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Abstract With the rapid increase of the microbiome samples and sequencing data, more and more

knowledge about microbial communities has been gained. However, there is still much more to

learn about microbial communities, including billions of novel species and genes, as well as count-

less spatiotemporal dynamic patterns within the microbial communities, which together form the

microbial dark matter. In this work, we summarized the dark matter in microbiome research and

reviewed current data mining methods, especially artificial intelligence (AI) methods, for different

types of knowledge discovery from microbial dark matter. We also provided case studies on using

AI methods for microbiome data mining and knowledge discovery. In summary, we view microbial

dark matter not as a problem to be solved but as an opportunity for AI methods to explore, with the

goal of advancing our understanding of microbial communities, as well as developing better solu-

tions to global concerns about human health and the environment.
Introduction

Microbial communities from diverse global environments have
been investigated, revealing abundant novel species and genes,
in addition to unique spatiotemporal dynamics across environ-
ments [1–3]. Nevertheless, a substantial amount of microbial

biodiversity remains to be discovered. These novel community
structures and functions constitute an enormous reservoir of
diversity that has been referred to as microbial dark matter.

Microbial dark matter comprises several different components
(Figure 1). 1) There are millions of biomes (niches) that micro-
bial communities inhabit [4–6], including general environments
such as freshwaters and soils, in addition to context-dependent

biomes or understudied biomes such as the gut microbiomes of
patients with different diseases. 2) In addition, tens of millions
of microbial species are known that span several life kingdoms,

including bacteria [1,3,7], archaea [2,8], viruses [9–14], and pro-
tists [15]. 3) Furthermore, billions of functional genes are
encoded by genomes within microbial communities [2,16,17].

4) Finally, there are countless dynamic ecological and
evolutionary patterns that influence microbial community
ciences /
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Figure 1 The microbial dark matter and the techniques to better understand such dark matter toward better solutions in applications

There are three key steps for microbiome knowledge discovery from millions of microbiome samples, including the development of AI

technologies and microbiome analysis tools, the sets of microbial dark matter to be unearthed, and countless applications. Among these,

the microbial dark matter represents the core resource to be discovered. The major types of microbial dark matter introduced in this

review include: more than a million context-dependent biomes in which microbial communities could reside; more than a million species,

including bacteria, archaea, viruses, and protists; more than a billion functional genes; and the countless number of dynamic ecological

and evolutionary patterns. AI, artificial intelligence.
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compositions [15,18–22].All of these areas ofmicrobial darkmat-

ter hold great potential for a better understanding of the micro-
bial world, but many of these areas remain understudied [7].

Big data and artificial intelligence (AI) technologies have
enabled a more efficient mining of microbial dark matter to

generate a better understanding of microbial communities
and their potential applications [7,23]. Microbiome big data
are derived from millions of microbial community samples,

wherein each sample could comprise a few hundred megabytes
of 16S rRNA gene sequencing data. In addition, whole-
genome sequencing (WGS) can yield over 10 gigabytes of
sequencing data per sample. Thus, a typical study including

a few thousand samples could comprise over 10 terabytes of
sequencing data [24,25]. AI refers to computer systems that
leverage computers and machines to mimic the problem-
solving and decision-making capabilities of the human mind.

In this manuscript, AI includes deep learning, and AI methods
in this context mainly refer to methods that use deep learning
(e.g., neural networks). Typical AI technologies used in micro-

biome big data analyses include those for association mining,
cluster pattern recognition, and prediction modeling [26–31]
(Figure 1). Mining of microbiome big data can help generate
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knowledge and models for many applications, including the
discovery of novel species and genes, sample source tracking,
phenotype prediction (especially for disease diagnosis), and

prediction models for longitudinal studies.
In the following text, we first introduce big data and AI

technologies used for microbial dark matter analysis. We then

introduce the primary types of microbial dark matter that are
investigated along with current computational solutions for
mining such dark matter. Representative studies are also high-

lighted that have leveraged AI technologies to generate pro-
found insights across a broad spectrum of applications.
Finally, we summarize the advantages of AI technologies in
solving microbial dark matter problems, while also describing

current bottlenecks and possible future solutions for microbial
dark matter mining.

Microbiome big data + AI: venue for microbiome

knowledge discovery

The rapidly increasing number of microbiome samples from a
variety of global environments (also referred to as biomes), in
addition to the massively increased level of sequencing data

generated from these samples, has led to the formation of
microbiome big data, which represents an important resource
pool for knowledge discovery [7,24]. Concomitantly, AI has

become an important method, if not the most important
method, for mining microbiome big data to generate deeper
understanding of microbial communities [23,27,29–32].
Indeed, data integration and data mining are two key modules

in most microbiome analyses, although these modules are
context-dependent in different analytical applications.

There are currently several databases available for micro-

biome data integration, including specialized databases such
as MetaGenomic Rapid Annotations using Subsystems Tech-
nology (MG-RAST) [33], European Bioinformatics Institute

(EBI) MGnify [4], and Qiita [34], in addition to general data-
bases like the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) [35–37]. MG-RAST is

a public resource for automated phylogenetic and functional
analysis of metagenomes. It produces automated functional
assignments for metagenomic sequences by comparison
against both protein and nucleotide databases. Likewise, Qiita

is an open-source web-based platform that enables non-
bioinformaticians to easily conduct their own analyses and
meta-analyses. Among these databases, the EBI MGnify data-

base is a typical data resource for microbiome studies [4], con-
taining sub-millions of microbiome samples and their
sequencing data, as well as analytical results associated with

samples. Nearly a million microbiome samples, sequencing
data, and meta-data (e.g., data for environmental factors, phe-
notypic characteristics, and other features) have already been
deposited in these databases, and most are publicly available,

thereby representing an enormous pool of resources for knowl-
edge discovery [4].

There are currently hundreds of tools for microbiome data

analysis in microbiome data mining that can be used for differ-
ent analytical approaches and at different stages. For example,
Mothur [38] is a popular traditional tool for the quality control

of 16S rRNA sequencing data, while QIIME 2 [39] is also a
widely used traditional tool for microbial community structure
profiling. Likewise, many more analytical tools are available
for functional profiling of microbial communities. These tools
enable the rapid transformation of microbiome sequencing
data to community structures and functional profiles [24]. In

addition, more advanced traditional analytical tools are also
available, including HUMAnN2 [40] and MetaPhlAn2 [41]
that enable in-depth analysis of community functions. Further,

the traditional bayesian-based method SourceTracker [5] can
be used for microbial source tracking, while the traditional
method antiSMASH [42] and the AI method DeepARG [43]

can be used to mine functional genes.
However, the currently available millions of microbiome

samples across hundreds of global environments have led to
a shortage of AI methods for mining this volume of data,

either for sample comparison and source tracking, functional
gene mining, or discovery of dynamic patterns. 1) Current
methods in sample comparison and source tracking [5,6] are

either based on distance calculations or unsupervised learning
and exhibit a tradeoff between accuracy and efficiency,
wherein they are only able to accurately source track a few tens

of samples. 2) Current methods in functional gene mining
[23,42,44] are based on database searches that are not able
to find novel genes, while reference-free methods have a high

false-positive rate. 3) Current methods and pipelines for
context-dependent analytical applications are also limited by
their inability to mine intrinsic patterns hidden among thou-
sands to millions of samples [18,20,22,45,46]. All of these lim-

itations have necessitated the development of AI methods that
could help in microbial dark matter knowledge discovery.

Dark matter in the microbiome and the computational

mining techniques

Context-dependent biomes

Hundreds of biomes, and countless context-dependent biomes,
have been annotated or investigated [4]. These include hun-
dreds of general biomes (e.g., soils and freshwaters) and

context-dependent biomes that are more specific than general
biomes [4]. Context-dependent biomes are involved in many
concrete applications related to microbiome knowledge, such
as population-specific [1,19] and disease-related patterns

[47,48].
Although context-dependent biomes are directly related to

various microbiome applications, most remain understudied

[1,49]. For example, it remains unknown how gut microbial
communities can reflect the progression of colorectal cancer
(CRC) in patients [47,48]. Current studies have only indicated

that gut microbial communities change with CRC progression.
Although there is evidence that gut microbiota could be used
to diagnose CRC, it is still not mature for using gut microbial

communities as indicators for CRC progression. This is par-
tially due to a lack of understanding of how gut microbial
communities mediate CRC, in addition to the lack of an accu-
rate model for prediction. These problems are exacerbated due

to the limited accuracy of many disease models because of
regional variation [50] or are confounded by host variables
such as body mass index (BMI) and age [51].

Numerous gut microbial community datasets have been
accumulated, despite that gut microbiomes remain largely
understudied, and these datasets are numerous and diverse

enough to enable accurate predictions. Indeed, this high
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abundance of gut microbiome datasets has been useful for
microbial source tracking [52–56]. The SourceTracker pro-
gram uses a bayesian approach and has been used to differen-

tiate samples from the human mouth, gut, and skin, in
addition to monitoring the progression of gut microbial com-
munity development in infants [21]. The random forest

approach is more widely used to identify microbial community
sources via application toward the prediction of locations and
times for forensic studies [7,57,58], in addition to application in

predicting sources of contamination [59,60]. ONN4MST [61] is
a deep learning method which employs a neural network
model to source track microbial communities at high efficiency
and accuracy without any prior knowledge about the micro-

bial communities to be estimated. Its pre-built biome ontology
includes 60 environmental biomes, 25 host-associated biomes,
and 10 engineered biomes, which represent the most compre-

hensive potential sources utilized for source tracking. How-
ever, ONN4MST is limited to searching biomes contained in
the pre-built biome ontology, but cannot search understudied

biomes. EXPERT [62] is also a deep learning method for
microbial source tracking, which employs neural network
models and acquired flexibility by applying a transfer learning

approach, enabling adaptation to newly introduced biomes. It
pre-built three neural network models for source tracking
among 1) all possible sources from diverse environments, 2)
human-associated sources, and 3) human gut-associated

sources. Therefore, EXPERT enabled source tracking in many
related contexts, such as characterizing disease or time-related
compositional shifts of the human gut microbiome. These

methods and tasks can contribute to a better understanding
of microbial communities. Several databases and data mining
methods have been previously reported for microbial source

tracking, with representative databases and analytical methods
shown in Table 1.

Domains of species

Traditional microbiome studies have primarily focused on bac-
teria, although bacteria only represent a small fraction of all
microorganisms. In addition to bacteria, archaea, viruses,

and protists are also often abundant in environments. Archaea
have distinct molecular characteristics from bacteria, despite
often being considered ‘‘prokaryotes”. Archaea are commonly

found in extreme environments and define the limits of life on
Earth in many cases [63]. Archaea were originally discovered
and described in extreme environments including in high salin-

ity [64], extremely acidic [65], and anaerobic environments [66].
Many unique archaeal genes have been implicated in the adap-
tations to these extreme environments [65,66]. In addition,
viruses are not strictly defined as microbial organisms, because

they only harbor a small number of genes and are surrounded
by a protein coat. Viruses, as very small infectious agents, rely
on living cells to multiply and are the smallest and most abun-

dant of all microorganisms [67]. Protists are unicellular
eukaryotic microorganisms that exhibit less complex physio-
logical structures than other eukaryotes. Protists are not neces-

sarily phylogenetically similar but are considered a single
group because they do not fit into other taxonomic kingdoms
[68].

All microorganisms, including bacteria, archaea, viruses,
and protists, are representatives of billions of years of
T M D U S N



a
b
le

2
D
a
ta
b
a
se
s
a
n
d
m
et
h
o
d
s
fo
r
th
e
a
n
a
ly
si
s
o
f
b
a
ct
er
ia
,
a
rc
h
a
ea
,
vi
ru
se
s,
a
n
d
p
ro
ti
st
s

o
m
a
in

o
f
sp
ec
ie
s

T
y
p
e

N
a
m
e

D
es
cr
ip
ti
o
n

W
eb
si
te

R
ef
.

a
ct
er
ia

a
n
d

rc
h
a
ea

D
a
ta
b
a
se

E
B
I
M
G
n
if
y

A
p
la
tf
o
rm

to
su
b
m
it
,
a
n
a
ly
ze
,
d
is
co
v
er
,
a
n
d
co
m
p
a
re

m
ic
ro
b
io
m
e
d
a
ta

h
tt
p
s:
//
w
w
w
.e
b
i.
a
c.
u
k
/m

et
a
g
en
o
m
ic
s/

[4
]

D
a
ta
b
a
se

M
G
-R

A
S
T

A
m
et
a
g
en
o
m
ic
s
se
rv
ic
e
fo
r
a
n
a
ly
si
s
o
f
m
ic
ro
b
ia
l
co
m
m
u
n
it
y

st
ru
ct
u
re

a
n
d
fu
n
ct
io
n

h
tt
p
s:
//
w
w
w
.m

g
-r
a
st
.o
rg
/

[1
2
6
]

S
o
ft
w
a
re

Q
II
M
E
2

A
m
ic
ro
b
io
m
e
b
io
in
fo
rm

a
ti
cs

p
la
tf
o
rm

fo
r
p
ro
ce
ss
in
g
a
n
d

a
n
a
ly
zi
n
g
th
e
m
ic
ro
b
io
m
e

h
tt
p
s:
//
q
ii
m
e2
.o
rg
/

[7
4
]

ir
u
s

D
a
ta
b
a
se

R
ef
se
q

V
ir
u
s
g
en
o
m
e
a
n
n
o
ta
ti
o
n
a
n
d
cu
ra
ti
o
n

h
tt
p
s:
//
ft
p
.n
cb
i.
n
lm

.n
ih
.g
o
v
/g
en
o
m
es
/

[7
5
]

S
o
ft
w
a
re

V
ir
fi
n
d
er

A
k
-m

er
-f
re
q
u
en
cy
-b
a
se
d
to
o
l
fo
r
v
ir
u
s
co
n
ti
g
id
en
ti
fi
ca
ti
o
n

h
tt
p
s:
//
g
it
h
u
b
.c
o
m
/j
es
si
er
en
/V

ir
F
in
d
er

[7
6
]

S
o
ft
w
a
re

V
ir
so
rt
er

A
to
o
l
d
es
ig
n
ed

to
d
et
ec
t
v
ir
a
l
si
g
n
a
ls
in

th
es
e
d
iff
er
en
t
ty
p
es

o
f
m
ic
ro
b
ia
l

se
q
u
en
ce

d
a
ta

h
tt
p
s:
//
g
it
h
u
b
.c
o
m
/s
im

ro
u
x
/V

ir
S
o
rt
er
.g
it

[7
7
]

ro
ti
st

D
a
ta
b
a
se

P
ro
ti
st

R
ib
o
so
m
a
l

R
ef
er
en
ce

d
a
ta
b
a
se

P
ro
v
id
e
a
re
fe
re
n
ce

d
a
ta
b
a
se

o
f
ca
re
fu
ll
y
a
n
n
o
ta
te
d
P
ro
ti
st

g
en
o
m
es

h
tt
p
s:
//
p
r2
d
a
ta
b
a
se
.g
it
h
u
b
.i
o
/p
r2
d
a
ta
b
a
se
/i
n
d
ex
.h
tm

l
[7
8
]

S
o
ft
w
a
re

O
rt
h
o
D
B

O
rt
h
o
D
B
p
ro
v
id
es

ev
o
lu
ti
o
n
a
ry

a
n
d
fu
n
ct
io
n
a
l
a
n
n
o
ta
ti
o
n
s
o
f
o
rt
h
o
lo
g
s

h
tt
p
s:
//
w
w
w
.o
rt
h
o
d
b
.o
rg

[7
9
]

o
te
:
E
B
I,
E
u
ro
p
ea
n
B
io
in
fo
rm

a
ti
cs

In
st
it
u
te
;
M
G
-R

A
S
T
,
M
et
a
G
en
o
m
ic

R
a
p
id

A
n
n
o
ta
ti
o
n
s
u
si
n
g
S
u
b
sy
st
em

s
T
ec
h
n
o
lo
g
y
.

Zha Y et al /Microbial Dark Matter 871
evolution, in addition to the adaptations required to live in
specific environments [69]. For example, phylogenetic analyses
of these microorganisms have revealed that the composition of

human gut microbiomes is affected by hosts [70], while addi-
tional research has illustrated dynamic changes and the robust-
ness of gut microbiota in the adaptations to their hosts [71].

Although microorganisms harbor very important functional
genes, most of their genomic contents remain poorly under-
stood. For example, several families of archaea were only

recently characterized, with their novel evolutionary positions
only being recently determined, while phylogenetic positions of
most protists have yet to be determined [72]. Moreover, over
60,000 protistan species have been identified in the NCBI tax-

onomy system, while many have also yet to be identified [73].
Deeper insights into these poorly understood taxa could reveal
an enormous amount of important, but currently unknown

genes. Several databases and data mining methods have been
previously reported for the analysis of bacteria, archaea,
viruses, and protists [4,33,74–79], with representative data-

bases and analytical methods shown in Table 2.

Functional genes from microbial communities

Billions of functional genes have been annotated. In addition,
advancements in sequencing technologies and the development
of microbiome culture strategies have led to several micro-
biome projects that focus on distinct types of biomes. For

example, the human microbiome project [1] for identifying
the human gut microbiome, the Tara Oceans project [80] for
identifying the global ocean microbiome, and the Earth micro-

biome project [2] that focuses on identifying global soil micro-
biomes. These projects have generated a massive number of
microbial genomes and provide significant reservoirs of func-

tional genes.
Some functional genes represent community-specific house-

keeping genes. These genes are essential for individual

microorganisms (e.g., genes responsible for DNA replication
and RNA transcription that are present in almost all species)
but are also necessary for the homeostasis of the entire micro-
bial ecosystem. For example, genes that participate in the

nitrogen-cycling process and carbon-cycling process in soil
bacterial communities have been detected in all community
members and identified as community-specific housekeeping

genes [2]. Since nitrogen availability is one of the most com-
mon environmental limitations in soils ecosystem, these house-
keeping genes could aid in the depletion of excess nitrogen and

help degrade recalcitrant soil organic matter, thereby main-
taining ecosystem homeostasis [81].

Many functional genes of microorganisms are niche-specific
and play important roles in stabilizing microbial community

structures, while providing insights into the adaptations of
specific microbial populations [2,81]. These genes may only
exist in a specific biome but participate in important metabolic

pathways, while allowing adaptations to environments by
degrading harmful substances [82], adapting to external distur-
bances [22], and adaptation to hosts [83]. One example is metal

resistance genes that are enriched in soil biomes. In soil
biomes, metals are major abiotic stressors [84], and many soil
taxa have developed full sets of functional genes to adapt to

metal stress, such as energy metabolism, integral components
of membranes, ion transport/chelation, protein/amino acid
T D B a V P N
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metabolism, carbohydrate/fatty acid metabolism, signal trans-
duction, and DNA binding [85]. Another example is functional
genes that facilitate cellular motility that are enriched in lake

biomes. Cells in these environments live in highly fluid habi-
tats, and functional genes that enable cellular motility (for
example, flagellum-formation proteins) are enriched in com-

munity members of water biomes [86].
Current focuses on functional genes among microbial com-

munities primarily include antibiotic resistance genes (ARGs)

and biosynthetic gene clusters (BGCs). ARGs are critical for
maintaining ecological stability within communities, especially
by enabling the resistance to outside stresses. In addition, BGCs
are directly associated with important metabolic products of

communities. Existing tools for ARG mining include ARGMi-
ner and DeepARG, which have provided both data resources
and data analysis methods for ARG analysis [43,87]. Many tools

have been proposed to detect ARG sequences from genomic or
metagenomic sequence libraries. For instance, ResFinder [88]
and SEAR [89] both specifically predict plasmid-borne ARGs,

while PATRIC [90] has been developed to identify ARGs that
encode resistance to carbapenem, methicillin, and beta-lactam
antibiotics. However, these tools exhibit limited efficiency or

accuracy, especially for identifying novel ARGs. To better under-
stand microbial functional genes and their effects on microbial
communities and environments, more powerful tools using deep
learning are urgently needed.

antiSMASH 6.0 is a commonly used tool for BGC data
mining and is capable of providing microbial BGC resources
for comparison, while also providing machine learning models

for identifying novel BGCs from microbial communities [42].
Moreover, antiSMASH 6.0 features improved speed and inter-
active visualization functionalities that provide a more user-

friendly BGC mining platform.
Table 3 Databases and methods for the analysis of functional genes fr

Type Name Description

Database ARGminer Antibiotic resistance gene database

CARD Comprehensive antibiotic resistance datab

SEED A database to support effective comparat

genome analysis

Pfam A large collection of protein families

EggNOG A database of orthology relationships, ge

evolutionary histories, and functional

annotations

Uniref A database provides a comprehensive pro

information

MetaCyc A comprehensive reference database of

metabolic pathways and enzymes from al

domains of life

KEGG Kyoto encyclopedia of genes and genome

Software DeepARG A tool with a fully automated data analy

pipeline for antibiotic resistance annotatio

raw metagenomic samples

AntiSMASH A tool for the rapid genome-wide

identification, annotation, and analysis of

secondary metabolite biosynthesis gene

clusters in bacterial and fungal genomes

HUMAnN2 A pipeline for profiling the microbial

pathways

PICRUSt2 Provide information about the functional

composition of sampled communities
In addition, the functions of many genes identified in
microbial communities are unknown. For example, a recent
study of rumen metagenome-assembled genomes identified

3535 potentially new species and a total of 442,917 encoded
proteins involved in carbohydrate metabolism [91]. Moreover,
a recent study identified 13 novel TII-PKS BGCs that are

uncommon but likely have high clinical medicinal value as bac-
terial BGCs [92]. Several databases and analytical methods
have been proposed for the analysis of functional genes from

microbial communities [93–100], with representative databases
and analytical methods shown in Table 3.

Microbial ecological and evolutionary patterns

Niche-specific spatiotemporal dynamics within microbial com-
munities, in addition to the consequences of these spatiotem-
poral dynamics on species evolution, are key determinants

for the formation, development, stability, and dynamics of
microbial communities [21,101–103]. However, many micro-
bial ecological and evolutionary patterns remain to be

discovered.
For example, the discovery of human gut microbial com-

munity enterotypes has enabled hundreds of projects to deter-

mine the ‘‘stable” status of both human and animal gut
microbial communities [71,104–107]. Further, the existence of
enterotypes for all humans on Earth has only been recognized
in the last 10 years, while such patterns dynamically change

with environments and host diets [18,20,22,46]. Variation in
human gut microbial communities has also been extended to
the analysis of animals, leading to the identification of varia-

tion in other types of gut microbial communities [105,108].
Another example of ecological patterns in microbial

community analyses is the temporal dynamics of human gut
om microbial communities

Website Ref.

https://bench.cs.vt.edu/argminer [87]

ase https://card.mcmaster.ca/ [93]

ive https://www.theseed.org/wiki/Home_of_the_SEED [94]

https://pfam.xfam.org/ [95]

ne https://eggnog5.embl.de/#/app/home [96]

tein https://www.uniprot.org/help/uniref [97]

l

https://MetaCyc.org [98]

s https://www.genodme.jp/kegg/ [99]

sis

n of

https://bench.cs.vt.edu/deeparg [43]

https://antismash.secondarymetabolites.org/ [42]

https://huttenhower.sph.harvard.edu/humann2 [40]

https://github.com/picrust/picrust2 [100]

https://bench.cs.vt.edu/argminer
https://card.mcmaster.ca/
https://www.theseed.org/wiki/Home_of_the_SEED
https://pfam.xfam.org/
https://eggnog5.embl.de/#/app/home
https://www.uniprot.org/help/uniref
https://MetaCyc.org
https://www.genodme.jp/kegg/
https://bench.cs.vt.edu/deeparg
https://antismash.secondarymetabolites.org/
https://huttenhower.sph.harvard.edu/humann2
https://github.com/picrust/picrust2
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microbial communities. Human gut microbiota rapidly
responds to changes in diet [103,109,110], and the composition
of an individual’s gut microbiota is predominantly determined

by dietary habits over the long term (i.e., more than 1 year)
[107,111]. However, these dynamics are highly variable among
individuals [112,113]. Over short-term time scales (i.e., less

than 1 month), human gut microbiota can drastically change
during dietary shifts, while such changes can also be quickly
reversed after shifts in diets [22]. In addition, strong ‘‘plastic”

patterns can be observed over mid-term time scales (i.e.,
between a month and a year) [22] (Figure 2).

However, these examples only represent a few of the many
ecological and evolutionary patterns that remain to be discov-

ered. For example, context-dependent patterns such as
microbiome-related disease patterns [114] remain understud-
ied, especially for cancer disease-microbiome patterns [115],

longitudinal microbiome patterns [21], large-scale context-
independent ecological patterns [2], and the evolutionary pat-
terns of specific genes [116]. Among these areas, cancer

disease-microbiome patterns are of particular importance
[115], because they could provide evidence for the roles of bac-
teria in cancer states. Such studies could lead the way for the

next generation of cancer prediction and therapeutic strategies
[117]. Another area that lacks resolution is a basic and theoret-
ical framework for how various genes act in concert to enable
microorganisms to inhabit specific niches and how they may

correspond to changes in the environment [116]. Homoge-
neous selection, homogeneous dispersal, and neutral theory
are all ecological concepts that may help our understanding

of these processes [118]. Likewise, the evolutionary process
of genetic drift, natural selection, and homologous recombina-
tion may aid in developing the aforementioned framework

[119]. Overall, investigations into these problems could help
develop a better understanding of the ecological and evolution-
Figure 2 The longitudinal dynamics of the human gut microbial comm

For short-term intervention, it has been demonstrated that dietary inte

community. For mid-term intervention, it has been demonstrated tha

long-term intervention, even the enterotype might be changed after on

community samples. And the community profile of each sample is base
ary patterns ranging from small to large scales [22,107,111–
117,120].

The dilemma of traditional methods could be solved

by deep learning methods

Several computational solutions have been proposed to solve
issues in understanding microbial dark matter [1–3] (Figure 1).
However, most of these methods have tradeoffs and especially

when considering big data analytical efficiency and accuracy.
For example, traditional unsupervised learning methods such
as SourceTracker [5] and FEAST [6] can achieve very high

accuracy in microbial community source tracking when there
are hundreds of samples and a handful of biomes. However,
when the number of samples and biomes increases, running
time increases rapidly, preventing large-scale source tracking.

This problem could be solved by deep learning solutions by
utilizing model-based methods such as neural networks that
would enable improvements in both speed and accuracy during

source tracking [61,62].
Another example of a useful application of deep learning is

in ARG mining, in which traditional methods based on Basic

Local Alignment Search Tool (BLAST) searches have been
used to identify candidate ARGs. However, such an approach
is limited to comparison against known ARGs, and search

speed is not very fast when using millions of candidates that
require screening. The use of deep learning approaches via
model-based methods has been shown to more efficiently mine
novel ARGs out of millions of candidates [43,121].

The abovementioned limitations suggest that AI techniques
could be used to more efficiently uncover knowledge about
microbial dark matter. AI techniques are advantageous in that

they generate models from a large number of samples that are
unities have certain patterns

rvention is the main driver of the rapid change in the gut microbial

t the dietary intervention could become stable after a month. For

e year. The dynamic patterns are based on human gut microbial

d on the combination of species with different relative abundances.



Figure 3 The deep learning approaches for solving the microbial dark matter mining problems

Compared with traditional methods, deep learning methods have enabled high-throughput screening, thus is good for unknown

knowledge discovery and has high efficiency.
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representative of global profiles within context-dependent sub-
jects [27]. AI techniques are therefore suitable for accurate and
fast searches when new sample (either a community, a gene, or

a pattern) is searched against established models [28,30,122].
Thus, AI techniques are especially useful for mining microbial
dark matter data, particularly when trying to improve trade-
offs between accuracy and efficiency.

Solutions for eliminating tradeoffs in current microbial
data mining approaches rely on deep learning techniques
[27–31] (Figure 3). In particular, model-based methods such

as neural networks are advantageous in source tracking. For
example, once a rational model has been built, improved effi-
ciency and accuracy of model-based methods can be achieved

that is comparable to, or even better than, existing distance-
based and unsupervised methods [61,123]. The same approach
is suitable for gene mining issues [121]. In spatiotemporal

dynamic pattern mining, deep learning approaches could also
be used to discover intrinsic patterns out of cross-sections or
longitudinal cohorts [124,125].

One example application of the usefulness of these

approaches is microbial source tracking. The first model-
based method for source tracking, ONN4MST, already out-
performs existing methods [61] for source tracking of known

biomes. Further, the EXPERT method employs ONN4MST
models to source track in different contexts [62] and has exhib-
ited a high potential to facilitate mining of the microbial dark

matter data. The EXPERT models are based on fundamental
neural network models and transfer learning approaches, and
exhibit high speed and accuracy, even when analyzing very few
(a few hundred) samples from understudied biomes.

Functional gene mining from metagenome sequences is also
an area that could be improved by AI approaches. For exam-
ple, DeepARG uses a deep learning method that takes

sequence alignment similarities as input and employs a neural
network to enhance ARG prediction accuracy [43]. DeepARG
can achieve a higher precision (0.97) and recall (0.91) than
model-free ARG identification methods that exhibit a preci-

sion of 0.96 and a recall of 0.51. The hierarchical multi-task
deep learning for annotating antibiotic resistance genes
(HMD-ARG) method follows a similar approach by curating
a comprehensive ARG database and then generating a hierar-

chical multi-task deep learning model that could help improve
novel ARG discovery [121]. The supervised model-based meth-
ods are orders of magnitude faster than existing model-free

methods.
Taken together, these studies have shown that supervised

model-based methods are suitable for large-scale microbiome

data mining and can facilitate accurate and efficient microbial
dark matter discovery. Further, more advanced deep learning
techniques such as convolutional neural networks (CNNs) and

transfer learning could enable more accurate data mining,
while also expanding the scope for knowledge discovery. Rep-
resentative AI methods for the analysis of microbial dark mat-
ter are shown in Table 4.

Applications in microbial dark matter analysis

Computational tools, especially machine learning tools, have
enabled a diverse set of applications that rely on microbial
dark matter mining (Figure 4). These tools are described in

detail below.

Quality control of sequencing data

Genomic and metagenomic sequencing data commonly con-

tain possible contamination from various environments, yet
identification and removal of these contaminants remain
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difficult [126–128]. Machine learning-enabled source tracking
and sequence clustering methods can act together to identify
and remove contaminants, regardless of known or unknown

sources [128]. Indeed, the application of machine learning meth-
ods to sequencing data can lead to the removal of most known
contaminants [129]. Further, previously unknown or unexpected

contaminants can also be identified and removed in an intelligent
manner [130], enabling more accurate environmental and clinical
data quality-filtering for subsequent studies [131]. For example,

machine learning methods have enabled the accurate identifica-
tion of contaminants in a typical molecular biology laboratory,
including from workbenches and floors [6].

Microbial source tracking

Microbial source tracking can be used in multi-faceted applica-
tions, including in contaminant sample source identification,

forensic studies, and disease prediction [5,6]. Traditional meth-
ods for microbial source tracking can generally be categorized
into distance-based and unsupervised methods. Distance-

based methods compute the distances between each pair of
samples (using multiple distance measures) [52–55], while
unsupervised methods are limited by pre-defined sets of

sources for source tracking [5,6]. Supervised model-based
methods [56] accurately quantify the contributions of source
biomes for a specific sample but can also adapt to the analysis
of samples from less studied biomes [61]. For example, the

EXPERT method is able to accurately differentiate CRC
stages in patients using a model built from more than 10,000
human microbiome samples from normal individuals [62].

Novel species discovery from different domains of species

It has been estimated that there are more than a million

unknown species and more than a billion unannotated micro-
bial genes, providing an expansive opportunity for species and
gene discovery. Novel species that live in extreme environ-

ments, or those that could generate important metabolites
are of interest in clinical and industrial applications [132–
135]. Machine learning techniques have enabled novel species
discovery from diverse taxa. For example, a recent study

revealed thousands of novel protistan species at the global
scale and established that protists are distributed discretely,
with soil pH as the most important influencing factor on their

distribution [73].

Novel functional gene discovery

Functional gene mining from microbial communities, and
especially ARG and BGC mining, are a focus of many studies
[42,136,137]. Traditional methods for functional gene mining

rely on databases comprising ARGs and BGCs that can be
searched against, although these approaches are limited in
the ability to discover novel functional genes [43,87–
90,136,137]. Machine learning methods have, however, made

it possible to discover novel functional genes more efficiently.
For example, DeepARG has identified thousands of novel
ARGs that were previously unannotated [43]. In addition,

the use of HMD-ARG has shown that novel ARGs are func-
tional via the combination of computation and wet-lab valida-
tion analyses [121].



Figure 4 Applications based on computational tools for microbial dark matter mining
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Phenotype prediction based on spatiotemporal patterns of the

microbial communities

Human microbial communities are intricately linked with the
health status of hosts, and it is possible to derive a model for

predicting host phenotypes based on host-microbial communi-
ties [20]. Indeed, supervised learning methods are suitable for
such analyses. For example, EXPERT has been used to accu-

rately differentiate samples from patients with nearly twenty
diseases, in addition to monitoring CRC stages in patients
using models constructed from over 10,000 human micro-
biome samples in normal individuals [62].

Longitudinal predictions, as in the prediction of disease
progressions, represent another potential area of application
[21,138]. Supervised learning has been successfully applied

for longitudinal predictions by identifying key events along
timelines, in addition to identifying differences among infants
at different stages [62]. Machine learning methods have also

been used for highly accurate human chronological age predic-
tions [62]. Furthermore, machine learning methods such as
random forest classification have been successfully applied in

forensic studies leading to the ability to determine times and
locations precisely [57]. Phenotype prediction modeling can
also be used for identifying environmental indicators
[139,140]. For example, machine learning methods have been

used to establish several microbial-based lake environment
monitoring models using years of freshwater lake samples
[139].

Overall, a more comprehensive understanding of microbial
dark matter has opened the door for countless applications,
with more in-depth applications being possible due to a better
understanding of microbial communities. Although most of
these applications are context-dependent, they could, in turn,

provide large microbial community datasets that can help dee-
pen our understanding of microbial communities across a vari-
ety of niches. Such iterative interactions between microbiome
knowledge generation and applications could spur a significant

improvement in microbiome research.

Conclusion

Understanding microbial dark matter has emerged as a grand
challenge for microbial research, and big data mining of micro-

bial dark matter could be a powerful approach to understand-
ing such dark matter. Microbial community niches, species,
functional genes, and spatiotemporal dynamics all constitute
important components of microbial dark matter. Microbiome

studies have gradually produced an abundance of high-quality
data that have enabled data mining techniques for large-scale
microbiome data mining to promote an in-depth understand-

ing of microbial communities. The rapid development of
microbiome data mining could certainly boost the discovery
of additional microbial resources and dynamic patterns from

these dark matter datasets.
Current microbiome databases and analytical methods are

suitable for small-scale microbiome data mining, but two

important aspects of data analyses require urgent improve-
ment. First, next-generation microbiome databases that con-
tain sequencing data in addition to metadata, including
environmental factors and phenotypic characteristics, are

needed. The second is a need for enabling methods in genes
mining among millions to billions of samples. Recent updates
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in metagenomic databases such as Qiita [34], in addition to
model-based methods such as DeepARG [43] and EXPERT
[6], have largely solved the large-scale microbiome data mining

problem but are only appropriate for specific mining problems.
The potential insights from microbial dark matter discovery

are indeed very inspiring. Microbial dark matter comprises

novel biomes, species, functional genes, and spatiotemporal
patterns. Increased discovery in these areas would certainly
lead to the identification of new principles and could be useful

for a tremendous number of applications in healthcare, biome-
dicine, environmental monitoring, and bio-safety, in addition
to other areas.

Finally, we emphasize that it has already become clear that

microbial communities have been collected from increasingly
diverse niches around the world. Nevertheless, it is important
to note that the currently sampled niches are far from com-

plete, especially when considering the countless number of
application-dependent contexts. Thus, microbial dark matter
in a broad sense is almost infinite. However, data mining mod-

els could also be updated to cope with increasing diversity in
dark matter, although multiple models might be needed to
obtain optimal data mining results among different contexts.

The arms race between microbial dark matter and AI modeling
could lead to a much deeper understanding of microbial com-
munities and their interactions with environments. In addition,
it should be emphasized that advances in microbiome tech-

nologies will also play important roles in better understanding
microbial dark matter. Recent advances in microbiome tech-
niques include the use of third-generation sequencing (e.g.,

Oxford Nanopore) and the use of metatranscriptomics. For
example, a recent study of in vivo dental plaques formed on
hydroxyapatite disks for 6 h from 74 young adults documented

the identification of 21 initial colonizing taxa based on full-
length 16S rRNA gene sequences generated with long-read
sequencing technology [141]. Metatranscriptomic sequencing

can be used to ascertain a gene’s activity in a defined environ-
ment. Gosalbes et al. [142] conducted a metatranscriptomic
analysis of fecal microbiomes from ten healthy humans and
discovered that the gut microbiota’s primary functional roles

were carbohydrate metabolism, energy production, and syn-
thesis of cellular components. This work has proven that the
metatranscriptome study could reveal the functions of

microbes in amino acid and lipid metabolism.
Taken together, understanding microbial dark matter is not

only a challenge, but also an opportunity for computational

microbiologists to explore large datasets with the goal of better
understanding microbial communities and identifying better
solutions for current global concerns in human health and
environments. AI technologies have already been applied to

microbial dark matter mining problems, and we expect that
the increased maturity of AI technologies will lead to increas-
ing in-depth microbiome knowledge that could be mined out

of the massive pool of microbial dark matter.
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