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Artificial intelligence (AI) is a powerful approach for solving
complex problems in the processing, analysis, and interpreta-
tion of omics data, as well as the integration of multi-omics

and clinical data. In recent years, AI has enabled remarkable
breakthroughs across diverse biomedical fields, such as geno-
mic variant interpretation, protein structure prediction, disease

diagnosis, and drug discovery. Aiming to provide a forum for
advances in the development and application of AI-based tools
in omics, we have organized a special issue ‘‘Artificial Intelli-

gence in Omics” for the journal Genomics, Proteomics & Bioin-
formatics (GPB). This special issue covers a broad spectrum of
topics, including but not limited to: 1) AI-based models, meth-
ods, and software for the processing, analysis, visualization,

and interpretation of omics data; 2) AI-based algorithms for
the integrative analysis of omics, clinical, and health data,
including biomedical images; 3) AI-based platforms for

improving disease diagnosis, precision medicine, and patient
care; and 4) AI-based approaches for protein structure predic-
tion, gene function prediction, and drug discovery.

With enthusiastic responses to our call for submissions, we

are pleased to announce that 15 articles have been selected for
publication in this special issue, including four review articles,
two original research articles, and nine method articles. A list

of original studies and tools reported in this special issue is
provided in Table 1.

Among the four review articles, Brendel et al. provided an

overview of the application of deep learning (DL) models to
single-cell RNA sequencing (scRNA-seq) data analysis, and
discussed the current challenges and future opportunities in
this field [1]. Stanojevic et al. presented an in-depth review

on the computational methods for integrating multi-omics
data from the same single cells or aligning multi-modal data
from different cells, providing a detailed technical summary

of currently available methods [2]. Li et al. surveyed machine
learning (ML) approaches in lung cancer research, highlighting
the challenges and opportunities for integrating complex

biomedical data to improve lung cancer diagnosis and therapy
[3]. Zha et al. reviewed current methods for microbiome data
mining and knowledge discovery, with a focus on AI methods
for elucidating microbial communities and their spatiotempo-

ral dynamic patterns [4].
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Table 1 Original studies and tools reported in the special issue on artificial intelligence in omics

Tool name Short description Link Ref.

– Assessing and optimizing explainable ML

models applied to transcriptomic data

https://github.com/zhaopage/model_interpretability [5]

SOPHIE Separating common and specific

transcriptional responses using generative

neural networks

https://github.com/greenelab/generic-expression-patterns

https://github.com/greenelab/sophie

[6]

DGMP Identifying cancer driver genes from multi-

omics pan-cancer data

https://github.com/NWPU-903PR/DGMP

https://ngdc.cncb.ac.cn/biocode/tools/BT007338

[7]

scEMAIL Generating universal and source-free

annotations for single-cell RNA-seq data with

novel cell-type perception

https://github.com/aster-ww/scEMAIL

https://ngdc.cncb.ac.cn/biocode/tools/BT007335

[8]

DeeReCT-TSS Annotating TSSs in multiple cell types based

on DNA sequence and RNA-seq data

https://github.com/JoshuaChou2018/DeeReCT-TSS_release

https://ngdc.cncb.ac.cn/biocode/tools/BT007316

[9]

TIST Analyzing transcriptome data and

histopathological images integratively for

spatial transcriptomics

http://lifeome.net/software/tist/

https://ngdc.cncb.ac.cn/biocode/tools/BT007317

[10]

DeepNoise Disentangling signal and noise by DL-based

classification of fluorescent microscopy

images

https://github.com/Scu-sen/Recursion-Cellular-Image-Classification-Challenge

https://ngdc.cncb.ac.cn/biocode/tools/BT007332

[11]

MAPD Predicting protein degradability using ML

analysis of protein-intrinsic features

https://github.com/liulab-dfci/MAPD

https://mapd.cistrome.org

[12]

NetBCE Predicting linear B-cell epitopes using an

interpretable deep neural network

https://github.com/bsml320/NetBCE

https://ngdc.cncb.ac.cn/biocode/tools/BT007321

[13]

TripletGO Predicting gene functions by integrating

transcript expression profiles with protein

homology inferences

https://zhanggroup.org/TripletGO

https://ngdc.cncb.ac.cn/biocode/tools/BT007277

[14]

DrSim Enabling transcriptional phenotypic drug

discovery by similarity learning

https://hub.docker.com/r/bm2lab/drsim/

https://github.com/bm2-lab/DrSim/

https://ngdc.cncb.ac.cn/biocode/tools/BT007273

[15]

Note: ML, machine learning; DL, deep learning; TSS, transcription start site.
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In an original research article, Zhao et al. studied the appli-
cation of explainable ML models to transcriptomics data.

They performed a comprehensive evaluation of multiple
explainers and proposed optimization strategies to improve
model reproducibility and interpretability. This work provides

new insights and guidelines on the use of explainable ML mod-
els for exploring novel biological mechanisms [5].

Most of the articles in this special issue are method articles,

reporting AI-based tools for various omics applications. Lee
et al. introduced SOPHIE (Specific cOntext Pattern Highlight-
ing In Expression data), which uses a generative neural
network to separate common and context-specific transcrip-

tional patterns. SOPHIE can distinguish common differen-
tially expressed genes (DEGs) that are frequently altered
across different biological contexts, and context-specific DEGs

that are relevant for particular experimental conditions [6].
Zhang et al. reported DGMP (Directed Graph convolu-

tional network and Multilayer Perceptron), a novel ML-based

method for identifying cancer driver genes from multi-omics
pan-cancer data. DGMP combines directed graph convolu-
tional network to make use of diverse gene features and regu-
latory information in the multi-omics data, and multilayer

perceptron to weigh preferentially on gene features. DGMP
outperforms multiple state-of-the-art methods and identifies
non-mutated cancer driver genes harboring epigenetic or

expression alterations [7].
Wan et al. presented scEMAIL (Expert enseMble novel

cell-type perception and local Affinity constraInts of muLti-

order for scRNA-seq data). scEMAIL is a universal and
source-free transfer learning-based annotation framework for
scRNA-seq data. It can automatically identify novel cell types

without using source data [8].
Zhou et al. reported DeeReCT-TSS (Deep Regulatory

Code and Tools-Transcription Start Site), a DL-based method

for genome-wide prediction of transcription start sites (TSSs).
DeeReCT-TSS incorporates both DNA sequence data and
conventional RNA-seq data as inputs, and substantially out-

performs existing methods for TSS prediction based on
DNA sequence data alone [9].

Shan et al. presented TIST (transcriptome and histopatho-
logical image integrative analysis for spatial transcriptomics), a

novel analytical tool for spatial transcriptomics (ST) data. By
integrating matched ST data and histopathological images,
TIST identifies spatial clusters and enhances spatial gene

expression patterns. TIST outperforms multiple start-of-the-
art methods, as benchmarked on both simulated and real data-
sets [10].

Yang et al. developed DeepNoise, a semi-supervised DL-
based model to distinguish true biological signals from exper-
imental noise. The authors used DeepNoise to identify and
classify the phenotypic effect of 1108 genetic perturbations

based on 125,510 fluorescent microscopy images, achieving a
high performance among competing methods [11].

In another original research article, Zhang et al. devel-

oped MAPD (model-free analysis of protein degradability),
a ML method to predict protein degradability via protein-
intrinsic features. MAPD achieves a high accuracy in

predicting kinases that may be subject to targeted protein
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degradation, and may generalize to non-kinase proteins. The
authors also identified important features predictive of
protein degradability [12].

Xu and Zhao curated a large benchmark dataset of linear
B-cell epitopes (BCEs), which play a critical role in immune
responses. Based on this dataset, the authors developed

NetBCE, a ten-layer interpretable deep neural network to pre-
dict linear BCEs. NetBCE substantially outperforms conven-
tional ML methods, and reveals distinct features of BCEs [13].

Zhu et al. presented TripletGO, a novel hierarchical
method to predict gene functions and specifically Gene Ontol-
ogy (GO) terms by combining transcript expression profiles
and protein homology inferences. TripletGO substantially

improves the accuracy in predicting gene functions as com-
pared to current state-of-the-art methods, in large part attrib-
uted to a novel triplet network method that can effectively

boost function prediction using transcript expression profiles
[14].

Last but not least, Wei et al. reported DrSim (similarity

learning for drug discovery). As a learning-based framework,
DrSim automatically infers similarity between transcriptional
profiles. DrSim outperforms existing methods based on

in vitro and in vivo datasets related to drug annotation and
repositioning. DrSim may be useful for phenotypic drug dis-
covery based on high-throughput transcriptional perturbation
data [15].

Overall, the 15 articles in this special issue showcase the
broad applications and powerful utilities of AI in omics. We
anticipate that new breakthroughs in omics-driven biomedical

research will be made by harnessing the enormous power of
AI. GPB will continue to provide a platform for AI-based
tools and discoveries in omics.
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