and unbiased single-cell DNA library
preparation approach called scDPN for high-throughput
scCNV detection, which provides a comprehensive, scala-ble
solution for revealing genomic heterogeneity. The workflow
of scDPN includes three main parts: 1) cell isolation and
single-cell identification, 2) transposase (Tn5)-based library
construction, and 3) library pooling and sequencing. The first
two steps were carried out in a 5184-microwell chip (Figure
1). Cell suspension stained with Hoechst and propidium io-
dide (PI) was dispensed into the microwell chip with a
MultiSample NanoDispenser (MSND). Cell suspensions
ranging from 0.5 to 2.6 cells/50 nl (i.e., 10–52 cells/μl) were
optimum to obtain more than 1000 wells with single cells
because the cell counts per well followed a Poisson dis-
tribution. The number of cells and their viability were auto-
matically identified using fluores-cent Hoechst and PI signals
with a fluorescence microscope. Only microwells with single
and viable cell (Hoechst+PI−) were selected for cell lysis and
transposase fragmentation. Individual single-cell products
were discriminated using 72 × 72 paired barcoded primers
dispensed in succession with two dispensing steps. After
several cycles of PCR, the barcodes and sequencing adaptors
were added to both ends of the fragmented DNA. The mi-
crowell chip was then inverted and all the barcoded libraries
were collected into a pooled library. The size distribution of
pooled single-cell libraries was determined using Agilent
2100 bioanalyzer (Figure S1). The libraries were then puri-
fied and cyclized for single-end 100+10+10 bp (SE100+10+
10) sequencing on BGISEQ-500 [31].
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Assessment of data quality and uniformity under dif-
ferent reaction conditions

The HeLa S3 and YH cell lines, HCC adjacent normal liver
tissue (ANT), and tumor tissues were processed and se-
quenced at 0.02× depth (~ 600,000 reads under SE100). To
confirm whether our approach can generate enough data for
scCNV detection, we drew a CNV saturation curve using
three tumor cells with deeper sequencing depths up to 0.15×
(Figure 2A; see Materials and methods). The number of
detected CNVs was increased in proportion to the number
of randomly extracted and uniquely mapped deduplicated
reads (UMDRs). The detected CNV counts were saturated

when the amount of UMDRs reached 300,000, with an
average sequencing depth of 0.01× (Figure 2A).

We tested a combination of transposase (T1, T2, and T3)
and proteinase (P1, P2) reaction conditions to optimize the
protocol. Single-cell libraries with raw data above 30,000
reads (5% of average reads) were assumed to have a tem-
plate-based reaction, and 148 cells from 5 conditions were
qualified (Table S1). Afterward, we selected the cells with
oversaturated reads (UMDR > 300,000) for further accu-
racy assessment. We observed that condition T2_P1 (65%)
showed the highest rate of cells passing the filtering criteria,
conditions T1_P1, T2_P2, and T3_P2 showed a medium
utilization rate between 40% and 50%, and T3_P1 showed
the lowest utilization rate below 30% (Table S1). The

Figure 1 Schematic diagram of microwell-based single-cell genomic DNA library preparation
Stained cell suspensions were automatically dispensed into 72 × 72 microwell chips using MSND. Scanning fluorescence microscope and cell selection
software were used to discriminate wells containing single and viable cells via the fluorescence of Hoechst and PI dyes. In the selected microwells, lysis
buffer, Tn5 fragmentation buffer, and 72 × 72 barcoded primers were added step by step for single-cell DNA library amplification. The chip was incubated
in a thermal cycler after each step. Indexed single-cell libraries were pooled by centrifugation for library purification, cyclized, and sequenced on the
BGISEQ-500 platform. PI, propidium iodide; MSND, MultiSample NanoDispenser.
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qualified cells are listed in Table S2.
We statistically evaluated several features of these cells

in different conditions, including mapped reads, coverage,
duplication rates, and median absolute pairwise difference
(MAPD) values. To minimize the effects caused by the
amount of sequencing reads, we down-sampled each single-
cell library to 400,000 raw reads for comparison. Single-cell
libraries treated with condition T3_P1 showed significantly
fewer mapped reads and lower coverage (Figure S2A). A
low duplication rate reflects high data utilization. Condi-
tions T2_P1, T2_P2, or T3_P2 yielded a mean duplication
rate below 20%, and condition T2_P1 had a significant
lower duplication rate than conditions T1_P1 and T3_P1
(Figure 2B).

MAPD is an indicator of the evenness of WGA by

measuring the bin-to-bin variation in read coverage. Con-
ditions T2_P1, T3_P1, and T3_P2 exhibited lower MAPD
values (0.26 ± 0.07, 0.26 ± 0.03, and 0.23 ± 0.04, respec-
tively, under 5000 bins) compared with condition T1_P1
(0.37 ± 0.15 under 5000 bins, P < 0.05) (Figure 2B). All of
these conditions showed a much lower MAPD value (mean
MAPD < 0.4, 340,000 mapped reads under a bin size of 300
kb) than that of normal cells prepared by MDA (MAPD =
0.4–0.6, 1,500,000 mapped reads under a bin size of 500 kb
[32]). We observed that CNV profiles generated from poor
quality libraries had substantial noise and large MAPD
values. Therefore, we set MAPD ≤ 0.45 as a cut-off for
acceptable quality according to previous reports [32]. We
compared the utilization rates from the same HCC tumor
tissue under different conditions to minimize the effects of

Figure 2 Assessment of library quality under different experimental conditions
A. CNV saturation curve. The percentage of detected CNVs is plotted against the number of UMDRs. The percentage of detected CNVs is calculated by
dividing the number of CNVs detected at the sampled UMDRs with the total number of CNVs detected with all the UMDRs. The dashed line indicates the
number of UMDRs (n = 300,000) at which the CNV count reached saturation. B. Sequencing data overview of 5 different single-cell lysis and transposase
fragmentation conditions. Boxplots showing the distribution of duplication rate and MAPD (under 5000 bins) under different conditions with 400,000 raw
reads. The Student’s t-test was performed. *, P < 0.05. C. Comparison of genome-wide coverage uniformity achieved under different library preparation
conditions as well as with the MDA method using Lorenz curves. D. Comparison of genome-wide coverage uniformity achieved with different library
preparation methods (MDA, DOP-PCR, MALBAC, LIANTI, TnBC, sci-L3, scDPN, and 10x Genomics) using Lorenz curves. The dashed gray lines in
panels C and D indicate a perfectly uniform genome. CNV, copy number variation; UMDR, uniquely mapped deduplicated read; MDA, multiple
displacement amplification; DOP-PCR, degenerate oligonucleotide-primed PCR; MALBAC, multiple annealing and looping-based amplification cycles;
LIANTI, linear amplification via transposon insertion; TnBC, transposon barcoded; sci-L3, a single-cell sequencing method that combines combinatorial
indexing and linear amplification; scDPN, single-cell DNA library preparation method without preamplification in nanolitre scale; MAPD, median
absolute pairwise difference.
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aberrant chromosomes on MAPD. The results showed that
T2_P1, T2_P2, and T3_P2 had higher utilization rates up to
100% by using a selection criterion of MAPD ≤ 0.45 for the
bin size of 600 kb or 300 kb (Figure S2B).

To further evaluate the genome-wide uniformity of this
approach, we drew Lorenz curves for each condition and the
data generated using the MDA method [24]. There were
minimal differences between the five conditions, but they
all showed better uniformity than the MDA method (Figure
2C). Besides, the Lorenz curves demonstrated that scDPN
yielded uniformity comparable to DOP-PCR, MALBAC,
LIANTI, TnBC, a single-cell sequencing method that
combines combinatorial indexing and linear amplification
(sci-L3) [33], and 10x Genomics (Figure 2D). The T2_P1
condition was chosen as optimal for further applications.

scDPN provides reliable data for accurate scCNV de-
tection

To assess the sensitivity and accuracy of CNV calling with a
depth of 300,000 reads, we first generated analogue data of
CNVs of different sizes (1–15 Mb), with 20 variations
generated for each (see Materials and methods). Approxi-
mately 80% of CNVs above 2 Mb were detected in 5000,
10,000, or 20,000 bins (Figure S3A). The median false
discovery rate (FDR) was 0.3–0.4 when detecting CNVs of
1 Mb and this was decreased to below 0.26 when detecting
CNVs ≥ 2 Mb using 5000 bins (Figure S3B).

To assess the reliability of our approach, we investigated
the consistency of CNV profiles between single-cell and
bulk populations. We used normal (YH) and tumor (HeLa
S3) cell lines for single-cell copy number analysis and
compared the results to the bulk CNVs from published
HeLa S3 [34] and YH data [35]. HeLa S3 cells are known to
harbor germline CNVs of defined sizes. The CNV profiles
of single HeLa S3 cells were similar to the bulk data;
however, this analysis did not detect a deletion on chro-
mosome 4 posted in bulk HeLa S3 DNA (Figure 3A, Figure
S3C). We also observed different copy number states in
chromosomes 13 and 18, which was consistent with Liu’s
discovery of substantial heterogeneity between HeLa varia-
nts from other laboratories [36]. The YH cells were B cells
from a healthy donor, who was considered without sig-
nificant CNVs. As expected, the CNV profiles of single YH
cells had only minor CNV fluctuations (Figure 3B, Figure
S3C).

We then applied scDPN to an HCC tumor sample and a
paired ANT. The bulk tumor sample and peripheral blood
mononuclear cells from the same patient (HCC01) were
also used for whole-exome sequencing (WES). We ob-
tained 58 cells from HCC tumor tissue and 10 cells from
ANT after filtering (UMDR ≥ 300,000, MAPD ≤ 0.45).
The 10 cells from ANT had no obvious CNVs, as expected.

One cell in the tumor did not have any CNVs and it was
considered as a normal cell (Figure S3C). The other 57
tumor cells had amplications on 2p25.3–2p16.2 and
deletions on 10q, and 56 of them had amplications on
8q11.23–8q24.3 (Figure 3C, Figure S3C). This result in-
dicated that there was only one major tumor clone in the
HCC01 primary tumor. By comparing a representative
copy number profile of a HCC tumor cell with a bulk CNV
profile inferred from WES data (see Materials and metho-
ds), we observed concordant duplications on chromosomes
2, 8, and 12 and a deletion on chromosome 10, suggesting
the reliability of our CNV data. For example, the CNV
profiles revealed multiple copy alterations, including
2p25.3–2p16.2 and 8q11.23–8q24.3, which were also
present in the bulk DNA (Figure 3C).

scCNV detection reveals tumor clonal subtypes in HCC

Genetic heterogeneity in HCC has been described in so-
matic nucleotide variations (SNVs) by NGS or single nu-
cleotide polymorphism (SNP) array of multiple regions
from the same primary HCC bulk tumor tissue [37], but
there are few studies at the single-cell level. Thus, we used
scDPN to investigate tumor clonal subtypes in patient
HCC02. After quality control (UMDR ≥ 300,000, MAPD ≤
0.45), we obtained 106 cells from the primary tumor for
subsequent CNV calling. Three cells without chromo-
some copy number alterations were designated as normal
cells. The remaining 103 cells showed two distinct CNV
patterns, indicating that at least two tumor clones existed
in this primary tumor (Figure 4A). The major sub-
population consisted of 87 cells with high-level ampli-
fications on chromosomes 5p15.33–q35.3, 6p25.3–q12,
7p22.3–q36.3, 8q11.1–q24.3, and 15q11.2–q26.3 and
deletions on chromosomes 6q12–q27 and 8p23.3–p11.21.
Deletions of chromosomes 6q and 8p and amplifications
in 6p and 8q are known recurrent CNVs in HCC [38]. A
minor subpopulation of HCC02 comprised 16 (15.5%)
tumor cells and had additional alterations: amplifications
on chromosomes 1q21.1–q44, and deletions on chromo-
somes 10q11.21–q23.31 and 14q32.2–q32.33 (Figure
4B). We also observed common alterations on chromo-
somes 5, 6, 7, 8, and 15 in the same patient’s bulk tumor.
However, the unique alterations in chromosomes 1, 10,
and 14 observed in the minor subpopulation of single
cells were not detectable in the bulk tumor, demonstrating
the capability of characterizing minor clones in single-
cell-based approach.

Clonal selection in HCC recurrence

A high recurrence rate is one of the risk factors contributing
to the low 5-year survival rate in HCC. Understanding the

350 Genomics Proteomics Bioinformatics 19 (2021) 346–357

https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.005
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.005
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.005
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.005
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.005
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.005
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.005
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.005
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.005


clonal evolution and selection that occur during relapse
could aid in exploring the mechanism of recurrence. To
investigate the correlation between the primary and re-
current tumors, we applied scDPN to the recurrent tumor
from HCC02. We obtained 118 qualified cells from the
recurrent tumor using the same filtering criteria. To our
surprise, except for 4 normal cells without any obvious
CNVs, the remaining 114 tumor cells had unique CNVs de-
tected in the minor clone of the primary tumor, including
1q21.1–q44 gain, 10q11.21–q23.31 loss, and 14q32.2–q32.33
loss (Figure S4A). This result strongly demonstrated that
the minor clone in the primary tumor repopulated and
dominated during relapse in this patient.

Furthermore, a hierarchical clustering analysis was
conducted on the CNV profiles in chromosomes 1, 10, and
14, revealing three subpopulations with distinct patterns
(Figure 4C). Clone A comprised 81 primary tumor cells
with no CNVs on these three chromosomes and corre-

sponded to the major clone in the primary tumor. Both
clones B and C showed similar CNV patterns in these three
regions. Clone B was composed of 17 primary tumor cells
and 12 recurrent tumor cells, and was considered as a
transitional state of clone C. Clone C consisted of 102 re-
current tumor cells and 5 primary tumor cells, indicating
that the minor clone in the primary tumor developed into a
dominant clone during HCC relapse.

To determine which characteristics were associated with
clone C selection during recurrence, we investigated the
genes located in these unique CNV regions. We noted that
these CNV regions contained some oncogenes and tumor
suppressor genes annotated by the Catalogue Of Somatic
Mutations In Cancer (COSMIC) database (Table S3). On-
cogenes including ABL2, BCL9, DDR2, FCGR2B, ELK4,
and MDM4, were located in the amplification regions on
chromosome 1q21.1–q44, while tumor suppressor genes,
including PTEN, FAS, and PRF1, were located in the de-

Figure 3 scDPN provides reliable data for accurate scCNV detection
A. scCNV profiles of HeLa S3 cells obtained using the T2_P1 condition and the corresponding bulk-level profile from published data [34]. Colored dots
correspond to inferred copy-number states; black lines indicate segment medians. B. scCNV profiles of the YH cell line obtained using the T2_P1
condition and the corresponding bulk-level profile from published data [35]. C. Representative single tumor cell CNV profile and the corresponding bulk
tumor CNV profile from FACETS analysis of WES data from patient HCC01. For the bulk-level profile, the upper panel plots the corresponding integer
(total and minor) copy number calls, while the lower panel shows the Cf-em profile that reveals both clonal and sub-clonal copy number events. scCNV,
single-cell copy number variation; WES, whole-exome sequencing; HCC, hepatocellular carcinoma; Cf–em, estimated cellular fraction.
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letion regions on chromosome 10q11.21–q23.31. We fur-
ther validated that patients with 10q11.21–q23.31 loss or all
the three alterations (1q21.1–q44 gain, 10q11.21–q23.31
loss, and 14q32.2–q32.33 loss) showed lower disease- or

progression-free survival rates within two years in The
Cancer Genome Atlas (TCGA) dataset for HCC (Figure
S4B and C). However, we did not observe a statistical dif-
ference in disease-free survival between patients with

Figure 4 scCNV profiles reveal tumor clonal selection during HCC recurrence
A. Two CNV patterns observed in single cells and the CNV profile detected by bulk WGS of the primary tumor from patient HCC02. Colored dots
correspond to inferred copy-number states; black lines indicate segment medians. B. Heatmap showing the copy number states of all 106 cells (3 normal
cells and 103 tumor cells) from the primary tumor of patient HCC02. Columns correspond to cells, and rows correspond to a 600-kb genomic bin for each
chromosome. Unique CNVs in minor clones are indicated. Reported HCC-related genes TERT, VEGFA, and MYC are indicated. C. Heatmap showing the
unsupervised clustering of all tumor cells from primary (n = 103) and relapsed (n = 114) tumors based on the CNVs on chromosomes 1, 10, and 14.
Oncogenes and tumor suppressor genes annotated by COSMIC including BCL9 are indicated. D. Schematic diagram of HCC tumor clonal selection during
recurrence in patient HCC02. CNVs detected in clones of patient HCC02 are indicated. WGS, whole-genome sequencing; COSMIC, Catalogue Of
Somatic Mutations In Cancer.
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1q21.1–q44 gain and patients wihout 1q21.1–q44 gain,
neither between patients with 14q32.2–q32.33 loss and
patients wihout 14q32.2–q32.33 loss, suggesting that the
loss of 10q11.21–q23.31 may have contributed to tumor
clone selection during relapse in HCC.

Discussion

Single-cell genomic technologies have greatly aided the
analysis of the evolution of cancer genomes and the study of
genetic heterogeneity in cancer. However, a lack of high-
throughput, cost-effective single-cell WGS approaches has
markedly limited their application. Here, we developed a
preamplification-free and microwell-based single-cell DNA
library preparation approach named scDPN, which can
handle up to 1800 cells per run. A fluorescence and imaging
system enabled us to select a single and viable cell ac-
counting for a lower doublet rate. Through a series of ex-
periments, we determined the optimal on-chip experimental
conditions for high data quality. The strategy for con-
structing libraries of scDPN was similar to the DLP and
TnBC approaches. Recently, improved versions of LIANTI
(sci-L3) and DLP (DLP+) [39] also have increased the
throughput.

Compared with MDA methods, our platform generated
single-cell genome data with better uniformity and lower
noise, which decreased the required sequencing depth.
Low-depth single-cell genome data of HeLa S3 cell lines,
YH cell lines, and tumor samples generated by scDPN
showed higher sensitivity (only 0.02× depth data needed)
and accuracy compared with bulk tumor analysis. The
small reaction volume substantially reduced the library
construction costs to $0.5 per cell. ScDPN has advantages
of amplification uniformity, throughput, and cost over
existing scCNV detection methods. Additionally, we
evaluated the performance of CNV detection in cell nuclei
from frozen tissues (Figure S5), which extended the ap-
plication of our approach to additional cell types, in-
cluding neurons and retrospective studies using frozen
tissues.

However, scDPN is not suitable for SNV detection due to
low genome coverage. According to Zahn’s study, se-
quencing reads from all cells can be merged to produce a
‘pseudo-bulk’ genome with deep coverage accountable to
an inference of SNVs. Otherwise, a collection of high-depth
‘clonal genomes’ can be generated by combining all cells
within a clone [23]. Additionally, there is a large difference
in the amount of data among single-cell libraries produced
from the same run due to the differential reaction efficiency
during library preparation. Therefore, further condition
optimization is required to obtain uniform library products
from an individual cell.

We used scDPN to identify subgroups of HCC tumor
cells that were not detected in the bulk population (Figure
4A). This analysis indicates that important information was
missing from bulk-based sequencing studies. A large cohort
based on scCNVs in HCC may be needed for more com-
prehensive understanding of the genetic variance and hete-
rogeneity. Understanding the clonal selection mechanisms
in HCC recurrence could guide treatment and reduce re-
lapse in HCC. Scaling our single-cell DNA preparation
approach with paired primary and relapsed tumor samples
could address essential questions concerning subclonal
dynamics, such as how specific subclones evolve, evade
immune surveillance, and metastasize.

In the profiling of CNVs in paired primary tumor cells (n =
103) and relapsed HCC tumor cells (n = 114), we observed a
subpopulation (clone C) as the minor clone (5/103, 4.8%) in
the primary tumor. This minor clone had additional CNVs of
1q21.1–q44 gain, 10q11.21–q23.31 loss, and 14q32.2–q32.33
loss, which developed into the dominant clone (102/114, 90%)
in the recurrent tumor (Figure 4C). This result provides
solid evidence to support the tumor clonal selection during
HCC relapse (Figure 4D). We validated that in the TCGA
data the loss of 10q11.21–q23.31, a region containing sev-
eral tumor suppressor genes, was frequent in HCC and may
play a crucial role in tumor clone selection during relapse. A
chromosome 8p deletion has been correlated with HCC
metastasis [40] and exists in all clones in this tumor. The
loss of 6p25.3–q12 presented in all clones would result in
loss of heterozygosity (LOH) across the major histo-
compatibility complex (MHC), which is also reported to be
associated with cancer metastasis [41]. Immune pressure
has been proposed to shape the clonal evolution of metas-
tasis [42]. However, the drivers or critical factors con-
tributing to clonal selection during recurrence or metastasis
in HCC and other cancers remain unclear. High-throughput
single-cell omics from a large set of cancer patients, which
provides the genetic and transcriptome characteristics of
tumor cells as well as features of cell components in the
tumor microenvironment, may potentially address these
questions.

Materials and methods

Cell line and patient tissue samples

The lymphoblastic cell line (YH cell line) was established
from an Asian genome donor [35]. We purchased the HeLa
S3 cell line from the American Type Culture Collection
(Catalog No. CCL-2.2, ATCC, Manassas, VA). The tumor
sample used for on-chip reaction determination was a re-
sected sample of a 45-year-old male patient (HCC01) with a
primary HCC tumor. Paired primary and relapsed HCC
tumor samples were obtained from a 63-year-old male pa-
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tient (HCC02). Peripheral white blood cells, paired tumor
samples, and ANT were also obtained for bulk WES or
WGS.

Preparation of the single-cell suspension

Cell suspension of cell lines was harvested and centrifuged
at 500 g for 5 min, washed by phosphate buffer solution
(PBS) buffer twice, and resuspended in PBS. The resected
tumor samples were processed to a single-cell suspension
using the commercial Tumor Dissociation Kit (Catalog No.
30095929, Miltenyi Biotec, Bergisch Gladbach, Germany).
Briefly, fresh tumor tissues and ANT were cut into approxi-
mately 2–4 mm pieces and transferred into the gentleMACSC
Tube containing the enzyme mix. Subsequently, the sus-
pended cells were centrifuged at 300 g for 7 min after
passing through cell strainers. The cell pellets were re-
suspended in 90% fetal bovine serum (FBS; Catalog No.
10270106, ThermoFisher Scientific, Waltham, MA) with
10% dimethyl sulfoxide (DMSO; Catalog No. D8418-
50ML, Sigma-Aldrich, St. Louis, MO) and collected in a
freezing container for −80 °C storage.

Single-cell DNA library preparation and sequencing

We used the ReadyProbes Cell Viability Imaging Kit
(Catalog No. R37609, ThermoFisher Scientific) that con-
tained Hoechst and PI to identify living cells. This staining
process was performed at 37 °C for 20 min and then washed
twice in cold 0.5× PBS. For cells from tumor tissues, we
added fluorescent antibody CD45 (Catalog No. 55548, BD
Pharmingen, San Jose, CA) in the staining step. Based on
fluorescence activated cell sorter, CD45− Hoechst+ PI− cells
from the single-cell suspension were sorted into single tubes
for tumor cell enrichment. Counted cells were dispensed
into microwells of the ICELL8 350v Chip (Catalog No.
640019, Takara Bio USA, Mountain View, CA) using
ICELL8 MSND (Catalog No. 640000, Takara Bio USA) at
a concentration of 25 cells/μl in 0.5× PBS and 1× Second
Diluent (Catalog No. 640202, Takara Bio USA). We used
mixed buffer of PBS and fiducial mix (Catalog No. 640196,
Takara Bio USA) as the negative control wells. The MSND
precisely dispensed 50 nl volumes into the microwells.
Following cell dispensing, the chip was sealed with imaging
film, centrifuged for 5 min at 500 g at 4 °C, and imaged
with a 4× objective using Hoechst and PI. Following ima-
ging, 35 nl cell lysis buffer was added to each microwell
[P1: 2.89 AU/l Protease K (Catalog No. 19155, Qiagen,
Dusseldorf, Germany) and 72.8 mM Tris·HCl pH 7.5
(Catalog No. 15567027, ThermoFisher Scientific); P2: 8.67
AU/l Protease K and 72.8 mM Tris·HCl pH 7.5]. The sealed
chip was centrifuged for 3 min at 3000 g at room tem-
perature, and then incubated at 50 °C for 1 h, followed by

75 °C for 20 min and finally 80 °C for 5 min to inactivate
the protease. The chip was centrifuged for 3 min at 3000 g
again, and then 50 nl Tn5 transposition mix [T1: 0.06 U/μl
Tn5 transposase (Catalog No. 1000007867, MGI, Shenz-
hen, China) and 2.4× tagmentation (TAG) buffer (Catalog
No. 1000013442, MGI); T2: 0.14 U/μl Tn5 transposase and
2.4× TAG buffer; T3: 0.22 U/μl Tn5 transposase and 2.4×
TAG buffer) was dispensed. The sealed chip was cen-
trifuged at the same condition as the last step and incubated
at 55 °C for 30 min. To stop transposase activity, 31 nl 5×
neutralization buffer (0.25% sodium dodecyl sulfate solu-
tion), 1.45 nl ddH2O, and 2.55 nl of 1 μM Ad153-forward-
tag (1–72) primer were dispensed, centrifuged, and in-
cubated for 5 min at room temperature. Another barcode
primer was added to 50 nl PCR mix1 [29.6 nl 5× KAPA
Fidelity Buffer, 7.69 nl of 10 mM each dNTP, 5.1 nl of
10 μM PhoAd153 forward primer, 5.1 nl of 10 μM Ad153
reverse primer, and 2.55 nl of 1 μM Ad153-reverse-tag (1–
72) primer] made by KAPAHiFi HotStart PCR Kit (Catalog
No. KK2500, Kapa Biosystems, Cape Town, South Africa).
Finally, 50 nl PCR mix2 containing 21.4 nl 5× KAPA Fi-
delity Buffer, 5.1 nl of 1 U/μl KAPAHiFi DNA polymerase,
and 23.5 nl ddH2O was dispensed. The following conditions
were used for PCR: 72 °C for 5 min; 95 °C for 3 min; 25
cycles of 98 °C for 20 s, 60 °C for 15 s, and 72 °C for 25 s;
72 °C for 5 min; and finally 4 °C. The final extraction of
PCR products was carried out by centrifuging at 3000 g for
3 min with an extraction kit. Product purification was per-
formed using a 1.0× Agencourt AMPure XP bead (Catalog
No. A63881, Beckman Coulter, Indianapolis, IN) to sample
ratio. Following ssDNA cyclization, digestion, and PEG32
bead purification (Catalog No. 1000005259, MGI), the li-
braries were sequenced in SE100+10+10 on the BGISEQ-
500 sequencer.

Preprocessing of sequencing data

The raw reads derived from BGISEQ-500 were assessed by
SOAPnuke (v1.5.6) [43] using the parameter “-Q 2 -G”.
Afterward, we mapped the qualified reads to the human
reference genome (hg19) by Burrows-Wheeler Aligner
(BWA; v0.7.16a) [44] with BWA-MEM algorithms using
the argument “-t 2 -k 32 -M /path/to/ref.fa”. The output
SAM files were compressed and sorted by reference
coordinates and then indexed with SAMtools (v1.1.19)
[45]. Subsequently, uniquely mapped reads were ex-
tracted. Reads considered as “PCR duplications” were
removed by “samtools rmdup” from the downstream
analysis.

Detection of CNVs

We calculated the copy number of each cell with an opti-
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mized method developed by the Baslan and others
[35,46,47]. Based on the coverage suggestion of 30–180
reads per window for CNV calling from Gusnanto et al.
[48], we estimated the number of bins according to the
average sequencing depth (< 1 Mb) by the R package
NGSoptwin. The “bin boundaries” files for 5000 bins in
hg19 that suited the read length of 100 bp were generated.
After GC content normalization, DNAcopy was employed
for segmentation and copy number calculation, which
points to gains and losses in chromosomes.

The FASTQ files of bulk HeLa S3 were downloaded
from the NCBI Sequence Read Archive repository (SRA:
SRX206591; h t tps : / /www.ncbi .n lm.n ih .gov/s ra /
SRX206591). The YH dataset was available in the Giga-
Science repository GigaDB (http://gigadb.org/dataset/
100115) [35].

For the matched bulk WES dataset, snp-pileup from
htstools was first employed for processing BAM files using
the parameter “/path/to/dbsnp_150.common.hg38.vcf.gz -g
-q15 -Q20 -P100 -r25,0”.We then used FACETS [49] for copy
number estimation from the paired (normal/tumor) samples.

Accuracy of CNV detection from the low-coverage
single-cell WGS data

The accuracy of CNV calling here was assessed using
sensitivity and FDR gained from the simulated dataset. A
series of rearranged genomes with a defined size of CNVs
were randomly generated by SimulateCNVs [50]. For each
of the 10 outputs, 0.1× WGS datasets with 20 CNVs of a
specific size (1, 2, 3, 5, 10, and 15 Mb) were used to ran-
domly extract 3 × 105 uniquely mapped reads after duplicate
removal with 5 replicates. A detected CNV was assumed to
be true when it overlapped at least 50% with the simulated
CNVs. The sensitivity was defined as TP/(TP + FN), where
the numerator was the true positive CNV mentioned above
and the denominator represented the total number of si-
mulated CNVs. FDR was defined as FP/(FP + TP), where
the numerator was the false positive CNV and the de-
nominator was the total number of CNVs detected by the
algorithm.

Estimation of sequencing saturations

The uniquely mapped reads after duplicate removal were
randomly down-sampled to 3 × 104, 6 × 104, 9 × 104,
1.2 × 105, 1.5 × 105, 1.8 × 105, 2.1 × 105, 2.4 × 105, 2.7 × 105,
3 × 105, 4.5 × 105, 6.5 × 105, 1.05 × 106, 1.5 × 106, and 2 × 106

reads. The down-sampled reads were used to estimate the
sequencing saturation for our low-coverage WGS method.
After calculating the copy number of each bin in the down-
sampled datasets, the boundaries of the bins with copy
number unequal to two were compared to that of samples

with the highest read depth. The percentages of bins with
abnormal copy number in samples with the highest covera-
ge found in the down-sampled datasets were recorded. The
saturation curves were fitted with locally weighted
(LOESS) regression in geom_smooth function in the R
package ggplot2 [51]. The inflection point of the curves was
used as the saturation point.

Evaluation of the uniformity

The FASTQ files of MDA, DOP-PCR, MALBAC, LIANTI,
TnBC, and sci-L3 datasets were downloaded from the
NCBI Sequence Read Archive repository (SRA:
SRR504711 for single-cell MDA, https://www.ncbi.nlm.
nih.gov/sra/SRR504711; SRR1006146 for DOP-PCR,
ht tps : / /www.ncbi .n lm.nih .gov/sra /SRR1006146;
SRR975229 for MALBAC, https://www.ncbi.nlm.nih.gov/
sra/SRR975229; SRX2660685 for LIANTI, https://www.
ncbi.nlm.nih.gov/sra/SRX2660685; SRX2847396 for
TnBC, https://www.ncbi.nlm.nih.gov/sra/SRX2847396;
and SRX5179905 for sci-L3, https://www.ncbi.nlm.nih.
gov/sra/SRX5179905). The sequence generated by 10x
Genomics platform was derived from https://support.10x-
genomics.com/single-cell-dna/datasets/1.1.0/bj_cells_1k.

The uniquely mapped reads after duplicate removal from
all samples were randomly down-sampled to 1 × 105 reads
for uniformity evaluation. To better assess the biases of
amplification methods, we binned reads into 60 kb intervals
across the genome with an average of 20 reads per bin
according to the results from Xi and his colleagues [24].
Reads in each bin were counted by bedtools2 (v2.20.1) and
then applied for Lorenz model estimation.

CNV profiling and tumor evolution visualization

MAPD was used for noise assessment in CNV calling
[47,52]. Since higher MAPD values reflect poorer quality of
a cell, we excluded single-cell samples with MAPD > 0.45.
Segment ratios of samples were presented and clustered by
hclust using ‘ward.D2’. Fishplot [53] was employed for
fishplot construction.

Ethical statement

We clarified that no animals were involved in this study. All
samples involved in human beings were obtained after
written informed consent and approval from the Institu-
tional Review Board (IRB) at Fudan University Zhongshan
Hospital and BGI-Shenzhen, China.
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