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Abstract Recently developed technologies to generate single-cell genomic data have made a revo-

lutionary impact in the field of biology. Multi-omics assays offer even greater opportunities to

understand cellular states and biological processes. The problem of integrating different omics data

with very different dimensionality and statistical properties remains, however, quite challenging. A

growing body of computational tools is being developed for this task, leveraging ideas ranging from

machine translation to the theory of networks, and represents another frontier on the interface of

biology and data science. Our goal in this review is to provide a comprehensive, up-to-date survey

of computational techniques for the integration of single-cell multi-omics data, while making the

concepts behind each algorithm approachable to a non-expert audience.
Introduction

Single-cell sequencing technologies have opened the door to
investigating biological processes at an unprecedentedly high

resolution. Techniques such as Drop-seq [1], InDrops [2],
and 10x Genomics assays [3] are capable of measuring
single-cell gene expression [single-cell RNA sequencing
(scRNA-seq)] in tens of thousands of single cells simultane-

ously. Measurements of other data modalities are also increas-
ingly available. For example, single-cell assay for transposase-
accessible chromatin with sequencing (scATAC-seq) assesses

chromatin accessibility, and single-cell bisulfite sequencing
captures DNA methylation, all from single cells. However,
many of such techniques are designed to measure a single

modality and do not lend themselves to multi-omics measure-
ments. The way to combine information from such measure-
ments is then to assay different omics from different subsets
of the same samples. By assuming that cells assayed by differ-

ent techniques share similar properties, one can then use align-
ment methods to computationally aggregate similar cells
across different omics assays and draw consensus biological

inferences.
Recently, however, a number of experimental techniques

capable of assaying multiple modalities simultaneously from

the same set of single cells have been developed. Cellular index-
ing of transcriptomes and epitopes by sequencing (CITE-seq)
ciences /
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[4] and RNA expression and protein sequencing (REAP-seq)
[5] measure protein and gene expression. Single-nucleus chro-
matin accessibility and mRNA expression sequencing

(SNARE-seq) [5,6], simultaneous high-throughput ATAC
and RNA expression with sequencing (SHARE-seq) [7], and
single-cell combinatorial profiling of chromatin accessibility

and mRNA (sci-CAR) [8] measure gene expression and chro-
matin accessibility, while single-cell sequencing of gene
expression and methylation (scGEM) [9] measures gene

expression and DNA methylation and genome and transcrip-
tome sequencing (G&T-seq) [10] assays genome and tran-
scriptome. For triple-omics data generation, single-cell
nucleosome, methylation, and transcription sequencing

(scNMT) [11] measures gene expression, chromatin accessibil-
ity, and DNA methylation, while single-cell triple-omics
sequencing (scTrio-seq) [9,12] captures single nucleotide poly-

morphisms (SNPs), gene expression, and DNA methylation
simultaneously. The multiome platform by 10x Genomics is
capable of measuring gene expression and chromatin accessi-

bility at the same time. Integrative analysis of such data
obtained from the same cells remains a challenging computa-
tional task due to a combination of reasons, such as the noise

and sparsity in the assays, as well as different statistical dis-
tributions for different modalities. For clarity, we distinguish
between integration methods that combine multi-omics data
from the set of the same single cells, from alignment methods

designed to work with multi-modal data coming from the
same tissue but different cells. The difference in their
approaches is shown in Figure 1.
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The application of data fusion algorithms for multi-omics
sequencing data predates single-cell technologies; bulk-level
data have been integrated using a variety of computational

tools as reviewed previously [13]. In this review, we aim to give
a comprehensive, up-to-date summary of existing computa-
tional tools of multi-omics data integration and alignment in

the single-cell field, for researchers in the field of computa-
tional biology. For more general surveys, the readers are
encouraged to check other single-cell multi-omics reviews

[14–21]. Distinctively, the targeted readers of our review are
computational biologists trying to understand computational
tools at a detailed technical level. Therefore, the work here
covers the fundamental principles of underlying algorithms

in-depth and elaborates on the strength and weaknesses of
these approaches whenever applicable.

Integration methods handling multi-omics data

generated from the same single cells

The integration methods for multi-modal data assayed from
the same set of single cells can be conceptualized as ‘‘vertical
integration”, which was mentioned in an earlier review [17],

can be broadly categorized into at least three main types by
methodology: mathematical matrix factorization-based meth-
ods, artificial intelligence (AI; e.g., neural network)-based

methods, and network-based methods. The scheme of these
methods is illustrated in Figure 2. Additional less diversified
approaches include a Bayesian statistical method and a metric
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learning method. The list of the currently implemented meth-
ods is summarized in Table 1 and Table 2.

Matrix factorization-based methods

Matrix factorization-based methods aim to describe each cell
as the product between a vector that describes each omics ele-

ment (genes, epigenetic loci, and proteins) and a vector of
reduced and common features (factors) capturing its basic
properties (Figure 2A). Mathematically, if we represent each

omics as matrix Xi (i=1,2,...) then matrix factorization decom-
poses it as the product of a shared matrix H across all omics
data types, and omics-specific matrixWi (i=1,2,...), together with

random noise ei (i=1,2,. . .) as:

X1 ¼ W1 Hþ e1 ; X2 ¼ W2 Hþ e2 ; � � � ; Xi ¼ Wi Hþ ei ð1Þ
Figure 2 Single-cell multi-omics integration methods

Illustration of some common integration approaches for single-cell mu

both cells and omics via factors (A), neural networks which combine

based approaches, which represent cells as nodes on the graphs conne
Such methods are simple and easily interpretable since the
cell and omics factors can be associated with omics features,
but may lack the ability to capture nonlinear effects. We

describe the variations in this type of method below.
MOFA+ [22] is a sequel to the multi-omics factor analysis
(MOFA) [22,23]. Both studies perform factor analysis,

equipped with sparsity-inducing Bayesian elements including
automatic relevance determination [24]. MOFA+ integrates
data over both views (corresponding to different modalities)

and groups (corresponding to different experimental condi-
tions). The model scales easily to large datasets. MOFA+
was applied to integrate gene expression, chromatin accessibil-
ity, and DNA methylation data assayed using scNMT from

mouse embryos, as well as to integrate several datasets over
different experimental conditions rather than different omics.
After performing factor analysis on the mouse dataset, the
lti-omics data: matrix factorization uncovering a representation of

different -omics into a single cell representation (B), and network-

cted to nearby cells (C).



Table 1 Summary of the methods for integrating multi-omics data from the same cells

Methodology

category

Method Algorithm Data Advantage and disadvantage Ref.

Matrix

factorization

MOFA+ Matrix factorization with

automatic relevance

determination

Transcriptomic, epigenetic � GPU enables scalability to millions of cells

� MOFA+ can only capture moderate non-

linear relationships

[7]

scAI Pseudotime reconstruction

and manifold alignment

Transcriptomic, epigenetic � Sensitive enough to capture cell states when

only one mode of data is distinct across cell

states

� scAI’s missing value strategy cannot impute

missing values or distinguish between

methylated and missing states for DNA

methylation data

[10]

Neural

network

scMVAE Variational autoencoder Transcriptomic, epigenetic � The scMVAE framework is flexible to

encompass diverse joint-learning strategy

� No guiding principles are provided with

respect to how to pick a specific learning

strategy for the specific dataset

[27]

DCCA Variational autoencoder Transcriptomic, epigenetic � Able to generate biologically meaningful

missing omics data based on the learned latent

representation of another omics data

� Performance is not robust against high

levels of noise

[30]

totalVI Variational autoencoder Transcriptomic, proteomic � Computationally scalable and flexible [12]

LIBRA Split-brain autoencoder Transcriptomic,

proteomic, epigenetic

� Computationally scalable

� Depending on the dataset, extensive fine-

tuning may be required to achieve optimal

performance

� Does not explicitly deal with missing data

[32]

BABEL Autoencoder translating

between modalities

Transcriptomic,

proteomic, epigenetic

� BABEL’s autoencoder model follows an

efficient interoperable design, resulting in

efficient cross-modality prediction

� BABEL’s performance is limited by the

amount of mutual information shared

between the input data modalities

[34]

DeepMAPS Graph neural network Transcriptomic,

epigenetic, proteomic

� Learns interpretable cell type-specific

biological networks based on data modality

� Computational cost does not scale efficiently

to super-larger datasets

� Reproducibility could be dependent on the

specific GPU model

[35]

Network-

based

citeFUSE Similarity network fusion Transcriptomic, proteomic � Enables doublet detection

� Computationally scalable

� Performance could be dependent on the

structure of the input modality graphs

[36]

Joint diffusion Joint manifold learning

through Integrated diffusion

Transcriptomic, epigenetic � Enables simultaneous denoising of input

datasets

� Has not been tested on enough real datasets,

therefore the robustness of its performance

remains to be seen

[39]

Seurat v4 Weighted averaging of

nearest neighbor graphs

Transcriptomic, proteomic � The modality weights learned by WNN are

interpretable as the representation of

technical quality and importance of modality

measurement

� Requires dimension reduction, which is not

compatible with categorical or binary input

[41]

Others BREM-SC Bayesian mixture model Transcriptomic, proteomic � Enables quantification of clustering

uncertainty

� Explicitly addresses the between-modality

correlation

� The MCMC algorithm can be

computationally expensive

[42]

SCHEMA Metric learning Transcriptomic, epigenetic � Computationally efficient

� Performance and interpretability may be

affected by the choice of primary modality

[43]

Note: MOFA, multi-omics factor analysis; scAI, single-cell aggregation and inference; scMVAE, single-cell multimodal variational autoencoder;

DCCA, deep cross-omics cycle attention.
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most relevant factors are related to biological processes shap-
ing embryo development. MOFA+ provides an elegant and
successful general framework for integration, which could

potentially be superseded in specific cases by more specialized
models designed for integrating specific omics layers.

Single-cell aggregation and inference (scAI) [25] features a

twist on matrix factorization and is designed specifically for
the integration of epigenetic (chromatin accessibility and
DNA methylation) and transcriptomic data. It addresses the

sparsity of epigenetic data by aggregating (averaging) such
data between similar cells. This requires a notion of cell–cell
similarity, which is learned as a part of the model, rather than
being postulated prior to the integration. Their model solves

the following optimization problem:

min
W1 ; W2 ; H; Z

ajjX1 �W1Hjj2F þ jjX2ðZ � RÞ � W2Hjj2F
þ kjjZ � HTHjj2F þ c

X

j

jjH:j jj21 ð2Þ

Here X1 represents the transcriptomic data, X2 represent
the epigenomic data, H is the common (cell-specific) factor
matrix, W1 and W2 are the assay-specific factor matrices, Z
is the cell–cell similarity matrix, and entries of R are

Bernoulli-distributed random variables, and hyperparameters
a, k, and c determine the relative importance of different terms.
The twist on the usual matrix factorization is made by factor-

ing aggregated epigenetic data X2 (Z・R), rather than directly
factoring the epigenetic data X2. After the learning is complete,
the matrix of cell factors is used to cluster the cells and the

importance of genes and epigenetic marks is ranked using
the magnitude of the values in loading matrices. In order to
jointly visualize different factors, scAI implements a novel
VscAI algorithm utilizing Sammon mappings [26]. The rela-

tionships between epigenetics and gene expression can be
explored using correlation analysis and nonnegative least
square regression. The model was tested on simulations using

MOSim [27], and several real-world datasets, and performed
better than the earlier MOFA version, in terms of identifying
natural clusters and condensing epigenetic data into meaning-

ful factors.

Neural network-based methods

Although neural networks are generally well-suited for super-
vised tasks, a class of neural networks called autoencoders is
commonly used for unsupervised learning, such as the multi-
omics integration problem in single cells. Deep autoencoders

perform nonlinear dimensionality reduction by squeezing the
input through a lower-dimensional hidden layer (bottleneck)
and attempting to reconstruct the original input as the output

of the neural network (Figure 2B). They consist of two parts:
the encoder network performing the dimensionality reduction
and the decoder network reconstructing based on the dimen-

sionally reduced data. In principle, autoencoders generalize
the principal component analysis by allowing for nonlinear
transformations. Many variations of autoencoder models

exist, and among them, variational autoencoders have proven
useful for analyzing single-cell data. Rather than directly
encoding the data in a dimensionally reduced (latent) space,
variational autoencoders sample from a probability distribu-

tion (usually Gaussian) in the latent space, and use the encoder
network to produce the parameters of this distribution. As
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such, they combine deep learning and Bayesian inference to
produce generative models, which not only dimensionally
reduce the original data but also produce realistic synthetic

data points. Below we review the methods using certain varia-
tions of the autoencoder architecture to integrate single-cell
multi-omics data.

Single-cell multimodal variational autoencoder (scMVAE)
[28] was designed to integrate transcriptomic and chromatin
accessibility data, using a version of a variational autoencoder.

The key question inmulti-omics integration is how to encode the
multi-omics data into a single latent space representation. In the
case of scMVAE, a combination of 3 differentmethodswas used
for this task, including a neural network acting on the concate-

nated input data, neural networks encoding transcriptomic and
chromatin accessibility data separately prior to merging, and a
product of experts technique for combining different represen-

tations [29]. At the same time, cell-specific scales used to normal-
ize expression across cells are learned (called library factors).
The input data are reconstructed by processing the latent repre-

sentations via decoder neural networks, which calculate the
probabilities of gene dropouts and predict the expression of
measured genes modeled as a negative binomial distribution.

This model incorporates the task of constructing shared rep-
resentations of the multi-modal data with clustering. Namely,
one of the latent variables is constructed to correspond to the
cluster identifier. Furthermore, the model incorporates tools

to deal with tasks such as data imputation and can be used for
studying the association between epigenetics and gene expres-
sion. scMVAE was applied to integrate two real datasets assay-

ing mRNA and chromatin accessibility using SNARE-seq
method, as well as simulated data generated by Splatter [30].
It takes into account the known relationships between appropri-

ately located transcription factors and gene expression and uses
them to test the imputed (denoised) data. According to the
authors, scMVAE performed better than MOFA in terms of

clustering and enhancing the consistency between different
-omics layers on several real and simulated datasets.

Deep cross-omics cycle attention (DCCA) model is another
method in this category for joint analysis of single-cell multi-

omics data [31]. It uses variational autoencoders to integrate
multi-omics data and builds on the scMVAE algorithm
described above. However, DCCA diverges from scMVAE in

one important aspect. DCCA uses separate but coupled
autoencoders to dimensionally reduce different omics layers,
while scMVAE constructs a shared dimensionally reduced rep-

resentation of transcriptomic and epigenetic data. This strat-
egy is inspired by the theory of machine translation, notably
the so-called attention transfer; in this case, the teacher net-
work working with the scRNA-seq data guides the learning

of the student network working with scATAC-seq data. Their
model compares favorably to scAI and MOFA+ on metrics
such as clustering accuracy, denoising quality, and consistency

between different omics.
totalVI [32] combines Bayesian inference and a neural net-

work to create a generative model for data integration. It was

created to handle gene expression and protein data. Joint
latent space representations are learned via an encoder net-
work and used to reconstruct the original data while account-

ing for the difference between the original data modalities. The
model generates latent representations capturing both omics,
and at the same time models experimental conditions through
an additional set of latent variables. The gene expression data
are sampled from a negative binomial distribution, and the
parameters are obtained as outputs of a decoder neural net-
work. The protein data are sampled from a mixture model

with two negative binomial distributions simulating the exper-
imental background and the actual signal, respectively. The
model was applied to two datasets containing transcriptomic

and proteomic measurements and generated shared represen-
tations of cells with interpretable components.

LIBRA [33] uses an autoencoder-like neural network to

translate between different omics. Motivated by split-brain
autoencoder [34] and machine translation approach, the model
consists of two separate neural networks. The first network
takes as input elements of the first dataset and aims to recon-

struct a corresponding element of the second dataset. The sec-
ond network performs an inverse task. Taken together, the
bottlenecks of two networks aim to convert the two datasets

into the same latent space. This method is quite general and
can be applied to various pairs of omics data. It produced clus-
ters of similar quality compared to Seurat v4.

BABEL [35] also uses autoencoder-like neural networks to
translate between gene expression (modeled by negative bino-
mial distribution) and binarized chromatin accessibility data.

There are two encoder and two decoder neural networks, each
encoder/decoder handles one data type of gene expression or
chromatin accessibility. As a result, four combinations
between encoders and decoders are formed, and the loss func-

tion is optimized to minimize reconstruction error for four
combinations of encoders and decoders. In this approach,
the two encoders are prone to produce similar representations,

as the encoded gene accessibility is decoded as chromatin
accessibility and vice versa.

BABEL provides a promising generic framework for multi-

omics inference at a single-cell level from single-omics data, by
using the model that was previously trained on multi-omics
data sequenced from the same single cells. The modular nature

of BABEL provides additional flexibility, as the model can be
extended to work with additional modalities when the corre-
sponding data becomes available. Despite the potential for
generalization, one should be cautioned that if the training is

conducted on cell types that are very different, the transfer
learning using BABEL is not very successful.

DeepMAPS [36] integrates different data modalities by a

graph transformer neural network architecture for interpretable
representation learning. The data are represented using a
heterogenous graph in which some of the nodes represent cells

and others represent genes. An autoencoder-like graph neural
network architecture is used for representation learning, with
an attention mechanism. The attention mechanism learns the
weights by the contribution of the neighbors to the node of inter-

est. This not only achieves better performance, but also
enhances the interpretability to identify genes most relevant to
cell state differences. DeepMAPS method learns relevant

gene-gene interaction networks and cell–cell similarities, which
can be used for downstream steps such as clustering to infer
novel cell types. It compared favorably on clustering, compared

to state-of-the-art techniques such as MOFA+ and totalVI.
Network-based methods

Network-based methods represent the relationships between
different cells using a weighted graph, where cells serve as
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nodes (Figure 2C). Integration is then accomplished by manip-
ulating such graph representation. This approach emphasizes
the neighborhood structure and sometimes pools the informa-

tion between neighbors, leading to additional robustness
against the noise. Below are the currently available methods.

citeFUSE [37] integrates transcriptomic and proteomic

CITE-seq data using network fusion of similarity graphs cor-
responding to different modalities. This idea traces back to
computer science work [38] on fusing multi-view networks

through cross-diffusion, and to the follow-up SNF method
[39] that was used to integrate bulk-level multi-omics data.
The algorithm adjusts the graph connectivities by a process
of diffusion, which allows for the distance information to be

aggregated between neighbors. Namely, the algorithm consists
of two iterative steps: separate diffusion on different -omics
layers and fusion across the omics layers. It results in a fused

consensus matrix of distances between cells, borrowing infor-
mation from multiple omics. citeFUSE used spectral clustering
to identify cell types and showed an improvement over single-

modality-based clusters. Additional benefits of the method
include inference of ligand-receptor interactions and a novel
tool for doublet detection.

Joint diffusion [40] constructs graph representations of dif-
ferent -omics and then performs a joint diffusion process on
the two graphs in order to denoise and integrate the data. This
approach builds upon MAGIC [41], a method for denoising

scRNA-seq data, and generalizes it to multi-modal data. Dif-
fusion can be conceptualized as a random walk process. In
the graph diffusion algorithm, random walking on the graph

can help discover the intrinsic structure of the data hidden
behind the noise. In joint diffusion, random walks are per-
formed while allowing for transitions from one graph to

another. A key idea in this work is to quantify the amount
of noise in different datasets, through a spectral entropy of
the corresponding graphs, and adjust the time one spends on

different graphs in accordance with their relative levels of
noise. In this way, the transcriptomic and epigenetic data will
not be weighted equally, as the transcriptomic data are gener-
ally of better quality. This method excels at denoising and visu-

alizations and was shown to present an improved clustering
performance compared to single-modality clustering and the
one based on a more naive alternating diffusion process.

Seurat v4 [42] aims to represent the data as a weighted near-
est neighbor (WNN) graph in which cells that are similar
according to the consensus of both modalities are connected.

In the process of constructing a WNN graph, a set of cell-
specific weights dictating the relative importance of different
omics data is learned. Such weights often carry important bio-
logical meanings. Specifically, Seurat v4 pipeline has the fol-

lowing steps: first, data corresponding to different omics are
dimensionally reduced using principal component analysis
(PCA) to the same number of dimensions. Then, k-nearest

neighbor (kNN) graphs corresponding to different omics are
constructed. In a kNN graph, each datapoint (a node of this
graph) is connected to k nearest neighboring nodes. Cell-

specific coefficients determining the relative importance of dif-
ferent omics are then learned by considering the accuracy of
inter-modality and cross-modality predictions by nearest

neighbor graphs. Lastly, a linear combination of data from dif-
ferent omics is done, using the coefficients learned in the pre-
vious step. The nearest neighbors with respect to those linear
combinations are then connected to build the WNN graph.
Seurat v4 was applied to a CITE-seq-based transcriptomic
and proteomic dataset, and several other datasets involving

mRNA, proteins, and chromatin accessibility. The authors
compared this method with MOFA+ and totalVI, using corre-
lations (Pearson and Spearman) between the data correspond-

ing to a cell and the average of its nearest latent
space neighbors, and claimed that it performed better than
MOFA+ or totalVI.

Other models

BREM-SC [43] is a Bayesian mixture method. It integrates

single-cell gene expression and protein data by modeling them
as a mixture of probability distributions that share the same
underlying set of parameters. The model is useful for perform-
ing joint clustering, where confidence in cluster assignments

can be quantified via posterior probabilities. It performed
favorably compared to single-omics clustering methods.
Although the Markov Chain Monte Carlo (MCMC) proce-

dure used to train the model can be computationally intensive,
the model provides an effective way of integration by account-
ing for the differences between the two omics layers using

probability distributions.
SCHEMA [44] is a different metric learning approach that

aims to construct a notion of distances on the space of sam-
ples, taking into account different omics data. One of the

omics (usually, scRNA-seq) is considered the primary base
for distance, additional omics are then used to modify this dis-
tance. This is formulated as optimization of the quadratic

function using quadratic programming. The scRNA-seq and
scATAC-seq data can thus be integrated, yielding downstream
insights into cell developmental trajectories. This method

showed a better clustering performance than those based on
clustering different modalities separately or integrating them
using canonical correlation analysis. It is a useful method for

asymmetrically integrating data modalities of different quali-
ties, such as the case of scRNA-seq and scATAC-seq data.

Alignment methods handling multiple genomics data

generated from different single cells of the same

tissue

Compared to multi-omics data, it is experimentally much
easier to obtain multiple modalities of data where each modal-

ity is obtained from similar but different cells of the same tis-
sue. The task to harmonize these data is called alignment
(Figure 1), and it is synonymous with diagonal integration as
described in another earlier review [17]. The body of literature

applying machine learning and statistical methods to this task
is rich, including manifold learning, neural network-based
methods, and Bayesian methods, as summarized in Table 3

and Table 4 and depicted in Figure 3. It is important to note
that in multi-omics we do not know priorly the cell correspon-
dences across omics layers, therefore besides the effort on

learning representations of the cells in the multi-omics integra-
tion described in the previous section, additional attention
needs to be paid to align the distributions of these representa-
tions. As a result, methods designed for integration are gener-

ally not capable of doing the alignment. Conversely, methods
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designed for alignment may perform sub-optimally for integra-
tion tasks.
Bayesian methods

Clonealign [45] integrates single-cell RNA and DNA sequenc-
ing data from heterogeneous populations by assigning cells

measured by RNA-seq to clones derived from DNA-seq data.
Clonealign is based on a Bayesian latent variable model, where
a categorical variable is used to specify cell assignment. The

model maps the copy number of a gene to its expression value
by introducing a copy number dosage effect on the gene
expression. The model is also flexible enough to allow for addi-

tional covariates such as batch effects or biological informa-
tion that can be inferred from the gene expression (cell
cycle). In addition to simulation studies that demonstrated
robustness, Clonealign was also applied to real cancer datasets

to discover novel clone-specific dysregulated biological
pathways.

MUSIC [46] is an unsupervised topic modeling method for

integrative analysis of single-cell RNA data and pooled clus-
tered regularly interspaced short palindromic repeats
(CRISPR) screening data [47]. The model links the gene

expression profile of the cells and specific biological functions
by delineating perturbation effects, allowing for a better under-
standing of perturbation functions in single-cell CRISPR data.
In the perturbation effect prioritizing step, MUSIC utilizes the

output from the topic model and estimates individual gene per-
turbation effects on cell phenotypes. It takes three different
schemes in modeling the gene perturbation effect in combined

single-cell and CRISPR data: an overall perturbation effect,
functional topic-specific perturbation effects represented by a
topic model, and relationships between different perturbation

effects. MUSIC was applied to 14 real single-cell CRISPR
screening datasets and accurately quantified and prioritized
the individual gene perturbation effect on cell phenotypes, with

tolerance for substantial noise.

Manifold alignment methods

Manifold alignment methods aim to infer a lower-dimensional

structure within multiple complex datasets (Figure 3B). Once
this is done, points can be matched across the datasets. This
is a very broad class of algorithms, and we here review several

representative ones based on distinct ideas, such as the use of
pseudotime trajectories, Kernel methods, and distance-based
matching of cells.

MATCHER [48] is the first manifold alignment technique
to align different forms of single-cell data. Their approach
builds on trajectory inference [49]. It constructs pseudotime

trajectories corresponding to cellular processes for each omic
first and then aligns them between different omics. Pseudotime
trajectory models the corresponding cellular process as a
Gaussian process and infers the latent variable corresponding

to pseudotime. This results in a set of curves capturing the bio-
logical processes, one for each omics layer. Such curves are
then projected onto a reference line so that different cells can

be matched across omics. The model makes a strong assump-
tion that there is only one common biological process to be
modeled.
Maximum mean discrepancy-based manifold alignment
(MMD-MA) [50] is a completely unsupervised method. The
alignment is performed by matching low-dimensional repre-

sentations of different omics, constructed through a kernel-
based technique that minimizes the maximum mean discrep-
ancy (MMD) [51] between the two datasets. Additionally,

the representations are constructed by taking into account
the distortion of the distances in the original data while keep-
ing the transformation as simple as possible. The model was

evaluated on data containing gene expression and methylation
values from the same single cells; the known cell correspon-
dence information was hidden, and MMD-MA was able to
successfully reconstruct this information.

Distance-based matching methods represent a class of
methods performing unsupervised alignment of different omics
datasets by matching the structure of the datasets (Figure 4).

Representative methods include UNION-Com [52], SCOT
[53], and Pamona [53]. Their common idea is that if different
omics layers indeed correspond to similar samples of cells, then

the distance matrices of any two omics layers will become very
similar after rearranging the cell indices. Distances between
cells from different omics are computed by considering kNN

graphs in different omics layers and finding the nearest dis-
tance along the graph. UNION-Com [52] finds a matching
matrix connecting points across datasets by optimizing the
similarity of distance matrices after cell permutation. This

approach of matching is an extension of generalized unsuper-
vised manifold alignment (GUMA) [54] with newly allowed
soft matching. Subsequently, this method performs a version

of t-distributed stochastic neighbor embedding (t-SNE) [55]
adopted for multi-modal data represented in the same latent
space. SCOT [53] performs soft matching via a different opti-

mization problem per the theory of optimal transport. The
quantity minimized is the Gromov-Wasserstein distance,
which generalizes the earth-mover Wasserstein distance to

optimal transport between different spaces [56]. Pamona [57]
uses a similar approach to SCOT, but with a modification of
optimal transport based on partial Gromov-Wasserstein dis-
tance [58], which accounts for data points that do not have

appropriate matches across datasets. By doing so, it allows
for possible imperfect alignment between the datasets, tolerat-
ing cell types present in one dataset only. After the alignment is

found, the data corresponding to different modalities are pro-
jected down to a dimensionally reduced space using Laplacian
eigenmaps [59]. This approach manages to take the overall

structure of all datasets into account while matching the cells,
without the requirement of identical distributions of different
modalities.

Limited benchmarking was performed in the original stud-

ies in the distance-based matching methods. UNION-Com
compared favorably with Seurat v3 and MMD-MA when eval-
uated on the quality of labels transferred between gene expres-

sion, methylation, and chromatin accessibility data [52]. SCOT
compared favorably to MMD-MA and UNION-Com on sev-
eral real and simulated datasets containing transcriptomic and

epigenetic (DNAme or chromatin accessibility) data [53].
Pamona outperformed SCOT, MMD-MA, and Seurat v3
[57], when benchmarked on several datasets containing tran-

scriptomic and epigenetic data. Clearly, more comprehensive
comparison is needed to evaluate this class of methods over
other modeling approaches.



Table 4 Extended summary of the methods for aligning multi-omics data from the same cells

Method Programming language Link Dataset tested on

Clonealign R GitHub EGAD00001004552, EGAD00001004553, EGAS00001002170

MUSIC R GitHub E-MTAB-5061, E-MTAB-5060 , GSE81608, GSE81433, GSE50244,

GSE107585, GSE81492, GSE56743, GSE65267, GSE79443

MATCHER Python GitHub, documentation E-MTAB-2600, GSE70253, GSE74535, GSE56879

MMD-MA Python Code and data Data

UNION-Com Python GitHub Data supplement

SCOT Python Package webpage SRP077853, GSE126074

Pamona Python GitHub Dataset, GSE121708, GSE126074

SCIM Python GitHub SCIM dataset

Multigrate Python GitHub GSE47353, GSE41080, GSE59654, GSE59743, GSE29619, GSE74817,

GSE13486, GSE65391, GSE164378, GSE128639, GSE156473, GSE140203

MAGAN Python GitHub GSE75478, GSE72857

Seurat v3 R Package webpage, GitHub GSE164378,GSE100866, GSE128639, GSE156473, GSE140203

MAESTRO R, Python Package website, GitHub GSE65360, GSE74310, GSE96772, GSE123814, GSE129785

bindSC R GitHub GSE201402, GSE190976

LIGER R GitHub GSE92495, GSE116470, GSE126836

Table 3 Summary of the methods for aligning multi-omics data from the same cells

Methodology

category

Method Algorithm Data Advantage and disadvantage Ref.

Bayesian Clonealign Bayesian latent variable

model

RNA-seq, DNA [45]

MUSIC Topic models RNA, CRISPR [46]

Manifold

alignment

MATCHER Pseudotime reconstruction

and manifold alignment

Transcriptomic,

epigenetic

� Finds pseudotime trajectories while

performing alignment

� Assuming a non-branching pseudotime

trajectory

[51]

MMD-MA Manifold alignment Transcriptomic,

epigenetic (DNAme)

� Robust with respect to hyperparameters

� Assuming that two datasets contain the

similar distribution of cells

[53]

UNION-Com Topological alignment Transcriptomic,

epigenetic

� Aligning without requiring identical

distributions of cells

[48]

SCOT Gromov-Wasserstein

optimal transport

Transcriptomic,

epigenetic (DNAme)

� Computational efficiency, automated

hyperparameter tuning

[49]

Pamona Partial Gromov-Wasserstein

optimal transport

Transcriptomic,

epigenetic

� Designed for aligning unbalanced datasets [50]

Neural

network

SCIM Adversarial autoencoder Transcriptomic,

proteomic (CyTOF)

� Allows for complicated nonlinear mappings

into latent space

� Assuming that the two datasets contain the

similar distribution of cells

[60]

Multigrate Variational autoencoder Transcriptomic,

proteomic

� Allows for mapping onto a multi-modal

atlas

� Assuming that the two datasets contain the

similar distribution of cells

[63]

MAGAN Generative adversarial

network

Transcriptomic,

proteomic

� Implements a twist to incentivize correct

mapping of cell types, not just distributions

� Needs some correspondence information for

best performance

[64]

Others Seurat v3 Canonical correlation

analysis and mutual nearest

neighbors analysis

RNA-seq, ATAC-seq � Popular, widely used, and comprehensive

package

� Useful for multi-omics alignment, but

created for aligning scRNA-seq datasets

[66]

MAESTRO Canonical correlation

analysis

RNA-seq, ATAC-seq � Provides alignment as a part of a

comprehensive analysis pipeline

� Uses a generally applicable algorithm for

integration, not optimized for multi-omics

[67]

bindSC RNA-seq, ATAC-seq � Generates latent representations while

aligning datasets

[68]

LIGER Matrix factorization RNA-seq, methylation � Computationally efficient

� Useful for multi-omics alignment, but

created for aligning scRNA-seq datasets

[69]

Note: CRISPR, clustered regularly interspaced short palindromic repeats; DNAme, DNA methylation; CyTOF, cytometry by time of flight.
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Figure 3 Single-cell multi-omics alignment methods

Illustration of some common approaches for alignment of multi-omics single-cell data: Bayesian methods, modeling the probability

distribution of -omics measurements using a number of latent variables and updating such distributions using Bayes’ formula (A),

manifold alignment methods uncovering a surface in the space of omics on which the alignment can be performed (B), and neural network-

based models, creating latent representations of different -omics data, which can be more easily aligned (C).
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Neural network-based methods

Neural networks, including autoencoders and generative
adversarial networks (GAN), have been used for the unsuper-
vised task of the alignment of omics datasets. Autoencoders
have been described earlier. GANs typically consist of two

parts: the generator network and the discriminator network.
The generator tries to produce outputs of a form resembling
a certain target dataset, and the discriminator is optimized to

learn the difference between the generator’s outputs and the
elements of the target dataset. In this section, we summarize
the relevant neural network methods below.

SCIM [60] builds on a multi-domain translation approach
[61] to integrate multi-omics data in an unsupervised fashion.
It uses a separate variational autoencoder for each modality
in order to map the data onto reduced latent space representa-

tions. Such representations are then aligned to have a similar
structure, by using a discriminator network in addition to
autoencoders which learns to distinguish between the latent
space representations of different omics. The two autoencoders
and the discriminator network are trained simultaneously,

resulting in the two latent spaces being maximally alike. Once
both datasets are encoded into approximately corresponding
representations, the points with similar latent representations

are matched across the datasets. This model was tested on sim-
ulations from probabilistic simulation of single-cell RNA-seq
tree-like topologies (PROSSTT) [62] as well as datasets con-
taining gene expression and proteins and performed favorably

to MATCHER when applied to simulated data exhibiting a
complex cellular differentiation process.

MULTIGRATE [63] uses a multi-modal variational

autoencoder structure to project multi-omics data onto a
shared latent space. Although somewhat similar to the
scMVAE model [28], this framework brings additional flexibil-

ity and can be used for the integration of paired and unpaired
single-cell data. Furthermore, this model can integrate data



Figure 4 Distance-based alignment

Schematic overview of the distance-based alignment algorithm: cells are represented by nodes in two different graph representations,

corresponding to two different omics assays. Cells with very similar omics measurements are connected to form graphs. Two graphs are

then aligned in order to preserve a notion of distance on the graph.
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from a multi-omics assay such as CITE-seq with data from a
single-omics assay such as scRNA-seq. Data corresponding
to different omics are first passed through separate neural net-
works, before being combined by the product of experts tech-

nique [29] to form the latent distribution. The decoder
networks then aim to reconstruct all of the omics from this
unified representation. To better align cells, MMD is added

to the loss function, penalizing the misalignment between the
point clouds belonging to different assays. Their model was
used for the creation of multi-modal atlases, and mapping of

a COVID-19 (coronavirus disease of 2019) single-cell dataset
onto a multi-modal reference.

MAGAN [64] utilizes GANs to align data from different

domains. MAGAN uses two tied GANs to translate between
the omics layers, while tying their parameters and requiring
that their combination maps any point onto itself. Namely,
if the first generator maps data point A to data point B, then

the second generator should map B back to A. It is conceptu-
ally very similar to the CycleGAN [65] model from computer
vision, but with a key innovation that allowed it to more effi-

ciently align and integrate single-cell data. The novelty here
was noting that while the CycleGAN framework was very
good at aligning the datasets in aggregate, it would not neces-

sarily correctly match individual points. This is a particularly
important problem for single-cell data. To address this prob-
lem, MAGAN is augmented with a correspondence loss mea-
suring the difference between points before and after being

mapped by generators. This model was tested on a variety of
datasets, ranging from a simulated dataset to Modified
National Institute of Standards and Technology (MNIST)

handwritten digits to molecular data. The method was applied
to combine transcriptomic and proteomic data in single cells.
The model was shown to meaningfully align the datasets even

when the correspondence information was not available.
Other methods

Some of the methods previously developed for aligning differ-

ent scRNA-seq datasets, could in principle be repurposed for
single-cell multiple omics alignment as well. In such cases, dif-
ferent omics data are aggregated over genes and converted into

gene activity scores, sharing the same format with scRNA-seq
data. Here we cover two of such methods, LIGER and Seurat,
due to their wide popularity. A caveat of this approach is the
lack of the ability to individually model the omics data. Due to

the space limitation, we recommend readers to earlier bench-
mark studies [66] on other scRNA-seq integration methods.

Canonical correlation analysis (CCA) based methods

reduce the dimensionality of data by selecting the degrees of
freedom that are correlated between the datasets. Seurat v3
[67] combines CCA with network concepts in order to align

and integrate single-cell multi-omics data. After performing
the CCA, the algorithm identifies anchors between the datasets
and scores the quality of those anchors. Anchors are identified

by mutual nearest neighbors (MMNs), and their quality is
scored by considering the overlap between the neighborhoods
of anchors. Similar to Seurat v3, MAESTRO [68] also utilized
canonical correlation analysis for the integration of transcrip-

tomic and epigenetic data and provided a comprehensive anal-
ysis pipeline. bindSC [69] also uses canonical correlation
analysis to construct shared representations of the data, itera-

tively optimized using a custom procedure.
LIGER [70] performs an integrative non-negative matrix

factorization (iNMF) to learn factors explaining the variation

within and across datasets. Data such as DNA methylation are
first aggregated over genes. Cells corresponding to different
datasets are described by separate sets of cell-specific factors.
Gene factors consist of two components: one that is shared

across datasets and one that is dataset specific; the model aims
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to make the dataset-specific portion as small as possible. After
performing the matrix factorization, the shared factor neigh-
borhood graph is formed, in which cells are connected based

on the similarity of their factors and used for aligning the cells
across modalities. Recently, this nonnegative matrix factoriza-
tion approach has been extended to incorporate the idea of

online learning. It iteratively updates the model in real-time
and leads to better scalability and computational efficiency
[71].

Concluding remarks

The landscape of experimental techniques for omics sequenc-

ing and analyzing the data has grown significantly in the last
few years. Accompanying the thrust of technological advance-
ment, an increasing body of computational methods to handle

multi-omics data integration or alignment have been proposed.
Geared toward computational biologists and genomics scien-
tists, here we reviewed in-depth and extensively these computa-

tional methods by their working principles. Among these
methods, AI and machine learning-based methods account
for the majority, demonstrating the influence in single-cell
computational biology. Other approaches using matrix factor-

ization and Bayiean’s methods have also been proposed. As
demonstrated in a range of methods, the integration of
multi-omics data at the single-cell level improves the quality

of downstream biological interpretation steps, such as cluster-
ing. With the advent of technologies for sequencing multi-
omics data from the same single cells, efficient multi-omics

integration methods to provide further biological and medical
insights at larger scales will be in continued demand.

Meanwhile, the rapidly growing number of computational

methods pose an urgent need for benchmarking studies on
their performances, in order to provide guidelines to choose
appropriate methods for specific datasets. Current compar-
isons are either incomplete or using a small set of benchmark

datasets, with inconsistent metrics in various studies, impeding
the selection of appropriate methods for the dataset to analyze.
This is made more difficult by the generally unsupervised nat-

ure of the integration task, where commonly required ground
truths are not known for certain. Moreover, different methods
have different prerequisites regarding preprocessing steps, nor-

malization, etc., and as a result, careful consideration of these
steps and their impacts on the model performances is needed.
Oftentimes, the integration methods were developed with one

specific application/assay in mind, generalization of these
methods with the emergence of new technologies needs to be
demonstrated. Fortunately, some benchmarking studies have
been conducted in other sub-fields of single-cell computational

biology for references, such as those focused on the integration
of data from different cells and atlas study [72], cell-type anno-
tation [73], and integration algorithms for spatial transcrip-

tomics [74]. Creating standardized high-quality
benchmarking datasets would aid such efforts, as proposed
in [75] for scRNA-seq data. Such datasets should have a

well-defined ground truth, ideally confirmed by expert annota-
tion and supported by previous literature. One promising can-
didate for this benchmark dataset has been proposed by open
problems in single-cell analysis competition at the NeurIPS

conference [76]. It is always a good idea to complement the real
datasets with simulated datasets, as biases may exist in the
ground truth. Although multi-omics simulation datasets
specifically designed for single cells are missing, one can never-
theless modify some simulation tools previously designed for

bulk tissues [77]. Finally, comprehensive and flexible bench-
marking pipelines that can accommodate the ever-increasing
body of integration methods will be extremely useful, in keep-

ing the field up-to-date on multi-omics integration. One such
example is the dynverse [78].

Due to the scope, one area that we did not cover in this

review is the integration between single-cell omics with other
modalities of data. For example, integrative analysis between
scRNA-seq and spatial omics data [79–83] and imaging data
(e.g., hematoxilin and eosin stain, or H&E image). In the data

types with spatial measurements, the spatial relationships need
to be considered in addition to the feature matrix. We refer
readers to other recent reviews covering this area [84,85].

Given that the multi-omics integration and alignment compu-
tational research is a thriving area, we have created an open
review document online using the manubot protocol (https://

github.com/lanagarmire/multiomics_review_manubot;
accessed on July 18, 2022). We encourage the community to
contribute to this open document to keep the review up-to-

date.

CRediT author statement

Stefan Stanojevic: Writing - original draft, Writing - review &
editing. Yijun Li: Writing - original draft, Writing - review &
editing. Aleksandar Ristivojevic: Writing - review & editing.

Lana X. Garmire: Supervision, Writing - review & editing.
All authors have read and approved the final manuscript.

Competing interests

The authors have declared no competing interests.
Acknowledgments

This work was supported by R01 (Grant Nos. LM012373 and
LM012907) awarded by the National Library of Medicine, and

R01 (Grant No. HD084633) awarded by the National Institute
of Child Health and Human Development to Lana X.
Garmire.

ORCID

ORCID 0000-0002-9692-5301 (Stefan Stanojevic)

ORCID 0000-0003-0513-9565 (Yijun Li)
ORCID 0000-0002-5747-443X (Aleksandar Ristivojevic)
ORCID 0000-0003-1672-6917 (Lana X. Garmire)

References

[1] Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman

M, et al. Highly parallel genome-wide expression profiling of

individual cells using nanoliter droplets. Cell 2015;161:1202–14.

[2] Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li

V, et al. Droplet barcoding for single-cell transcriptomics applied

to embryonic stem cells. Cell 2015;161:1187–201.

https://github.com/lanagarmire/multiomics_review_manubot
https://github.com/lanagarmire/multiomics_review_manubot
http://refhub.elsevier.com/S1672-0229(22)00170-X/h0005
http://refhub.elsevier.com/S1672-0229(22)00170-X/h0005
http://refhub.elsevier.com/S1672-0229(22)00170-X/h0005
http://refhub.elsevier.com/S1672-0229(22)00170-X/h0010
http://refhub.elsevier.com/S1672-0229(22)00170-X/h0010
http://refhub.elsevier.com/S1672-0229(22)00170-X/h0010


848 Genomics Proteomics Bioinformatics 20 (2022) 836–849
[3] Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson

R, et al. Massively parallel digital transcriptional profiling of

single cells. Nat Commun 2017;8:14049.

[4] Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B,

Chattopadhyay PK, Swerdlow H, et al. Simultaneous epitope and

transcriptome measurement in single cells. Nat Methods

2017;14:865–8.

[5] Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC,

et al. Multiplexed quantification of proteins and transcripts in

single cells. Nat Biotechnol 2017;35:936–9.

[6] Chen S, Lake BB, Zhang K. High-throughput sequencing of the

transcriptome and chromatin accessibility in the same cell. Nat

Biotechnol 2019;37:1452–7.

[7] Clyde D. SHARE-seq reveals chromatin potential. Nat Rev Genet

2021;22:2.

[8] Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA,

Hill AJ, et al. Joint profiling of chromatin accessibility and gene

expression in thousands of single cells. Science 2018;361:1380–5.

[9] Cheow LF, Courtois ET, Tan Y, Viswanathan R, Xing Q, Tan

RZ, et al. Single-cell multimodal profiling reveals cellular epige-

netic heterogeneity. Nat Methods 2016;13:833–6.

[10] Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, et al.

G&T-seq: parallel sequencing of single-cell genomes and tran-

scriptomes. Nat Methods 2015;12:519–22.

[11] Clark SJ, Argelaguet R, Kapourani CA, Stubbs TM, Lee HJ,

Alda-Catalinas C, et al. scNMT-seq enables joint profiling of

chromatin accessibility DNA methylation and transcription in

single cells. Nat Commun 2018;9:781.

[12] Bian S, Hou Y, Zhou X, Li X, Yong J, Wang Y, et al. Single-cell

multiomics sequencing and analyses of human colorectal cancer.

Science 2018;362:1060–3.

[13] Huang S, Chaudhary K, Garmire LX. More is better: recent

progress in multi-omics data integration methods. Front Genet

2017;8:84.
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