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Abstract KaKs_Calculator 3.0 is an updated toolkit that is capable of calculating selective pres-

sure on both coding and non-coding sequences. Similar to the nonsynonymous/synonymous sub-

stitution rate ratio for coding sequences, selection on non-coding sequences can be quantified

as the ratio of non-coding nucleotide substitution rate to synonymous substitution rate of adja-

cent coding sequences. As testified on empirical data, KaKs_Calculator 3.0 shows effectiveness to

detect the strength and mode of selection operated on molecular sequences, accordingly demon-

strating its great potential to achieve genome-wide scan of natural selection on diverse sequences

and identification of potentially functional elements at a whole-genome scale. The package of

KaKs_Calculator 3.0 is freely available for academic use only at https://ngdc.cncb.ac.cn/biocode/

tools/BT000001.

Introduction

Detecting natural selection on molecular sequences is of funda-
mental significance in molecular evolution, comparative geno-
mics, and phylogenetic reconstruction, which can provide

profound insights for revealing evolutionary processes of
molecular sequences and unveiling complex molecular
mechanisms of genome evolution [1]. In principle, estimating

selection on DNA sequences requires a reference set of substi-

tutions that is free from selection. As synonymous substitu-
tions do not provoke amino acid changes due to the
degeneracy of the genetic code, they are expected to be invisi-
ble to selection and thus widely used as a reference that reflects

the neutral rate of evolution [2]. Consequently, the ratio of
nonsynonymous substitution rate (Ka or dN) to synonymous
substitution rate (Ks or dS), namely, x = Ka/Ks (or dN/dS),
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is widely adopted to differentiate neutral mutation (x � 1)
from negative (purifying) selection (x < 1) and positive (adap-
tive) selection (x > 1), accordingly providing a powerful tool

for illuminating molecular evolution of coding sequences (see a
popular package in [3]).

Nowadays, a growing body of evidence has shown that

non-coding sequences, historically thought as ‘‘junk” due to
few knowledge on their function relative to coding sequences,
are recognized as functional elements to play important regu-

lation roles in multiple biological processes [4] and associate
closely with various human diseases [5–7]. Albeit less con-
served by comparison with coding sequences, a larger number
of non-coding sequences have been identified highly conserved

across mammalian genomes [8–10]. Importantly, more non-
coding sequences are subject to positive selection and negative
selection than previously believed, and particularly, long non-

coding RNA (lncRNA) sequences do experience natural selec-
tion [11]. As a result, several computational methods have been
proposed for the detection of selection acting on non-coding

sequences [12], which primarily differ in how to choose a refer-
ence of unconstrained evolution, such as, synonymous substi-
tutions of neighboring coding gene [13], intron sequences

[14,15], and ancestral repeats [16]. However, there lacks of
an implemented algorithm to detect the strength and mode
of selective pressure on non-coding sequences, particularly
considering an increasing number of non-coding studies con-

ducted worldwide. More importantly, an integrated toolkit
that is capable of detecting selection on both coding and
non-coding sequences is highly desirable, which would help

users achieve genome-wide scan of natural selection on diverse
sequences.

Toward this end, here we present KaKs_Calculator 3.0, an

updated toolkit for calculating selective pressure on both cod-
ing and non-coding sequences. Compared with previous ver-
sions [17,18] that focus solely on coding sequences, we

implement an algorithm in KaKs_Calculator 3.0 that
employs synonymous sites of adjacent coding sequences as
a reference to estimate selective pressure acting on non-
coding sequences. We test it on empirical data and demon-

strate its utility in diagnosing the strength and form of molec-
ular evolution.

Algorithm

The major update of KaKs_Calculator 3.0 is to incorporate an

algorithm that is capable of estimating selective pressure on
non-coding sequences. Specifically, it uses synonymous substi-
tutions as a reference baseline (similar to [13]), which, albeit
thought to be under weak selection [19–21], has been widely

adopted for determining the strength and type of selection
operated on coding sequences [22–29]. Similar to the Ka/Ks
ratio for coding sequences, selective pressure on non-coding

sequences (n) can be quantified as the ratio of non-coding
nucleotide substitution rate (Kn) to neutral substitution rate
(assumed as Ks), viz. n = Kn/Ks, where Ks is inferred from

adjacent coding sequences. As the number of observed substi-
tutions is less than the number of real substitutions, we adopt a
nucleotide substitution model (e.g., JC/K2P/HKY) to correct
multiple substitutions of non-coding sequences. Taking the

HKY model [30] as an example, therefore, Kn can be deduced
from the observed transitional and transversional substitutions

(S and V, respectively) as well as four nucleotide frequencies
(pA, pT, pG, and pC) , according to Equation (1) (see Equations
1.27 and 1.28 in [31]).

Kn ¼ 2
� pTpC

pY

þ pApG

pR

�
a� 2

� pTpCpR

pY

þ pApGpY

pR

� pYpR
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2 pTpCpRþpApGpYð Þ �,

b ¼ �logð1� V
2pYpR

Þ, pR = pA + pG, and pY = pT + pC.

To detect and quantify selection on non-coding sequences,
KaKs_Calculator 3.0 provides users with two ways to obtain

the value of neutral mutation rate or Ks, which is either calcu-
lated from adjacent coding sequences uploaded by users or just
specified in a straightforward manner by users (Figure 1). As a

consequence, KaKs_Calculator 3.0 is capable of detecting
selection on both coding and non-coding sequences.

KaKs_Calculator 3.0 is implemented in standard Cþþ
language, enabling higher efficiency and easy compilation on
different operation systems (Linux/Windows/Mac). In addi-
tion to the new functionality for estimating selection on non-

coding sequences as mentioned above, it is also updated by fix-
ing bugs and errors. The package of KaKs_Calculator 3.0,
including compiled executables, a Windows application with
graphical user interface (GUI), source codes, and example

data, accompanying with detailed instructions and documenta-
tion, is freely available for academic use only at BioCode
(https://ngdc.cncb.ac.cn/biocode/tools/BT000001), an open-

source platform for archiving bioinformatics tools in the
National Genomics Data Center (NGDC) [32], China
National Center for Bioinformation.

Application on empirical data

To test KaKs_Calculator 3.0, we choose three empirical

lncRNA genes that are extensively studied according to
LncRNAWiki [7] and collect their human–mouse orthologs
as well as their adjacent coding orthologs from NGDC

LncBook [33] and National Center of Biotechnology Informa-
tion (NCBI) RefSeq [34]. Specifically, these non-coding and
coding gene symbols with accession numbers are: 1) H19

(NR_002196.2 vs. NR_130973.1) and MRPL23
(NM_021134.4 vs. NM_011288.2); 2) Metastasis-associated
lung adenocarcinoma transcript 1 (MALAT1; NR_002819.4
vs. NR_002847.3) and SCYL1 (NM_020680.4 vs.

NM_001361921.1); and 3) Hox transcript antisense intergenic
RNA (HOTAIR; NR_003716.3 vs. NR_047528.1) and
HOXC12 (NM_173860.3 vs. NM_010463.2). Based on these

orthologous genes, we obtain their corresponding aligned
sequences by MAFFT [35] (using parameters: --maxiterate
1000 --localpair).

According to the ratio (n) of non-coding nucleotide substi-
tution rate to adjacent synonymous substitution rate, we reveal
that, although the coding genes undergo strong purifying selec-

tion (x < 1), these three non-coding genes present diverse
selective pressure (Table 1). Strikingly, HOTAIR exhibits pos-
itive selection (n > 1), whereas the rest two genes experience
negative selection (n < 1). HOTAIR is a � 2.3-kb intergenic

RNA transcribed from the antisense strand of the HOXC gene
cluster [36]. The result of positive selection detected on
HOTAIR relative to HOXC12 is consistent well with previous
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findings that HOTAIR evolves faster than the neighboring
genes [37]. On the contrary, MALAT1, a � 8.7-kb non-
coding RNA flanked by the highly conserved kinase-like gene
SCYL1, is ubiquitously expressed in almost all human tissues,

evolutionarily conserved across mammalian species [38], and
associated with various cancers [39]. Thus, n = 0.464 indicates
strong selective constraint on MALAT1, in accordance with its

physiologic and pathophysiological function [40] and con-
served RNA structure [41] as documented by previous studies.
Likewise, H19, a � 2.3-kb imprinted maternally expressed

transcript located near MRPL23, is known for close associa-
tion with Beckwith-Wiedemann Syndrome and also involved
in tumorigenesis [42]. Our result shows that H19 presents

stronger selection constraint as indicated by n = 0.296, con-
forming well with its conserved sequence and structure [43].
It is worth noting that one non-coding sequence may have
multiple adjacent coding genes, which are specified by users

and thus can lead to different estimates of Ks and n. Taken
together, KaKs_Calculator 3.0 is effective in estimating natu-
ral selection on non-coding sequences, which has the potential

to reveal evolutionarily selective pressures operated on diverse
molecular sequences.

In addition, to test the running performance of KaKs_
Calculator, we collect an empirical large dataset that contains
15,424 human–mouse orthologous genes retrieved from RefSeq
[34] and obtain their codon-based alignments by ParaAT [44]

— a parallel tool for constructing multiple protein-coding
DNA alignments. KaKs_Calculator 3.0 includes ten computa-
tional methods for detecting selection on coding sequences,

which fall into approximate methods and maximum-
likelihood methods. We choose three approximate methods,
NG [23], YN [26], and MYN [27], and one maximum-

likelihood method, GY [25], and test on a 64 bit x86 Intel Core
i7 machine containing 4 CPU cores with each 3.40 GHz and
running Windows 10. For this large-scale data analysis, we find

that NG, YN, andMYN all take� 2 min and GY takes� 11 h,
clearly showing that approximate methods are more time-
efficient than maximum-likelihood ones. Considering that dif-
ferent users may have different preferences, it should be noted,

however, that maximum-likelihood methods are believed to
achieve higher accuracy and that different methods adopt dif-
ferent models and strategies and thus can lead to different esti-

mates [45] (see an example in [46] where contradictory findings
are produced by different methods).

Figure 1 Graphical user interface of KaKs_Calculator 3.0

It contains two panels that are devised for CDS and NCS, respectively. Methods for detecting selection on CDS are classified as: 1)

approximate methods: NG by Nei et al. [23], LWL by Li et al. [22], LPB by Li [24] and Pamilo et al. [29], MLWL and MLPB by Tzeng et

al. [28], YN by Yang et al. [26], MYN by Zhang et al. [27]; 2) maximum-likelihood methods: GY by Goldman et al. [25], and MS and MA

by Zhang et al. [17]. Ka, nonsynonymous substitution rate; Ks, synonymous substitution rate; Kn, non-coding nucleotide substitution rate;

Ka/Ks, selective pressure on CDS; Kn/Ks, selective pressure on NCS; CDS, coding sequence; NCS, non-coding sequence; MLWL,

Modified LWL; MLPB, Modified LPB; MYN, Modified YN; MS, Model Selection; MA, Model Averaging.

Table 1 Estimates of selective pressure as well as substitution rates in human–mouse orthologs

Non-coding Coding

Gene symbol Kn n = Kn/Ks Gene symbol Ka Ks x = Ka/Ks

H19 0.340 0.296 MRPL23 0.088 1.150 0.077

MALAT1 0.324 0.464 SCYL1 0.040 0.697 0.058

HOTAIR 0.544 1.114 HOXC12 0.020 0.488 0.041

Note: Ka, nonsynonymous substitution rate; Ks, synonymous substitution rate; Kn, non-coding nucleotide substitution rate; x, selective pressure on
coding sequence; n, selective pressure on non-coding sequence.
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Discussion

KaKs_Calculator 3.0 is significantly updated by achieving
the detection of natural selection on non-coding sequences

as well as coding sequences. As testified on empirical data,
it is of great utility in calculating natural selection on molec-
ular sequences, thus identifying potentially functional ele-

ments at a genome-wide scale. Future developments
include the detection of selective pressure on small peptides
(less than 300 nucleotides) that are encoded by small open
reading frames within non-coding sequences [47–49] as well

as the implementation of codon-based alignment procedure
to help users generate input sequences in an easy-to-use
manner.

Code availability
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